You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

305 lines
10KB

  1. // Special functions -*- C++ -*-
  2. // Copyright (C) 2006-2020 Free Software Foundation, Inc.
  3. //
  4. // This file is part of the GNU ISO C++ Library. This library is free
  5. // software; you can redistribute it and/or modify it under the
  6. // terms of the GNU General Public License as published by the
  7. // Free Software Foundation; either version 3, or (at your option)
  8. // any later version.
  9. //
  10. // This library is distributed in the hope that it will be useful,
  11. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. // GNU General Public License for more details.
  14. //
  15. // Under Section 7 of GPL version 3, you are granted additional
  16. // permissions described in the GCC Runtime Library Exception, version
  17. // 3.1, as published by the Free Software Foundation.
  18. // You should have received a copy of the GNU General Public License and
  19. // a copy of the GCC Runtime Library Exception along with this program;
  20. // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
  21. // <http://www.gnu.org/licenses/>.
  22. /** @file tr1/legendre_function.tcc
  23. * This is an internal header file, included by other library headers.
  24. * Do not attempt to use it directly. @headername{tr1/cmath}
  25. */
  26. //
  27. // ISO C++ 14882 TR1: 5.2 Special functions
  28. //
  29. // Written by Edward Smith-Rowland based on:
  30. // (1) Handbook of Mathematical Functions,
  31. // ed. Milton Abramowitz and Irene A. Stegun,
  32. // Dover Publications,
  33. // Section 8, pp. 331-341
  34. // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
  35. // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
  36. // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
  37. // 2nd ed, pp. 252-254
  38. #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
  39. #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
  40. #include <tr1/special_function_util.h>
  41. namespace std _GLIBCXX_VISIBILITY(default)
  42. {
  43. _GLIBCXX_BEGIN_NAMESPACE_VERSION
  44. #if _GLIBCXX_USE_STD_SPEC_FUNCS
  45. # define _GLIBCXX_MATH_NS ::std
  46. #elif defined(_GLIBCXX_TR1_CMATH)
  47. namespace tr1
  48. {
  49. # define _GLIBCXX_MATH_NS ::std::tr1
  50. #else
  51. # error do not include this header directly, use <cmath> or <tr1/cmath>
  52. #endif
  53. // [5.2] Special functions
  54. // Implementation-space details.
  55. namespace __detail
  56. {
  57. /**
  58. * @brief Return the Legendre polynomial by recursion on degree
  59. * @f$ l @f$.
  60. *
  61. * The Legendre function of @f$ l @f$ and @f$ x @f$,
  62. * @f$ P_l(x) @f$, is defined by:
  63. * @f[
  64. * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
  65. * @f]
  66. *
  67. * @param l The degree of the Legendre polynomial. @f$l >= 0@f$.
  68. * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
  69. */
  70. template<typename _Tp>
  71. _Tp
  72. __poly_legendre_p(unsigned int __l, _Tp __x)
  73. {
  74. if (__isnan(__x))
  75. return std::numeric_limits<_Tp>::quiet_NaN();
  76. else if (__x == +_Tp(1))
  77. return +_Tp(1);
  78. else if (__x == -_Tp(1))
  79. return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
  80. else
  81. {
  82. _Tp __p_lm2 = _Tp(1);
  83. if (__l == 0)
  84. return __p_lm2;
  85. _Tp __p_lm1 = __x;
  86. if (__l == 1)
  87. return __p_lm1;
  88. _Tp __p_l = 0;
  89. for (unsigned int __ll = 2; __ll <= __l; ++__ll)
  90. {
  91. // This arrangement is supposed to be better for roundoff
  92. // protection, Arfken, 2nd Ed, Eq 12.17a.
  93. __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
  94. - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
  95. __p_lm2 = __p_lm1;
  96. __p_lm1 = __p_l;
  97. }
  98. return __p_l;
  99. }
  100. }
  101. /**
  102. * @brief Return the associated Legendre function by recursion
  103. * on @f$ l @f$.
  104. *
  105. * The associated Legendre function is derived from the Legendre function
  106. * @f$ P_l(x) @f$ by the Rodrigues formula:
  107. * @f[
  108. * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
  109. * @f]
  110. * @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$.
  111. *
  112. * @param l The degree of the associated Legendre function.
  113. * @f$ l >= 0 @f$.
  114. * @param m The order of the associated Legendre function.
  115. * @param x The argument of the associated Legendre function.
  116. * @f$ |x| <= 1 @f$.
  117. * @param phase The phase of the associated Legendre function.
  118. * Use -1 for the Condon-Shortley phase convention.
