|
- // Special functions -*- C++ -*-
-
- // Copyright (C) 2006-2020 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
-
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
-
- /** @file tr1/poly_hermite.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
-
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
-
- // Written by Edward Smith-Rowland based on:
- // (1) Handbook of Mathematical Functions,
- // Ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications, Section 22 pp. 773-802
-
- #ifndef _GLIBCXX_TR1_POLY_HERMITE_TCC
- #define _GLIBCXX_TR1_POLY_HERMITE_TCC 1
-
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
-
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // [5.2] Special functions
-
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief This routine returns the Hermite polynomial
- * of order n: \f$ H_n(x) \f$ by recursion on n.
- *
- * The Hermite polynomial is defined by:
- * @f[
- * H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
- * @f]
- *
- * @param __n The order of the Hermite polynomial.
- * @param __x The argument of the Hermite polynomial.
- * @return The value of the Hermite polynomial of order n
- * and argument x.
- */
- template<typename _Tp>
- _Tp
- __poly_hermite_recursion(unsigned int __n, _Tp __x)
- {
- // Compute H_0.
- _Tp __H_0 = 1;
- if (__n == 0)
- return __H_0;
-
- // Compute H_1.
- _Tp __H_1 = 2 * __x;
- if (__n == 1)
- return __H_1;
-
- // Compute H_n.
- _Tp __H_n, __H_nm1, __H_nm2;
- unsigned int __i;
- for (__H_nm2 = __H_0, __H_nm1 = __H_1, __i = 2; __i <= __n; ++__i)
- {
- __H_n = 2 * (__x * __H_nm1 - (__i - 1) * __H_nm2);
- __H_nm2 = __H_nm1;
- __H_nm1 = __H_n;
- }
-
- return __H_n;
- }
-
-
- /**
- * @brief This routine returns the Hermite polynomial
- * of order n: \f$ H_n(x) \f$.
- *
- * The Hermite polynomial is defined by:
- * @f[
- * H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
- * @f]
- *
- * @param __n The order of the Hermite polynomial.
- * @param __x The argument of the Hermite polynomial.
- * @return The value of the Hermite polynomial of order n
- * and argument x.
- */
- template<typename _Tp>
- inline _Tp
- __poly_hermite(unsigned int __n, _Tp __x)
- {
- if (__isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else
- return __poly_hermite_recursion(__n, __x);
- }
- } // namespace __detail
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
-
- _GLIBCXX_END_NAMESPACE_VERSION
- }
-
- #endif // _GLIBCXX_TR1_POLY_HERMITE_TCC
|