|
- // Special functions -*- C++ -*-
-
- // Copyright (C) 2006-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file tr1/hypergeometric.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
-
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
-
- // Written by Edward Smith-Rowland based:
- // (1) Handbook of Mathematical Functions,
- // ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications,
- // Section 6, pp. 555-566
- // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
-
- #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
- #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- # define _GLIBCXX_MATH_NS ::std
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- # define _GLIBCXX_MATH_NS ::std::tr1
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // [5.2] Special functions
-
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief This routine returns the confluent hypergeometric function
- * by series expansion.
- *
- * @f[
- * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
- * \sum_{n=0}^{\infty}
- * \frac{\Gamma(a+n)}{\Gamma(c+n)}
- * \frac{x^n}{n!}
- * @f]
- *
- * If a and b are integers and a < 0 and either b > 0 or b < a
- * then the series is a polynomial with a finite number of
- * terms. If b is an integer and b <= 0 the confluent
- * hypergeometric function is undefined.
- *
- * @param __a The "numerator" parameter.
- * @param __c The "denominator" parameter.
- * @param __x The argument of the confluent hypergeometric function.
- * @return The confluent hypergeometric function.
- */
- template<typename _Tp>
- _Tp
- __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
- {
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
-
- _Tp __term = _Tp(1);
- _Tp __Fac = _Tp(1);
- const unsigned int __max_iter = 100000;
- unsigned int __i;
- for (__i = 0; __i < __max_iter; ++__i)
- {
- __term *= (__a + _Tp(__i)) * __x
- / ((__c + _Tp(__i)) * _Tp(1 + __i));
- if (std::abs(__term) < __eps)
- {
- break;
- }
- __Fac += __term;
- }
- if (__i == __max_iter)
- std::__throw_runtime_error(__N("Series failed to converge "
- "in __conf_hyperg_series."));
-
- return __Fac;
- }
-
-
- /**
- * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
- * by an iterative procedure described in
- * Luke, Algorithms for the Computation of Mathematical Functions.
- *
- * Like the case of the 2F1 rational approximations, these are
- * probably guaranteed to converge for x < 0, barring gross
- * numerical instability in the pre-asymptotic regime.
- */
- template<typename _Tp>
- _Tp
- __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
- {
- const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
- const int __nmax = 20000;
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __x = -__xin;
- const _Tp __x3 = __x * __x * __x;
- const _Tp __t0 = __a / __c;
- const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
- const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
- _Tp __F = _Tp(1);
- _Tp __prec;
-
- _Tp __Bnm3 = _Tp(1);
- _Tp __Bnm2 = _Tp(1) + __t1 * __x;
- _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
-
- _Tp __Anm3 = _Tp(1);
- _Tp __Anm2 = __Bnm2 - __t0 * __x;
- _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
- + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
-
- int __n = 3;
- while(1)
- {
- _Tp __npam1 = _Tp(__n - 1) + __a;
- _Tp __npcm1 = _Tp(__n - 1) + __c;
- _Tp __npam2 = _Tp(__n - 2) + __a;
- _Tp __npcm2 = _Tp(__n - 2) + __c;
- _Tp __tnm1 = _Tp(2 * __n - 1);
- _Tp __tnm3 = _Tp(2 * __n - 3);
- _Tp __tnm5 = _Tp(2 * __n - 5);
- _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
- _Tp __F2 = (_Tp(__n) + __a) * __npam1
- / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
- _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
- / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
- * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
- _Tp __E = -__npam1 * (_Tp(__n - 1) - __c)
- / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
-
- _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
- + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
- _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
- + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
- _Tp __r = __An / __Bn;
-
- __prec = std::abs((__F - __r) / __F);
- __F = __r;
-
- if (__prec < __eps || __n > __nmax)
- break;
-
- if (std::abs(__An) > __big || std::abs(__Bn) > __big)
- {
- __An /= __big;
- __Bn /= __big;
- __Anm1 /= __big;
- __Bnm1 /= __big;
- __Anm2 /= __big;
- __Bnm2 /= __big;
- __Anm3 /= __big;
- __Bnm3 /= __big;
- }
- else if (std::abs(__An) < _Tp(1) / __big
- || std::abs(__Bn) < _Tp(1) / __big)
- {
- __An *= __big;
- __Bn *= __big;
- __Anm1 *= __big;
- __Bnm1 *= __big;
- __Anm2 *= __big;
- __Bnm2 *= __big;
- __Anm3 *= __big;
- __Bnm3 *= __big;
- }
-
- ++__n;
- __Bnm3 = __Bnm2;
- __Bnm2 = __Bnm1;
- __Bnm1 = __Bn;
- __Anm3 = __Anm2;
- __Anm2 = __Anm1;
- __Anm1 = __An;
- }
-
- if (__n >= __nmax)
- std::__throw_runtime_error(__N("Iteration failed to converge "
- "in __conf_hyperg_luke."));
-
- return __F;
- }
-
-
- /**
- * @brief Return the confluent hypogeometric function
- * @f$ _1F_1(a;c;x) @f$.
- *
- * @todo Handle b == nonpositive integer blowup - return NaN.
- *
- * @param __a The @a numerator parameter.
- * @param __c The @a denominator parameter.
- * @param __x The argument of the confluent hypergeometric function.
- * @return The confluent hypergeometric function.
- */
- template<typename _Tp>
- _Tp
- __conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
- #else
- const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
- #endif
- if (__isnan(__a) || __isnan(__c) || __isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__c_nint == __c && __c_nint <= 0)
- return std::numeric_limits<_Tp>::infinity();
- else if (__a == _Tp(0))
- return _Tp(1);
- else if (__c == __a)
- return std::exp(__x);
- else if (__x < _Tp(0))
- return __conf_hyperg_luke(__a, __c, __x);
- else
- return __conf_hyperg_series(__a, __c, __x);
- }
-
-
- /**
- * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
- * by series expansion.
- *
- * The hypogeometric function is defined by
- * @f[
- * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
- * \sum_{n=0}^{\infty}
- * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
- * \frac{x^n}{n!}
- * @f]
- *
- * This works and it's pretty fast.
- *
- * @param __a The first @a numerator parameter.
- * @param __a The second @a numerator parameter.
- * @param __c The @a denominator parameter.
- * @param __x The argument of the confluent hypergeometric function.
- * @return The confluent hypergeometric function.
- */
- template<typename _Tp>
- _Tp
- __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
- {
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
-
- _Tp __term = _Tp(1);
- _Tp __Fabc = _Tp(1);
- const unsigned int __max_iter = 100000;
- unsigned int __i;
- for (__i = 0; __i < __max_iter; ++__i)
- {
- __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
- / ((__c + _Tp(__i)) * _Tp(1 + __i));
- if (std::abs(__term) < __eps)
- {
- break;
- }
- __Fabc += __term;
- }
- if (__i == __max_iter)
- std::__throw_runtime_error(__N("Series failed to converge "
- "in __hyperg_series."));
-
- return __Fabc;
- }
-
-
- /**
- * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
- * by an iterative procedure described in
- * Luke, Algorithms for the Computation of Mathematical Functions.
- */
- template<typename _Tp>
- _Tp
- __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
- {
- const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
- const int __nmax = 20000;
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __x = -__xin;
- const _Tp __x3 = __x * __x * __x;
- const _Tp __t0 = __a * __b / __c;
- const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
- const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
- / (_Tp(2) * (__c + _Tp(1)));
-
- _Tp __F = _Tp(1);
-
- _Tp __Bnm3 = _Tp(1);
- _Tp __Bnm2 = _Tp(1) + __t1 * __x;
- _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
-
- _Tp __Anm3 = _Tp(1);
- _Tp __Anm2 = __Bnm2 - __t0 * __x;
- _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
- + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
-
- int __n = 3;
- while (1)
- {
- const _Tp __npam1 = _Tp(__n - 1) + __a;
- const _Tp __npbm1 = _Tp(__n - 1) + __b;
- const _Tp __npcm1 = _Tp(__n - 1) + __c;
- const _Tp __npam2 = _Tp(__n - 2) + __a;
- const _Tp __npbm2 = _Tp(__n - 2) + __b;
- const _Tp __npcm2 = _Tp(__n - 2) + __c;
- const _Tp __tnm1 = _Tp(2 * __n - 1);
- const _Tp __tnm3 = _Tp(2 * __n - 3);
- const _Tp __tnm5 = _Tp(2 * __n - 5);
- const _Tp __n2 = __n * __n;
- const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
- + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
- / (_Tp(2) * __tnm3 * __npcm1);
- const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
- + _Tp(2) - __a * __b) * __npam1 * __npbm1
- / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
- const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
- * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
- / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
- * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
- const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
- / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
-
- _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
- + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
- _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
- + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
- const _Tp __r = __An / __Bn;
-
- const _Tp __prec = std::abs((__F - __r) / __F);
- __F = __r;
-
- if (__prec < __eps || __n > __nmax)
- break;
-
- if (std::abs(__An) > __big || std::abs(__Bn) > __big)
- {
- __An /= __big;
- __Bn /= __big;
- __Anm1 /= __big;
- __Bnm1 /= __big;
- __Anm2 /= __big;
- __Bnm2 /= __big;
- __Anm3 /= __big;
- __Bnm3 /= __big;
- }
- else if (std::abs(__An) < _Tp(1) / __big
- || std::abs(__Bn) < _Tp(1) / __big)
- {
- __An *= __big;
- __Bn *= __big;
- __Anm1 *= __big;
- __Bnm1 *= __big;
- __Anm2 *= __big;
- __Bnm2 *= __big;
- __Anm3 *= __big;
- __Bnm3 *= __big;
- }
-
- ++__n;
- __Bnm3 = __Bnm2;
- __Bnm2 = __Bnm1;
- __Bnm1 = __Bn;
- __Anm3 = __Anm2;
- __Anm2 = __Anm1;
- __Anm1 = __An;
- }
-
- if (__n >= __nmax)
- std::__throw_runtime_error(__N("Iteration failed to converge "
- "in __hyperg_luke."));
-
- return __F;
- }
-
-
- /**
- * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
- * by the reflection formulae in Abramowitz & Stegun formula
- * 15.3.6 for d = c - a - b not integral and formula 15.3.11 for
- * d = c - a - b integral. This assumes a, b, c != negative
- * integer.
- *
- * The hypogeometric function is defined by
- * @f[
- * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
- * \sum_{n=0}^{\infty}
- * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
- * \frac{x^n}{n!}
- * @f]
- *
- * The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
- * @f[
- * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
- * _2F_1(a,b;1-d;1-x)
- * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
- * _2F_1(c-a,c-b;1+d;1-x)
- * @f]
- *
- * The reflection formula for integral @f$ m = c - a - b @f$ is:
- * @f[
- * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
- * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
- * -
- * @f]
- */
- template<typename _Tp>
- _Tp
- __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
- {
- const _Tp __d = __c - __a - __b;
- const int __intd = std::floor(__d + _Tp(0.5L));
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __toler = _Tp(1000) * __eps;
- const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
- const bool __d_integer = (std::abs(__d - __intd) < __toler);
-
- if (__d_integer)
- {
- const _Tp __ln_omx = std::log(_Tp(1) - __x);
- const _Tp __ad = std::abs(__d);
- _Tp __F1, __F2;
-
- _Tp __d1, __d2;
- if (__d >= _Tp(0))
- {
- __d1 = __d;
- __d2 = _Tp(0);
- }
- else
- {
- __d1 = _Tp(0);
- __d2 = __d;
- }
-
- const _Tp __lng_c = __log_gamma(__c);
-
- // Evaluate F1.
- if (__ad < __eps)
- {
- // d = c - a - b = 0.
- __F1 = _Tp(0);
- }
- else
- {
-
- bool __ok_d1 = true;
- _Tp __lng_ad, __lng_ad1, __lng_bd1;
- __try
- {
- __lng_ad = __log_gamma(__ad);
- __lng_ad1 = __log_gamma(__a + __d1);
- __lng_bd1 = __log_gamma(__b + __d1);
- }
- __catch(...)
- {
- __ok_d1 = false;
- }
-
- if (__ok_d1)
- {
- /* Gamma functions in the denominator are ok.
- * Proceed with evaluation.
- */
- _Tp __sum1 = _Tp(1);
- _Tp __term = _Tp(1);
- _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
- - __lng_ad1 - __lng_bd1;
-
- /* Do F1 sum.
- */
- for (int __i = 1; __i < __ad; ++__i)
- {
- const int __j = __i - 1;
- __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
- / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
- __sum1 += __term;
- }
-
- if (__ln_pre1 > __log_max)
- std::__throw_runtime_error(__N("Overflow of gamma functions"
- " in __hyperg_luke."));
- else
- __F1 = std::exp(__ln_pre1) * __sum1;
- }
- else
- {
- // Gamma functions in the denominator were not ok.
- // So the F1 term is zero.
- __F1 = _Tp(0);
- }
- } // end F1 evaluation
-
- // Evaluate F2.
- bool __ok_d2 = true;
- _Tp __lng_ad2, __lng_bd2;
- __try
- {
- __lng_ad2 = __log_gamma(__a + __d2);
- __lng_bd2 = __log_gamma(__b + __d2);
- }
- __catch(...)
- {
- __ok_d2 = false;
- }
-
- if (__ok_d2)
- {
- // Gamma functions in the denominator are ok.
- // Proceed with evaluation.
- const int __maxiter = 2000;
- const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
- const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
- const _Tp __psi_apd1 = __psi(__a + __d1);
- const _Tp __psi_bpd1 = __psi(__b + __d1);
-
- _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
- - __psi_bpd1 - __ln_omx;
- _Tp __fact = _Tp(1);
- _Tp __sum2 = __psi_term;
- _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
- - __lng_ad2 - __lng_bd2;
-
- // Do F2 sum.
- int __j;
- for (__j = 1; __j < __maxiter; ++__j)
- {
- // Values for psi functions use recurrence;
- // Abramowitz & Stegun 6.3.5
- const _Tp __term1 = _Tp(1) / _Tp(__j)
- + _Tp(1) / (__ad + __j);
- const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
- + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
- __psi_term += __term1 - __term2;
- __fact *= (__a + __d1 + _Tp(__j - 1))
- * (__b + __d1 + _Tp(__j - 1))
- / ((__ad + __j) * __j) * (_Tp(1) - __x);
- const _Tp __delta = __fact * __psi_term;
- __sum2 += __delta;
- if (std::abs(__delta) < __eps * std::abs(__sum2))
- break;
- }
- if (__j == __maxiter)
- std::__throw_runtime_error(__N("Sum F2 failed to converge "
- "in __hyperg_reflect"));
-
- if (__sum2 == _Tp(0))
- __F2 = _Tp(0);
- else
- __F2 = std::exp(__ln_pre2) * __sum2;
- }
- else
- {
- // Gamma functions in the denominator not ok.
- // So the F2 term is zero.
- __F2 = _Tp(0);
- } // end F2 evaluation
-
- const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
- const _Tp __F = __F1 + __sgn_2 * __F2;
-
- return __F;
- }
- else
- {
- // d = c - a - b not an integer.
-
- // These gamma functions appear in the denominator, so we
- // catch their harmless domain errors and set the terms to zero.
- bool __ok1 = true;
- _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
- _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
- __try
- {
- __sgn_g1ca = __log_gamma_sign(__c - __a);
- __ln_g1ca = __log_gamma(__c - __a);
- __sgn_g1cb = __log_gamma_sign(__c - __b);
- __ln_g1cb = __log_gamma(__c - __b);
- }
- __catch(...)
- {
- __ok1 = false;
- }
-
- bool __ok2 = true;
- _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
- _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
- __try
- {
- __sgn_g2a = __log_gamma_sign(__a);
- __ln_g2a = __log_gamma(__a);
- __sgn_g2b = __log_gamma_sign(__b);
- __ln_g2b = __log_gamma(__b);
- }
- __catch(...)
- {
- __ok2 = false;
- }
-
- const _Tp __sgn_gc = __log_gamma_sign(__c);
- const _Tp __ln_gc = __log_gamma(__c);
- const _Tp __sgn_gd = __log_gamma_sign(__d);
- const _Tp __ln_gd = __log_gamma(__d);
- const _Tp __sgn_gmd = __log_gamma_sign(-__d);
- const _Tp __ln_gmd = __log_gamma(-__d);
-
- const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb;
- const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b;
-
- _Tp __pre1, __pre2;
- if (__ok1 && __ok2)
- {
- _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
- _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
- + __d * std::log(_Tp(1) - __x);
- if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
- {
- __pre1 = std::exp(__ln_pre1);
- __pre2 = std::exp(__ln_pre2);
- __pre1 *= __sgn1;
- __pre2 *= __sgn2;
- }
- else
- {
- std::__throw_runtime_error(__N("Overflow of gamma functions "
- "in __hyperg_reflect"));
- }
- }
- else if (__ok1 && !__ok2)
- {
- _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
- if (__ln_pre1 < __log_max)
- {
- __pre1 = std::exp(__ln_pre1);
- __pre1 *= __sgn1;
- __pre2 = _Tp(0);
- }
- else
- {
- std::__throw_runtime_error(__N("Overflow of gamma functions "
- "in __hyperg_reflect"));
- }
- }
- else if (!__ok1 && __ok2)
- {
- _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
- + __d * std::log(_Tp(1) - __x);
- if (__ln_pre2 < __log_max)
- {
- __pre1 = _Tp(0);
- __pre2 = std::exp(__ln_pre2);
- __pre2 *= __sgn2;
- }
- else
- {
- std::__throw_runtime_error(__N("Overflow of gamma functions "
- "in __hyperg_reflect"));
- }
- }
- else
- {
- __pre1 = _Tp(0);
- __pre2 = _Tp(0);
- std::__throw_runtime_error(__N("Underflow of gamma functions "
- "in __hyperg_reflect"));
- }
-
- const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
- _Tp(1) - __x);
- const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
- _Tp(1) - __x);
-
- const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
-
- return __F;
- }
- }
-
-
- /**
- * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
- *
- * The hypogeometric function is defined by
- * @f[
- * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
- * \sum_{n=0}^{\infty}
- * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
- * \frac{x^n}{n!}
- * @f]
- *
- * @param __a The first @a numerator parameter.
- * @param __a The second @a numerator parameter.
- * @param __c The @a denominator parameter.
- * @param __x The argument of the confluent hypergeometric function.
- * @return The confluent hypergeometric function.
- */
- template<typename _Tp>
- _Tp
- __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a);
- const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b);
- const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
- #else
- const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
- const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
- const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
- #endif
- const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
- if (std::abs(__x) >= _Tp(1))
- std::__throw_domain_error(__N("Argument outside unit circle "
- "in __hyperg."));
- else if (__isnan(__a) || __isnan(__b)
- || __isnan(__c) || __isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__c_nint == __c && __c_nint <= _Tp(0))
- return std::numeric_limits<_Tp>::infinity();
- else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
- return std::pow(_Tp(1) - __x, __c - __a - __b);
- else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
- && __x >= _Tp(0) && __x < _Tp(0.995L))
- return __hyperg_series(__a, __b, __c, __x);
- else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
- {
- // For integer a and b the hypergeometric function is a
- // finite polynomial.
- if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler)
- return __hyperg_series(__a_nint, __b, __c, __x);
- else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler)
- return __hyperg_series(__a, __b_nint, __c, __x);
- else if (__x < -_Tp(0.25L))
- return __hyperg_luke(__a, __b, __c, __x);
- else if (__x < _Tp(0.5L))
- return __hyperg_series(__a, __b, __c, __x);
- else
- if (std::abs(__c) > _Tp(10))
- return __hyperg_series(__a, __b, __c, __x);
- else
- return __hyperg_reflect(__a, __b, __c, __x);
- }
- else
- return __hyperg_luke(__a, __b, __c, __x);
- }
- } // namespace __detail
- #undef _GLIBCXX_MATH_NS
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
-
- _GLIBCXX_END_NAMESPACE_VERSION
- }
-
- #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
|