  119. */
  120. template<typename _Tp>
  121. _Tp
  122. __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x,
  123. _Tp __phase = _Tp(+1))
  124. {
  125. if (__m > __l)
  126. return _Tp(0);
  127. else if (__isnan(__x))
  128. return std::numeric_limits<_Tp>::quiet_NaN();
  129. else if (__m == 0)
  130. return __poly_legendre_p(__l, __x);
  131. else
  132. {
  133. _Tp __p_mm = _Tp(1);
  134. if (__m > 0)
  135. {
  136. // Two square roots seem more accurate more of the time
  137. // than just one.
  138. _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
  139. _Tp __fact = _Tp(1);
  140. for (unsigned int __i = 1; __i <= __m; ++__i)
  141. {
  142. __p_mm *= __phase * __fact * __root;
  143. __fact += _Tp(2);
  144. }
  145. }
  146. if (__l == __m)
  147. return __p_mm;
  148. _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
  149. if (__l == __m + 1)
  150. return __p_mp1m;
  151. _Tp __p_lm2m = __p_mm;
  152. _Tp __P_lm1m = __p_mp1m;
  153. _Tp __p_lm = _Tp(0);
  154. for (unsigned int __j = __m + 2; __j <= __l; ++__j)
  155. {
  156. __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
  157. - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
  158. __p_lm2m = __P_lm1m;
  159. __P_lm1m = __p_lm;
  160. }
  161. return __p_lm;
  162. }
  163. }
  164. /**
  165. * @brief Return the spherical associated Legendre function.
  166. *
  167. * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
  168. * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
  169. * @f[
  170. * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
  171. * \frac{(l-m)!}{(l+m)!}]
  172. * P_l^m(\cos\theta) \exp^{im\phi}
  173. * @f]
  174. * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
  175. * associated Legendre function.
  176. *
  177. * This function differs from the associated Legendre function by
  178. * argument (@f$x = \cos(\theta)@f$) and by a normalization factor
  179. * but this factor is rather large for large @f$ l @f$ and @f$ m @f$
  180. * and so this function is stable for larger differences of @f$ l @f$
  181. * and @f$ m @f$.
  182. * @note Unlike the case for __assoc_legendre_p the Condon-Shortley
  183. * phase factor @f$ (-1)^m @f$ is present here.
  184. * @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$.
  185. *
  186. * @param l The degree of the spherical associated Legendre function.
  187. * @f$ l >= 0 @f$.
  188. * @param m The order of the spherical associated Legendre function.
  189. * @param theta The radian angle argument of the spherical associated
  190. * Legendre function.
  191. */
  192. template <typename _Tp>
  193. _Tp
  194. __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
  195. {
  196. if (__isnan(__theta))
  197. return std::numeric_limits<_Tp>::quiet_NaN();
  198. const _Tp __x = std::cos(__theta);
  199. if (__m > __l)
  200. return _Tp(0);
  201. else if (__m == 0)
  202. {
  203. _Tp __P = __poly_legendre_p(__l, __x);
  204. _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
  205. / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
  206. __P *= __fact;
  207. return __P;
  208. }
  209. else if (__x == _Tp(1) || __x == -_Tp(1))
  210. {
  211. // m > 0 here
  212. return _Tp(0);
  213. }
  214. else
  215. {
  216. // m > 0 and |x| < 1 here
  217. // Starting value for recursion.
  218. // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
  219. // (-1)^m (1-x^2)^(m/2) / pi^(1/4)
  220. const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
  221. const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
  222. #if _GLIBCXX_USE_C99_MATH_TR1
  223. const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x);
  224. #else
  225. const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
  226. #endif
  227. // Gamma(m+1/2) / Gamma(m)
  228. #if _GLIBCXX_USE_C99_MATH_TR1
  229. const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L)))
  230. - _GLIBCXX_MATH_NS::lgamma(_Tp(__m));
  231. #else
  232. const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
  233. - __log_gamma(_Tp(__m));
  234. #endif
  235. const _Tp __lnpre_val =
  236. -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
  237. + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
  238. const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
  239. / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
  240. _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
  241. _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
  242. if (__l == __m)
  243. return __y_mm;
  244. else if (__l == __m + 1)
  245. return __y_mp1m;
  246. else
  247. {
  248. _Tp __y_lm = _Tp(0);
  249. // Compute Y_l^m, l > m+1, upward recursion on l.
  250. for (int __ll = __m + 2; __ll <= __l; ++__ll)
  251. {
  252. const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
  253. const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
  254. const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
  255. * _Tp(2 * __ll - 1));
  256. const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
  257. / _Tp(2 * __ll - 3));
  258. __y_lm = (__x * __y_mp1m * __fact1
  259. - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
  260. __y_mm = __y_mp1m;
  261. __y_mp1m = __y_lm;
  262. }
  263. return __y_lm;
  264. }
  265. }
  266. }
  267. } // namespace __detail
  268. #undef _GLIBCXX_MATH_NS
  269. #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
  270. } // namespace tr1
  271. #endif
  272. _GLIBCXX_END_NAMESPACE_VERSION
  273. }
  274. #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC