|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Common Function Attributes (Using the GNU Compiler Collection (GCC))</title>
-
- <meta name="description" content="Common Function Attributes (Using the GNU Compiler Collection (GCC))">
- <meta name="keywords" content="Common Function Attributes (Using the GNU Compiler Collection (GCC))">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Function-Attributes.html#Function-Attributes" rel="up" title="Function Attributes">
- <link href="AArch64-Function-Attributes.html#AArch64-Function-Attributes" rel="next" title="AArch64 Function Attributes">
- <link href="Function-Attributes.html#Function-Attributes" rel="prev" title="Function Attributes">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="Common-Function-Attributes"></a>
- <div class="header">
- <p>
- Next: <a href="AArch64-Function-Attributes.html#AArch64-Function-Attributes" accesskey="n" rel="next">AArch64 Function Attributes</a>, Up: <a href="Function-Attributes.html#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="Common-Function-Attributes-1"></a>
- <h4 class="subsection">6.33.1 Common Function Attributes</h4>
-
- <p>The following attributes are supported on most targets.
- </p>
- <dl compact="compact">
- <dt><code>access</code></dt>
- <dt><code>access (<var>access-mode</var>, <var>ref-index</var>)</code></dt>
- <dt><code>access (<var>access-mode</var>, <var>ref-index</var>, <var>size-index</var>)</code></dt>
- <dd>
- <p>The <code>access</code> attribute enables the detection of invalid or unsafe
- accesses by functions to which they apply or their callers, as well as
- write-only accesses to objects that are never read from. Such accesses
- may be diagnosed by warnings such as <samp>-Wstringop-overflow</samp>,
- <samp>-Wuninitialized</samp>, <samp>-Wunused</samp>, and others.
- </p>
- <p>The <code>access</code> attribute specifies that a function to whose by-reference
- arguments the attribute applies accesses the referenced object according to
- <var>access-mode</var>. The <var>access-mode</var> argument is required and must be
- one of three names: <code>read_only</code>, <code>read_write</code>, or <code>write_only</code>.
- The remaining two are positional arguments.
- </p>
- <p>The required <var>ref-index</var> positional argument denotes a function
- argument of pointer (or in C++, reference) type that is subject to
- the access. The same pointer argument can be referenced by at most one
- distinct <code>access</code> attribute.
- </p>
- <p>The optional <var>size-index</var> positional argument denotes a function
- argument of integer type that specifies the maximum size of the access.
- The size is the number of elements of the type referenced by <var>ref-index</var>,
- or the number of bytes when the pointer type is <code>void*</code>. When no
- <var>size-index</var> argument is specified, the pointer argument must be either
- null or point to a space that is suitably aligned and large for at least one
- object of the referenced type (this implies that a past-the-end pointer is
- not a valid argument). The actual size of the access may be less but it
- must not be more.
- </p>
- <p>The <code>read_only</code> access mode specifies that the pointer to which it
- applies is used to read the referenced object but not write to it. Unless
- the argument specifying the size of the access denoted by <var>size-index</var>
- is zero, the referenced object must be initialized. The mode implies
- a stronger guarantee than the <code>const</code> qualifier which, when cast away
- from a pointer, does not prevent the pointed-to object from being modified.
- Examples of the use of the <code>read_only</code> access mode is the argument to
- the <code>puts</code> function, or the second and third arguments to
- the <code>memcpy</code> function.
- </p>
- <div class="smallexample">
- <pre class="smallexample">__attribute__ ((access (read_only, 1))) int puts (const char*);
- __attribute__ ((access (read_only, 1, 2))) void* memcpy (void*, const void*, size_t);
- </pre></div>
-
- <p>The <code>read_write</code> access mode applies to arguments of pointer types
- without the <code>const</code> qualifier. It specifies that the pointer to which
- it applies is used to both read and write the referenced object. Unless
- the argument specifying the size of the access denoted by <var>size-index</var>
- is zero, the object referenced by the pointer must be initialized. An example
- of the use of the <code>read_write</code> access mode is the first argument to
- the <code>strcat</code> function.
- </p>
- <div class="smallexample">
- <pre class="smallexample">__attribute__ ((access (read_write, 1), access (read_only, 2))) char* strcat (char*, const char*);
- </pre></div>
-
- <p>The <code>write_only</code> access mode applies to arguments of pointer types
- without the <code>const</code> qualifier. It specifies that the pointer to which
- it applies is used to write to the referenced object but not read from it.
- The object referenced by the pointer need not be initialized. An example
- of the use of the <code>write_only</code> access mode is the first argument to
- the <code>strcpy</code> function, or the first two arguments to the <code>fgets</code>
- function.
- </p>
- <div class="smallexample">
- <pre class="smallexample">__attribute__ ((access (write_only, 1), access (read_only, 2))) char* strcpy (char*, const char*);
- __attribute__ ((access (write_only, 1, 2), access (read_write, 3))) int fgets (char*, int, FILE*);
- </pre></div>
-
- </dd>
- <dt><code>alias ("<var>target</var>")</code></dt>
- <dd><a name="index-alias-function-attribute"></a>
- <p>The <code>alias</code> attribute causes the declaration to be emitted as an alias
- for another symbol, which must have been previously declared with the same
- type, and for variables, also the same size and alignment. Declaring an alias
- with a different type than the target is undefined and may be diagnosed. As
- an example, the following declarations:
- </p>
- <div class="smallexample">
- <pre class="smallexample">void __f () { /* <span class="roman">Do something.</span> */; }
- void f () __attribute__ ((weak, alias ("__f")));
- </pre></div>
-
- <p>define ‘<samp>f</samp>’ to be a weak alias for ‘<samp>__f</samp>’. In C++, the mangled name
- for the target must be used. It is an error if ‘<samp>__f</samp>’ is not defined in
- the same translation unit.
- </p>
- <p>This attribute requires assembler and object file support,
- and may not be available on all targets.
- </p>
- </dd>
- <dt><code>aligned</code></dt>
- <dt><code>aligned (<var>alignment</var>)</code></dt>
- <dd><a name="index-aligned-function-attribute"></a>
- <p>The <code>aligned</code> attribute specifies a minimum alignment for
- the first instruction of the function, measured in bytes. When specified,
- <var>alignment</var> must be an integer constant power of 2. Specifying no
- <var>alignment</var> argument implies the ideal alignment for the target.
- The <code>__alignof__</code> operator can be used to determine what that is
- (see <a href="Alignment.html#Alignment">Alignment</a>). The attribute has no effect when a definition for
- the function is not provided in the same translation unit.
- </p>
- <p>The attribute cannot be used to decrease the alignment of a function
- previously declared with a more restrictive alignment; only to increase
- it. Attempts to do otherwise are diagnosed. Some targets specify
- a minimum default alignment for functions that is greater than 1. On
- such targets, specifying a less restrictive alignment is silently ignored.
- Using the attribute overrides the effect of the <samp>-falign-functions</samp>
- (see <a href="Optimize-Options.html#Optimize-Options">Optimize Options</a>) option for this function.
- </p>
- <p>Note that the effectiveness of <code>aligned</code> attributes may be
- limited by inherent limitations in the system linker
- and/or object file format. On some systems, the
- linker is only able to arrange for functions to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum supported
- alignment may be very very small.) See your linker documentation for
- further information.
- </p>
- <p>The <code>aligned</code> attribute can also be used for variables and fields
- (see <a href="Variable-Attributes.html#Variable-Attributes">Variable Attributes</a>.)
- </p>
- </dd>
- <dt><code>alloc_align (<var>position</var>)</code></dt>
- <dd><a name="index-alloc_005falign-function-attribute"></a>
- <p>The <code>alloc_align</code> attribute may be applied to a function that
- returns a pointer and takes at least one argument of an integer or
- enumerated type.
- It indicates that the returned pointer is aligned on a boundary given
- by the function argument at <var>position</var>. Meaningful alignments are
- powers of 2 greater than one. GCC uses this information to improve
- pointer alignment analysis.
- </p>
- <p>The function parameter denoting the allocated alignment is specified by
- one constant integer argument whose number is the argument of the attribute.
- Argument numbering starts at one.
- </p>
- <p>For instance,
- </p>
- <div class="smallexample">
- <pre class="smallexample">void* my_memalign (size_t, size_t) __attribute__ ((alloc_align (1)));
- </pre></div>
-
- <p>declares that <code>my_memalign</code> returns memory with minimum alignment
- given by parameter 1.
- </p>
- </dd>
- <dt><code>alloc_size (<var>position</var>)</code></dt>
- <dt><code>alloc_size (<var>position-1</var>, <var>position-2</var>)</code></dt>
- <dd><a name="index-alloc_005fsize-function-attribute"></a>
- <p>The <code>alloc_size</code> attribute may be applied to a function that
- returns a pointer and takes at least one argument of an integer or
- enumerated type.
- It indicates that the returned pointer points to memory whose size is
- given by the function argument at <var>position-1</var>, or by the product
- of the arguments at <var>position-1</var> and <var>position-2</var>. Meaningful
- sizes are positive values less than <code>PTRDIFF_MAX</code>. GCC uses this
- information to improve the results of <code>__builtin_object_size</code>.
- </p>
- <p>The function parameter(s) denoting the allocated size are specified by
- one or two integer arguments supplied to the attribute. The allocated size
- is either the value of the single function argument specified or the product
- of the two function arguments specified. Argument numbering starts at
- one for ordinary functions, and at two for C++ non-static member functions.
- </p>
- <p>For instance,
- </p>
- <div class="smallexample">
- <pre class="smallexample">void* my_calloc (size_t, size_t) __attribute__ ((alloc_size (1, 2)));
- void* my_realloc (void*, size_t) __attribute__ ((alloc_size (2)));
- </pre></div>
-
- <p>declares that <code>my_calloc</code> returns memory of the size given by
- the product of parameter 1 and 2 and that <code>my_realloc</code> returns memory
- of the size given by parameter 2.
- </p>
- </dd>
- <dt><code>always_inline</code></dt>
- <dd><a name="index-always_005finline-function-attribute"></a>
- <p>Generally, functions are not inlined unless optimization is specified.
- For functions declared inline, this attribute inlines the function
- independent of any restrictions that otherwise apply to inlining.
- Failure to inline such a function is diagnosed as an error.
- Note that if such a function is called indirectly the compiler may
- or may not inline it depending on optimization level and a failure
- to inline an indirect call may or may not be diagnosed.
- </p>
- </dd>
- <dt><code>artificial</code></dt>
- <dd><a name="index-artificial-function-attribute"></a>
- <p>This attribute is useful for small inline wrappers that if possible
- should appear during debugging as a unit. Depending on the debug
- info format it either means marking the function as artificial
- or using the caller location for all instructions within the inlined
- body.
- </p>
- </dd>
- <dt><code>assume_aligned (<var>alignment</var>)</code></dt>
- <dt><code>assume_aligned (<var>alignment</var>, <var>offset</var>)</code></dt>
- <dd><a name="index-assume_005faligned-function-attribute"></a>
- <p>The <code>assume_aligned</code> attribute may be applied to a function that
- returns a pointer. It indicates that the returned pointer is aligned
- on a boundary given by <var>alignment</var>. If the attribute has two
- arguments, the second argument is misalignment <var>offset</var>. Meaningful
- values of <var>alignment</var> are powers of 2 greater than one. Meaningful
- values of <var>offset</var> are greater than zero and less than <var>alignment</var>.
- </p>
- <p>For instance
- </p>
- <div class="smallexample">
- <pre class="smallexample">void* my_alloc1 (size_t) __attribute__((assume_aligned (16)));
- void* my_alloc2 (size_t) __attribute__((assume_aligned (32, 8)));
- </pre></div>
-
- <p>declares that <code>my_alloc1</code> returns 16-byte aligned pointers and
- that <code>my_alloc2</code> returns a pointer whose value modulo 32 is equal
- to 8.
- </p>
- </dd>
- <dt><code>cold</code></dt>
- <dd><a name="index-cold-function-attribute"></a>
- <p>The <code>cold</code> attribute on functions is used to inform the compiler that
- the function is unlikely to be executed. The function is optimized for
- size rather than speed and on many targets it is placed into a special
- subsection of the text section so all cold functions appear close together,
- improving code locality of non-cold parts of program. The paths leading
- to calls of cold functions within code are marked as unlikely by the branch
- prediction mechanism. It is thus useful to mark functions used to handle
- unlikely conditions, such as <code>perror</code>, as cold to improve optimization
- of hot functions that do call marked functions in rare occasions.
- </p>
- <p>When profile feedback is available, via <samp>-fprofile-use</samp>, cold functions
- are automatically detected and this attribute is ignored.
- </p>
- </dd>
- <dt><code>const</code></dt>
- <dd><a name="index-const-function-attribute"></a>
- <a name="index-functions-that-have-no-side-effects"></a>
- <p>Calls to functions whose return value is not affected by changes to
- the observable state of the program and that have no observable effects
- on such state other than to return a value may lend themselves to
- optimizations such as common subexpression elimination. Declaring such
- functions with the <code>const</code> attribute allows GCC to avoid emitting
- some calls in repeated invocations of the function with the same argument
- values.
- </p>
- <p>For example,
- </p>
- <div class="smallexample">
- <pre class="smallexample">int square (int) __attribute__ ((const));
- </pre></div>
-
- <p>tells GCC that subsequent calls to function <code>square</code> with the same
- argument value can be replaced by the result of the first call regardless
- of the statements in between.
- </p>
- <p>The <code>const</code> attribute prohibits a function from reading objects
- that affect its return value between successive invocations. However,
- functions declared with the attribute can safely read objects that do
- not change their return value, such as non-volatile constants.
- </p>
- <p>The <code>const</code> attribute imposes greater restrictions on a function’s
- definition than the similar <code>pure</code> attribute. Declaring the same
- function with both the <code>const</code> and the <code>pure</code> attribute is
- diagnosed. Because a const function cannot have any observable side
- effects it does not make sense for it to return <code>void</code>. Declaring
- such a function is diagnosed.
- </p>
- <a name="index-pointer-arguments"></a>
- <p>Note that a function that has pointer arguments and examines the data
- pointed to must <em>not</em> be declared <code>const</code> if the pointed-to
- data might change between successive invocations of the function. In
- general, since a function cannot distinguish data that might change
- from data that cannot, const functions should never take pointer or,
- in C++, reference arguments. Likewise, a function that calls a non-const
- function usually must not be const itself.
- </p>
- </dd>
- <dt><code>constructor</code></dt>
- <dt><code>destructor</code></dt>
- <dt><code>constructor (<var>priority</var>)</code></dt>
- <dt><code>destructor (<var>priority</var>)</code></dt>
- <dd><a name="index-constructor-function-attribute"></a>
- <a name="index-destructor-function-attribute"></a>
- <p>The <code>constructor</code> attribute causes the function to be called
- automatically before execution enters <code>main ()</code>. Similarly, the
- <code>destructor</code> attribute causes the function to be called
- automatically after <code>main ()</code> completes or <code>exit ()</code> is
- called. Functions with these attributes are useful for
- initializing data that is used implicitly during the execution of
- the program.
- </p>
- <p>On some targets the attributes also accept an integer argument to
- specify a priority to control the order in which constructor and
- destructor functions are run. A constructor
- with a smaller priority number runs before a constructor with a larger
- priority number; the opposite relationship holds for destructors. So,
- if you have a constructor that allocates a resource and a destructor
- that deallocates the same resource, both functions typically have the
- same priority. The priorities for constructor and destructor
- functions are the same as those specified for namespace-scope C++
- objects (see <a href="C_002b_002b-Attributes.html#C_002b_002b-Attributes">C++ Attributes</a>). However, at present, the order in which
- constructors for C++ objects with static storage duration and functions
- decorated with attribute <code>constructor</code> are invoked is unspecified.
- In mixed declarations, attribute <code>init_priority</code> can be used to
- impose a specific ordering.
- </p>
- <p>Using the argument forms of the <code>constructor</code> and <code>destructor</code>
- attributes on targets where the feature is not supported is rejected with
- an error.
- </p>
- </dd>
- <dt><code>copy</code></dt>
- <dt><code>copy (<var>function</var>)</code></dt>
- <dd><a name="index-copy-function-attribute"></a>
- <p>The <code>copy</code> attribute applies the set of attributes with which
- <var>function</var> has been declared to the declaration of the function
- to which the attribute is applied. The attribute is designed for
- libraries that define aliases or function resolvers that are expected
- to specify the same set of attributes as their targets. The <code>copy</code>
- attribute can be used with functions, variables, or types. However,
- the kind of symbol to which the attribute is applied (either function
- or variable) must match the kind of symbol to which the argument refers.
- The <code>copy</code> attribute copies only syntactic and semantic attributes
- but not attributes that affect a symbol’s linkage or visibility such as
- <code>alias</code>, <code>visibility</code>, or <code>weak</code>. The <code>deprecated</code>
- and <code>target_clones</code> attribute are also not copied.
- See <a href="Common-Type-Attributes.html#Common-Type-Attributes">Common Type Attributes</a>.
- See <a href="Common-Variable-Attributes.html#Common-Variable-Attributes">Common Variable Attributes</a>.
- </p>
- <p>For example, the <var>StrongAlias</var> macro below makes use of the <code>alias</code>
- and <code>copy</code> attributes to define an alias named <var>alloc</var> for function
- <var>allocate</var> declared with attributes <var>alloc_size</var>, <var>malloc</var>, and
- <var>nothrow</var>. Thanks to the <code>__typeof__</code> operator the alias has
- the same type as the target function. As a result of the <code>copy</code>
- attribute the alias also shares the same attributes as the target.
- </p>
- <div class="smallexample">
- <pre class="smallexample">#define StrongAlias(TargetFunc, AliasDecl) \
- extern __typeof__ (TargetFunc) AliasDecl \
- __attribute__ ((alias (#TargetFunc), copy (TargetFunc)));
-
- extern __attribute__ ((alloc_size (1), malloc, nothrow))
- void* allocate (size_t);
- StrongAlias (allocate, alloc);
- </pre></div>
-
- </dd>
- <dt><code>deprecated</code></dt>
- <dt><code>deprecated (<var>msg</var>)</code></dt>
- <dd><a name="index-deprecated-function-attribute"></a>
- <p>The <code>deprecated</code> attribute results in a warning if the function
- is used anywhere in the source file. This is useful when identifying
- functions that are expected to be removed in a future version of a
- program. The warning also includes the location of the declaration
- of the deprecated function, to enable users to easily find further
- information about why the function is deprecated, or what they should
- do instead. Note that the warnings only occurs for uses:
- </p>
- <div class="smallexample">
- <pre class="smallexample">int old_fn () __attribute__ ((deprecated));
- int old_fn ();
- int (*fn_ptr)() = old_fn;
- </pre></div>
-
- <p>results in a warning on line 3 but not line 2. The optional <var>msg</var>
- argument, which must be a string, is printed in the warning if
- present.
- </p>
- <p>The <code>deprecated</code> attribute can also be used for variables and
- types (see <a href="Variable-Attributes.html#Variable-Attributes">Variable Attributes</a>, see <a href="Type-Attributes.html#Type-Attributes">Type Attributes</a>.)
- </p>
- <p>The message attached to the attribute is affected by the setting of
- the <samp>-fmessage-length</samp> option.
- </p>
- </dd>
- <dt><code>error ("<var>message</var>")</code></dt>
- <dt><code>warning ("<var>message</var>")</code></dt>
- <dd><a name="index-error-function-attribute"></a>
- <a name="index-warning-function-attribute"></a>
- <p>If the <code>error</code> or <code>warning</code> attribute
- is used on a function declaration and a call to such a function
- is not eliminated through dead code elimination or other optimizations,
- an error or warning (respectively) that includes <var>message</var> is diagnosed.
- This is useful
- for compile-time checking, especially together with <code>__builtin_constant_p</code>
- and inline functions where checking the inline function arguments is not
- possible through <code>extern char [(condition) ? 1 : -1];</code> tricks.
- </p>
- <p>While it is possible to leave the function undefined and thus invoke
- a link failure (to define the function with
- a message in <code>.gnu.warning*</code> section),
- when using these attributes the problem is diagnosed
- earlier and with exact location of the call even in presence of inline
- functions or when not emitting debugging information.
- </p>
- </dd>
- <dt><code>externally_visible</code></dt>
- <dd><a name="index-externally_005fvisible-function-attribute"></a>
- <p>This attribute, attached to a global variable or function, nullifies
- the effect of the <samp>-fwhole-program</samp> command-line option, so the
- object remains visible outside the current compilation unit.
- </p>
- <p>If <samp>-fwhole-program</samp> is used together with <samp>-flto</samp> and
- <code>gold</code> is used as the linker plugin,
- <code>externally_visible</code> attributes are automatically added to functions
- (not variable yet due to a current <code>gold</code> issue)
- that are accessed outside of LTO objects according to resolution file
- produced by <code>gold</code>.
- For other linkers that cannot generate resolution file,
- explicit <code>externally_visible</code> attributes are still necessary.
- </p>
- </dd>
- <dt><code>flatten</code></dt>
- <dd><a name="index-flatten-function-attribute"></a>
- <p>Generally, inlining into a function is limited. For a function marked with
- this attribute, every call inside this function is inlined, if possible.
- Functions declared with attribute <code>noinline</code> and similar are not
- inlined. Whether the function itself is considered for inlining depends
- on its size and the current inlining parameters.
- </p>
- </dd>
- <dt><code>format (<var>archetype</var>, <var>string-index</var>, <var>first-to-check</var>)</code></dt>
- <dd><a name="index-format-function-attribute"></a>
- <a name="index-functions-with-printf_002c-scanf_002c-strftime-or-strfmon-style-arguments"></a>
- <a name="index-Wformat-3"></a>
- <p>The <code>format</code> attribute specifies that a function takes <code>printf</code>,
- <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments that
- should be type-checked against a format string. For example, the
- declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern int
- my_printf (void *my_object, const char *my_format, ...)
- __attribute__ ((format (printf, 2, 3)));
- </pre></div>
-
- <p>causes the compiler to check the arguments in calls to <code>my_printf</code>
- for consistency with the <code>printf</code> style format string argument
- <code>my_format</code>.
- </p>
- <p>The parameter <var>archetype</var> determines how the format string is
- interpreted, and should be <code>printf</code>, <code>scanf</code>, <code>strftime</code>,
- <code>gnu_printf</code>, <code>gnu_scanf</code>, <code>gnu_strftime</code> or
- <code>strfmon</code>. (You can also use <code>__printf__</code>,
- <code>__scanf__</code>, <code>__strftime__</code> or <code>__strfmon__</code>.) On
- MinGW targets, <code>ms_printf</code>, <code>ms_scanf</code>, and
- <code>ms_strftime</code> are also present.
- <var>archetype</var> values such as <code>printf</code> refer to the formats accepted
- by the system’s C runtime library,
- while values prefixed with ‘<samp>gnu_</samp>’ always refer
- to the formats accepted by the GNU C Library. On Microsoft Windows
- targets, values prefixed with ‘<samp>ms_</samp>’ refer to the formats accepted by the
- <samp>msvcrt.dll</samp> library.
- The parameter <var>string-index</var>
- specifies which argument is the format string argument (starting
- from 1), while <var>first-to-check</var> is the number of the first
- argument to check against the format string. For functions
- where the arguments are not available to be checked (such as
- <code>vprintf</code>), specify the third parameter as zero. In this case the
- compiler only checks the format string for consistency. For
- <code>strftime</code> formats, the third parameter is required to be zero.
- Since non-static C++ methods have an implicit <code>this</code> argument, the
- arguments of such methods should be counted from two, not one, when
- giving values for <var>string-index</var> and <var>first-to-check</var>.
- </p>
- <p>In the example above, the format string (<code>my_format</code>) is the second
- argument of the function <code>my_print</code>, and the arguments to check
- start with the third argument, so the correct parameters for the format
- attribute are 2 and 3.
- </p>
- <a name="index-ffreestanding-3"></a>
- <a name="index-fno_002dbuiltin-2"></a>
- <p>The <code>format</code> attribute allows you to identify your own functions
- that take format strings as arguments, so that GCC can check the
- calls to these functions for errors. The compiler always (unless
- <samp>-ffreestanding</samp> or <samp>-fno-builtin</samp> is used) checks formats
- for the standard library functions <code>printf</code>, <code>fprintf</code>,
- <code>sprintf</code>, <code>scanf</code>, <code>fscanf</code>, <code>sscanf</code>, <code>strftime</code>,
- <code>vprintf</code>, <code>vfprintf</code> and <code>vsprintf</code> whenever such
- warnings are requested (using <samp>-Wformat</samp>), so there is no need to
- modify the header file <samp>stdio.h</samp>. In C99 mode, the functions
- <code>snprintf</code>, <code>vsnprintf</code>, <code>vscanf</code>, <code>vfscanf</code> and
- <code>vsscanf</code> are also checked. Except in strictly conforming C
- standard modes, the X/Open function <code>strfmon</code> is also checked as
- are <code>printf_unlocked</code> and <code>fprintf_unlocked</code>.
- See <a href="C-Dialect-Options.html#C-Dialect-Options">Options Controlling C Dialect</a>.
- </p>
- <p>For Objective-C dialects, <code>NSString</code> (or <code>__NSString__</code>) is
- recognized in the same context. Declarations including these format attributes
- are parsed for correct syntax, however the result of checking of such format
- strings is not yet defined, and is not carried out by this version of the
- compiler.
- </p>
- <p>The target may also provide additional types of format checks.
- See <a href="Target-Format-Checks.html#Target-Format-Checks">Format Checks Specific to Particular
- Target Machines</a>.
- </p>
- </dd>
- <dt><code>format_arg (<var>string-index</var>)</code></dt>
- <dd><a name="index-format_005farg-function-attribute"></a>
- <a name="index-Wformat_002dnonliteral-1"></a>
- <p>The <code>format_arg</code> attribute specifies that a function takes one or
- more format strings for a <code>printf</code>, <code>scanf</code>, <code>strftime</code> or
- <code>strfmon</code> style function and modifies it (for example, to translate
- it into another language), so the result can be passed to a
- <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style
- function (with the remaining arguments to the format function the same
- as they would have been for the unmodified string). Multiple
- <code>format_arg</code> attributes may be applied to the same function, each
- designating a distinct parameter as a format string. For example, the
- declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern char *
- my_dgettext (char *my_domain, const char *my_format)
- __attribute__ ((format_arg (2)));
- </pre></div>
-
- <p>causes the compiler to check the arguments in calls to a <code>printf</code>,
- <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> type function, whose
- format string argument is a call to the <code>my_dgettext</code> function, for
- consistency with the format string argument <code>my_format</code>. If the
- <code>format_arg</code> attribute had not been specified, all the compiler
- could tell in such calls to format functions would be that the format
- string argument is not constant; this would generate a warning when
- <samp>-Wformat-nonliteral</samp> is used, but the calls could not be checked
- without the attribute.
- </p>
- <p>In calls to a function declared with more than one <code>format_arg</code>
- attribute, each with a distinct argument value, the corresponding
- actual function arguments are checked against all format strings
- designated by the attributes. This capability is designed to support
- the GNU <code>ngettext</code> family of functions.
- </p>
- <p>The parameter <var>string-index</var> specifies which argument is the format
- string argument (starting from one). Since non-static C++ methods have
- an implicit <code>this</code> argument, the arguments of such methods should
- be counted from two.
- </p>
- <p>The <code>format_arg</code> attribute allows you to identify your own
- functions that modify format strings, so that GCC can check the
- calls to <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code>
- type function whose operands are a call to one of your own function.
- The compiler always treats <code>gettext</code>, <code>dgettext</code>, and
- <code>dcgettext</code> in this manner except when strict ISO C support is
- requested by <samp>-ansi</samp> or an appropriate <samp>-std</samp> option, or
- <samp>-ffreestanding</samp> or <samp>-fno-builtin</samp>
- is used. See <a href="C-Dialect-Options.html#C-Dialect-Options">Options
- Controlling C Dialect</a>.
- </p>
- <p>For Objective-C dialects, the <code>format-arg</code> attribute may refer to an
- <code>NSString</code> reference for compatibility with the <code>format</code> attribute
- above.
- </p>
- <p>The target may also allow additional types in <code>format-arg</code> attributes.
- See <a href="Target-Format-Checks.html#Target-Format-Checks">Format Checks Specific to Particular
- Target Machines</a>.
- </p>
- </dd>
- <dt><code>gnu_inline</code></dt>
- <dd><a name="index-gnu_005finline-function-attribute"></a>
- <p>This attribute should be used with a function that is also declared
- with the <code>inline</code> keyword. It directs GCC to treat the function
- as if it were defined in gnu90 mode even when compiling in C99 or
- gnu99 mode.
- </p>
- <p>If the function is declared <code>extern</code>, then this definition of the
- function is used only for inlining. In no case is the function
- compiled as a standalone function, not even if you take its address
- explicitly. Such an address becomes an external reference, as if you
- had only declared the function, and had not defined it. This has
- almost the effect of a macro. The way to use this is to put a
- function definition in a header file with this attribute, and put
- another copy of the function, without <code>extern</code>, in a library
- file. The definition in the header file causes most calls to the
- function to be inlined. If any uses of the function remain, they
- refer to the single copy in the library. Note that the two
- definitions of the functions need not be precisely the same, although
- if they do not have the same effect your program may behave oddly.
- </p>
- <p>In C, if the function is neither <code>extern</code> nor <code>static</code>, then
- the function is compiled as a standalone function, as well as being
- inlined where possible.
- </p>
- <p>This is how GCC traditionally handled functions declared
- <code>inline</code>. Since ISO C99 specifies a different semantics for
- <code>inline</code>, this function attribute is provided as a transition
- measure and as a useful feature in its own right. This attribute is
- available in GCC 4.1.3 and later. It is available if either of the
- preprocessor macros <code>__GNUC_GNU_INLINE__</code> or
- <code>__GNUC_STDC_INLINE__</code> are defined. See <a href="Inline.html#Inline">An Inline
- Function is As Fast As a Macro</a>.
- </p>
- <p>In C++, this attribute does not depend on <code>extern</code> in any way,
- but it still requires the <code>inline</code> keyword to enable its special
- behavior.
- </p>
- </dd>
- <dt><code>hot</code></dt>
- <dd><a name="index-hot-function-attribute"></a>
- <p>The <code>hot</code> attribute on a function is used to inform the compiler that
- the function is a hot spot of the compiled program. The function is
- optimized more aggressively and on many targets it is placed into a special
- subsection of the text section so all hot functions appear close together,
- improving locality.
- </p>
- <p>When profile feedback is available, via <samp>-fprofile-use</samp>, hot functions
- are automatically detected and this attribute is ignored.
- </p>
- </dd>
- <dt><code>ifunc ("<var>resolver</var>")</code></dt>
- <dd><a name="index-ifunc-function-attribute"></a>
- <a name="index-indirect-functions"></a>
- <a name="index-functions-that-are-dynamically-resolved"></a>
- <p>The <code>ifunc</code> attribute is used to mark a function as an indirect
- function using the STT_GNU_IFUNC symbol type extension to the ELF
- standard. This allows the resolution of the symbol value to be
- determined dynamically at load time, and an optimized version of the
- routine to be selected for the particular processor or other system
- characteristics determined then. To use this attribute, first define
- the implementation functions available, and a resolver function that
- returns a pointer to the selected implementation function. The
- implementation functions’ declarations must match the API of the
- function being implemented. The resolver should be declared to
- be a function taking no arguments and returning a pointer to
- a function of the same type as the implementation. For example:
- </p>
- <div class="smallexample">
- <pre class="smallexample">void *my_memcpy (void *dst, const void *src, size_t len)
- {
- …
- return dst;
- }
-
- static void * (*resolve_memcpy (void))(void *, const void *, size_t)
- {
- return my_memcpy; // we will just always select this routine
- }
- </pre></div>
-
- <p>The exported header file declaring the function the user calls would
- contain:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern void *memcpy (void *, const void *, size_t);
- </pre></div>
-
- <p>allowing the user to call <code>memcpy</code> as a regular function, unaware of
- the actual implementation. Finally, the indirect function needs to be
- defined in the same translation unit as the resolver function:
- </p>
- <div class="smallexample">
- <pre class="smallexample">void *memcpy (void *, const void *, size_t)
- __attribute__ ((ifunc ("resolve_memcpy")));
- </pre></div>
-
- <p>In C++, the <code>ifunc</code> attribute takes a string that is the mangled name
- of the resolver function. A C++ resolver for a non-static member function
- of class <code>C</code> should be declared to return a pointer to a non-member
- function taking pointer to <code>C</code> as the first argument, followed by
- the same arguments as of the implementation function. G++ checks
- the signatures of the two functions and issues
- a <samp>-Wattribute-alias</samp> warning for mismatches. To suppress a warning
- for the necessary cast from a pointer to the implementation member function
- to the type of the corresponding non-member function use
- the <samp>-Wno-pmf-conversions</samp> option. For example:
- </p>
- <div class="smallexample">
- <pre class="smallexample">class S
- {
- private:
- int debug_impl (int);
- int optimized_impl (int);
-
- typedef int Func (S*, int);
-
- static Func* resolver ();
- public:
-
- int interface (int);
- };
-
- int S::debug_impl (int) { /* <span class="roman">…</span> */ }
- int S::optimized_impl (int) { /* <span class="roman">…</span> */ }
-
- S::Func* S::resolver ()
- {
- int (S::*pimpl) (int)
- = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
-
- // Cast triggers -Wno-pmf-conversions.
- return reinterpret_cast<Func*>(pimpl);
- }
-
- int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
- </pre></div>
-
- <p>Indirect functions cannot be weak. Binutils version 2.20.1 or higher
- and GNU C Library version 2.11.1 are required to use this feature.
- </p>
- </dd>
- <dt><code>interrupt</code></dt>
- <dt><code>interrupt_handler</code></dt>
- <dd><p>Many GCC back ends support attributes to indicate that a function is
- an interrupt handler, which tells the compiler to generate function
- entry and exit sequences that differ from those from regular
- functions. The exact syntax and behavior are target-specific;
- refer to the following subsections for details.
- </p>
- </dd>
- <dt><code>leaf</code></dt>
- <dd><a name="index-leaf-function-attribute"></a>
- <p>Calls to external functions with this attribute must return to the
- current compilation unit only by return or by exception handling. In
- particular, a leaf function is not allowed to invoke callback functions
- passed to it from the current compilation unit, directly call functions
- exported by the unit, or <code>longjmp</code> into the unit. Leaf functions
- might still call functions from other compilation units and thus they
- are not necessarily leaf in the sense that they contain no function
- calls at all.
- </p>
- <p>The attribute is intended for library functions to improve dataflow
- analysis. The compiler takes the hint that any data not escaping the
- current compilation unit cannot be used or modified by the leaf
- function. For example, the <code>sin</code> function is a leaf function, but
- <code>qsort</code> is not.
- </p>
- <p>Note that leaf functions might indirectly run a signal handler defined
- in the current compilation unit that uses static variables. Similarly,
- when lazy symbol resolution is in effect, leaf functions might invoke
- indirect functions whose resolver function or implementation function is
- defined in the current compilation unit and uses static variables. There
- is no standard-compliant way to write such a signal handler, resolver
- function, or implementation function, and the best that you can do is to
- remove the <code>leaf</code> attribute or mark all such static variables
- <code>volatile</code>. Lastly, for ELF-based systems that support symbol
- interposition, care should be taken that functions defined in the
- current compilation unit do not unexpectedly interpose other symbols
- based on the defined standards mode and defined feature test macros;
- otherwise an inadvertent callback would be added.
- </p>
- <p>The attribute has no effect on functions defined within the current
- compilation unit. This is to allow easy merging of multiple compilation
- units into one, for example, by using the link-time optimization. For
- this reason the attribute is not allowed on types to annotate indirect
- calls.
- </p>
- </dd>
- <dt><code>malloc</code></dt>
- <dd><a name="index-malloc-function-attribute"></a>
- <a name="index-functions-that-behave-like-malloc"></a>
- <p>This tells the compiler that a function is <code>malloc</code>-like, i.e.,
- that the pointer <var>P</var> returned by the function cannot alias any
- other pointer valid when the function returns, and moreover no
- pointers to valid objects occur in any storage addressed by <var>P</var>.
- </p>
- <p>Using this attribute can improve optimization. Compiler predicts
- that a function with the attribute returns non-null in most cases.
- Functions like
- <code>malloc</code> and <code>calloc</code> have this property because they return
- a pointer to uninitialized or zeroed-out storage. However, functions
- like <code>realloc</code> do not have this property, as they can return a
- pointer to storage containing pointers.
- </p>
- </dd>
- <dt><code>no_icf</code></dt>
- <dd><a name="index-no_005ficf-function-attribute"></a>
- <p>This function attribute prevents a functions from being merged with another
- semantically equivalent function.
- </p>
- </dd>
- <dt><code>no_instrument_function</code></dt>
- <dd><a name="index-no_005finstrument_005ffunction-function-attribute"></a>
- <a name="index-finstrument_002dfunctions-1"></a>
- <a name="index-p-1"></a>
- <a name="index-pg-1"></a>
- <p>If any of <samp>-finstrument-functions</samp>, <samp>-p</samp>, or <samp>-pg</samp> are
- given, profiling function calls are
- generated at entry and exit of most user-compiled functions.
- Functions with this attribute are not so instrumented.
- </p>
- </dd>
- <dt><code>no_profile_instrument_function</code></dt>
- <dd><a name="index-no_005fprofile_005finstrument_005ffunction-function-attribute"></a>
- <p>The <code>no_profile_instrument_function</code> attribute on functions is used
- to inform the compiler that it should not process any profile feedback based
- optimization code instrumentation.
- </p>
- </dd>
- <dt><code>no_reorder</code></dt>
- <dd><a name="index-no_005freorder-function-attribute"></a>
- <p>Do not reorder functions or variables marked <code>no_reorder</code>
- against each other or top level assembler statements the executable.
- The actual order in the program will depend on the linker command
- line. Static variables marked like this are also not removed.
- This has a similar effect
- as the <samp>-fno-toplevel-reorder</samp> option, but only applies to the
- marked symbols.
- </p>
- </dd>
- <dt><code>no_sanitize ("<var>sanitize_option</var>")</code></dt>
- <dd><a name="index-no_005fsanitize-function-attribute"></a>
- <p>The <code>no_sanitize</code> attribute on functions is used
- to inform the compiler that it should not do sanitization of any option
- mentioned in <var>sanitize_option</var>. A list of values acceptable by
- the <samp>-fsanitize</samp> option can be provided.
- </p>
- <div class="smallexample">
- <pre class="smallexample">void __attribute__ ((no_sanitize ("alignment", "object-size")))
- f () { /* <span class="roman">Do something.</span> */; }
- void __attribute__ ((no_sanitize ("alignment,object-size")))
- g () { /* <span class="roman">Do something.</span> */; }
- </pre></div>
-
- </dd>
- <dt><code>no_sanitize_address</code></dt>
- <dt><code>no_address_safety_analysis</code></dt>
- <dd><a name="index-no_005fsanitize_005faddress-function-attribute"></a>
- <p>The <code>no_sanitize_address</code> attribute on functions is used
- to inform the compiler that it should not instrument memory accesses
- in the function when compiling with the <samp>-fsanitize=address</samp> option.
- The <code>no_address_safety_analysis</code> is a deprecated alias of the
- <code>no_sanitize_address</code> attribute, new code should use
- <code>no_sanitize_address</code>.
- </p>
- </dd>
- <dt><code>no_sanitize_thread</code></dt>
- <dd><a name="index-no_005fsanitize_005fthread-function-attribute"></a>
- <p>The <code>no_sanitize_thread</code> attribute on functions is used
- to inform the compiler that it should not instrument memory accesses
- in the function when compiling with the <samp>-fsanitize=thread</samp> option.
- </p>
- </dd>
- <dt><code>no_sanitize_undefined</code></dt>
- <dd><a name="index-no_005fsanitize_005fundefined-function-attribute"></a>
- <p>The <code>no_sanitize_undefined</code> attribute on functions is used
- to inform the compiler that it should not check for undefined behavior
- in the function when compiling with the <samp>-fsanitize=undefined</samp> option.
- </p>
- </dd>
- <dt><code>no_split_stack</code></dt>
- <dd><a name="index-no_005fsplit_005fstack-function-attribute"></a>
- <a name="index-fsplit_002dstack-1"></a>
- <p>If <samp>-fsplit-stack</samp> is given, functions have a small
- prologue which decides whether to split the stack. Functions with the
- <code>no_split_stack</code> attribute do not have that prologue, and thus
- may run with only a small amount of stack space available.
- </p>
- </dd>
- <dt><code>no_stack_limit</code></dt>
- <dd><a name="index-no_005fstack_005flimit-function-attribute"></a>
- <p>This attribute locally overrides the <samp>-fstack-limit-register</samp>
- and <samp>-fstack-limit-symbol</samp> command-line options; it has the effect
- of disabling stack limit checking in the function it applies to.
- </p>
- </dd>
- <dt><code>noclone</code></dt>
- <dd><a name="index-noclone-function-attribute"></a>
- <p>This function attribute prevents a function from being considered for
- cloning—a mechanism that produces specialized copies of functions
- and which is (currently) performed by interprocedural constant
- propagation.
- </p>
- </dd>
- <dt><code>noinline</code></dt>
- <dd><a name="index-noinline-function-attribute"></a>
- <p>This function attribute prevents a function from being considered for
- inlining.
- If the function does not have side effects, there are optimizations
- other than inlining that cause function calls to be optimized away,
- although the function call is live. To keep such calls from being
- optimized away, put
- </p><div class="smallexample">
- <pre class="smallexample">asm ("");
- </pre></div>
-
- <p>(see <a href="Extended-Asm.html#Extended-Asm">Extended Asm</a>) in the called function, to serve as a special
- side effect.
- </p>
- </dd>
- <dt><code>noipa</code></dt>
- <dd><a name="index-noipa-function-attribute"></a>
- <p>Disable interprocedural optimizations between the function with this
- attribute and its callers, as if the body of the function is not available
- when optimizing callers and the callers are unavailable when optimizing
- the body. This attribute implies <code>noinline</code>, <code>noclone</code> and
- <code>no_icf</code> attributes. However, this attribute is not equivalent
- to a combination of other attributes, because its purpose is to suppress
- existing and future optimizations employing interprocedural analysis,
- including those that do not have an attribute suitable for disabling
- them individually. This attribute is supported mainly for the purpose
- of testing the compiler.
- </p>
- </dd>
- <dt><code>nonnull</code></dt>
- <dt><code>nonnull (<var>arg-index</var>, …)</code></dt>
- <dd><a name="index-nonnull-function-attribute"></a>
- <a name="index-functions-with-non_002dnull-pointer-arguments"></a>
- <p>The <code>nonnull</code> attribute may be applied to a function that takes at
- least one argument of a pointer type. It indicates that the referenced
- arguments must be non-null pointers. For instance, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern void *
- my_memcpy (void *dest, const void *src, size_t len)
- __attribute__((nonnull (1, 2)));
- </pre></div>
-
- <p>causes the compiler to check that, in calls to <code>my_memcpy</code>,
- arguments <var>dest</var> and <var>src</var> are non-null. If the compiler
- determines that a null pointer is passed in an argument slot marked
- as non-null, and the <samp>-Wnonnull</samp> option is enabled, a warning
- is issued. See <a href="Warning-Options.html#Warning-Options">Warning Options</a>. Unless disabled by
- the <samp>-fno-delete-null-pointer-checks</samp> option the compiler may
- also perform optimizations based on the knowledge that certain function
- arguments cannot be null. In addition,
- the <samp>-fisolate-erroneous-paths-attribute</samp> option can be specified
- to have GCC transform calls with null arguments to non-null functions
- into traps. See <a href="Optimize-Options.html#Optimize-Options">Optimize Options</a>.
- </p>
- <p>If no <var>arg-index</var> is given to the <code>nonnull</code> attribute,
- all pointer arguments are marked as non-null. To illustrate, the
- following declaration is equivalent to the previous example:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern void *
- my_memcpy (void *dest, const void *src, size_t len)
- __attribute__((nonnull));
- </pre></div>
-
- </dd>
- <dt><code>noplt</code></dt>
- <dd><a name="index-noplt-function-attribute"></a>
- <p>The <code>noplt</code> attribute is the counterpart to option <samp>-fno-plt</samp>.
- Calls to functions marked with this attribute in position-independent code
- do not use the PLT.
- </p>
- <div class="smallexample">
- <pre class="smallexample">/* Externally defined function foo. */
- int foo () __attribute__ ((noplt));
-
- int
- main (/* <span class="roman">…</span> */)
- {
- /* <span class="roman">…</span> */
- foo ();
- /* <span class="roman">…</span> */
- }
- </pre></div>
-
- <p>The <code>noplt</code> attribute on function <code>foo</code>
- tells the compiler to assume that
- the function <code>foo</code> is externally defined and that the call to
- <code>foo</code> must avoid the PLT
- in position-independent code.
- </p>
- <p>In position-dependent code, a few targets also convert calls to
- functions that are marked to not use the PLT to use the GOT instead.
- </p>
- </dd>
- <dt><code>noreturn</code></dt>
- <dd><a name="index-noreturn-function-attribute"></a>
- <a name="index-functions-that-never-return"></a>
- <p>A few standard library functions, such as <code>abort</code> and <code>exit</code>,
- cannot return. GCC knows this automatically. Some programs define
- their own functions that never return. You can declare them
- <code>noreturn</code> to tell the compiler this fact. For example,
- </p>
- <div class="smallexample">
- <pre class="smallexample">void fatal () __attribute__ ((noreturn));
-
- void
- fatal (/* <span class="roman">…</span> */)
- {
- /* <span class="roman">…</span> */ /* <span class="roman">Print error message.</span> */ /* <span class="roman">…</span> */
- exit (1);
- }
- </pre></div>
-
- <p>The <code>noreturn</code> keyword tells the compiler to assume that
- <code>fatal</code> cannot return. It can then optimize without regard to what
- would happen if <code>fatal</code> ever did return. This makes slightly
- better code. More importantly, it helps avoid spurious warnings of
- uninitialized variables.
- </p>
- <p>The <code>noreturn</code> keyword does not affect the exceptional path when that
- applies: a <code>noreturn</code>-marked function may still return to the caller
- by throwing an exception or calling <code>longjmp</code>.
- </p>
- <p>In order to preserve backtraces, GCC will never turn calls to
- <code>noreturn</code> functions into tail calls.
- </p>
- <p>Do not assume that registers saved by the calling function are
- restored before calling the <code>noreturn</code> function.
- </p>
- <p>It does not make sense for a <code>noreturn</code> function to have a return
- type other than <code>void</code>.
- </p>
- </dd>
- <dt><code>nothrow</code></dt>
- <dd><a name="index-nothrow-function-attribute"></a>
- <p>The <code>nothrow</code> attribute is used to inform the compiler that a
- function cannot throw an exception. For example, most functions in
- the standard C library can be guaranteed not to throw an exception
- with the notable exceptions of <code>qsort</code> and <code>bsearch</code> that
- take function pointer arguments.
- </p>
- </dd>
- <dt><code>optimize (<var>level</var>, …)</code></dt>
- <dt><code>optimize (<var>string</var>, …)</code></dt>
- <dd><a name="index-optimize-function-attribute"></a>
- <p>The <code>optimize</code> attribute is used to specify that a function is to
- be compiled with different optimization options than specified on the
- command line. Valid arguments are constant non-negative integers and
- strings. Each numeric argument specifies an optimization <var>level</var>.
- Each <var>string</var> argument consists of one or more comma-separated
- substrings. Each substring that begins with the letter <code>O</code> refers
- to an optimization option such as <samp>-O0</samp> or <samp>-Os</samp>. Other
- substrings are taken as suffixes to the <code>-f</code> prefix jointly
- forming the name of an optimization option. See <a href="Optimize-Options.html#Optimize-Options">Optimize Options</a>.
- </p>
- <p>‘<samp>#pragma GCC optimize</samp>’ can be used to set optimization options
- for more than one function. See <a href="Function-Specific-Option-Pragmas.html#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>,
- for details about the pragma.
- </p>
- <p>Providing multiple strings as arguments separated by commas to specify
- multiple options is equivalent to separating the option suffixes with
- a comma (‘<samp>,</samp>’) within a single string. Spaces are not permitted
- within the strings.
- </p>
- <p>Not every optimization option that starts with the <var>-f</var> prefix
- specified by the attribute necessarily has an effect on the function.
- The <code>optimize</code> attribute should be used for debugging purposes only.
- It is not suitable in production code.
- </p>
- </dd>
- <dt><code>patchable_function_entry</code></dt>
- <dd><a name="index-patchable_005ffunction_005fentry-function-attribute"></a>
- <a name="index-extra-NOP-instructions-at-the-function-entry-point"></a>
- <p>In case the target’s text segment can be made writable at run time by
- any means, padding the function entry with a number of NOPs can be
- used to provide a universal tool for instrumentation.
- </p>
- <p>The <code>patchable_function_entry</code> function attribute can be used to
- change the number of NOPs to any desired value. The two-value syntax
- is the same as for the command-line switch
- <samp>-fpatchable-function-entry=N,M</samp>, generating <var>N</var> NOPs, with
- the function entry point before the <var>M</var>th NOP instruction.
- <var>M</var> defaults to 0 if omitted e.g. function entry point is before
- the first NOP.
- </p>
- <p>If patchable function entries are enabled globally using the command-line
- option <samp>-fpatchable-function-entry=N,M</samp>, then you must disable
- instrumentation on all functions that are part of the instrumentation
- framework with the attribute <code>patchable_function_entry (0)</code>
- to prevent recursion.
- </p>
- </dd>
- <dt><code>pure</code></dt>
- <dd><a name="index-pure-function-attribute"></a>
- <a name="index-functions-that-have-no-side-effects-1"></a>
-
- <p>Calls to functions that have no observable effects on the state of
- the program other than to return a value may lend themselves to optimizations
- such as common subexpression elimination. Declaring such functions with
- the <code>pure</code> attribute allows GCC to avoid emitting some calls in repeated
- invocations of the function with the same argument values.
- </p>
- <p>The <code>pure</code> attribute prohibits a function from modifying the state
- of the program that is observable by means other than inspecting
- the function’s return value. However, functions declared with the <code>pure</code>
- attribute can safely read any non-volatile objects, and modify the value of
- objects in a way that does not affect their return value or the observable
- state of the program.
- </p>
- <p>For example,
- </p>
- <div class="smallexample">
- <pre class="smallexample">int hash (char *) __attribute__ ((pure));
- </pre></div>
-
- <p>tells GCC that subsequent calls to the function <code>hash</code> with the same
- string can be replaced by the result of the first call provided the state
- of the program observable by <code>hash</code>, including the contents of the array
- itself, does not change in between. Even though <code>hash</code> takes a non-const
- pointer argument it must not modify the array it points to, or any other object
- whose value the rest of the program may depend on. However, the caller may
- safely change the contents of the array between successive calls to
- the function (doing so disables the optimization). The restriction also
- applies to member objects referenced by the <code>this</code> pointer in C++
- non-static member functions.
- </p>
- <p>Some common examples of pure functions are <code>strlen</code> or <code>memcmp</code>.
- Interesting non-pure functions are functions with infinite loops or those
- depending on volatile memory or other system resource, that may change between
- consecutive calls (such as the standard C <code>feof</code> function in
- a multithreading environment).
- </p>
- <p>The <code>pure</code> attribute imposes similar but looser restrictions on
- a function’s definition than the <code>const</code> attribute: <code>pure</code>
- allows the function to read any non-volatile memory, even if it changes
- in between successive invocations of the function. Declaring the same
- function with both the <code>pure</code> and the <code>const</code> attribute is
- diagnosed. Because a pure function cannot have any observable side
- effects it does not make sense for such a function to return <code>void</code>.
- Declaring such a function is diagnosed.
- </p>
- </dd>
- <dt><code>returns_nonnull</code></dt>
- <dd><a name="index-returns_005fnonnull-function-attribute"></a>
- <p>The <code>returns_nonnull</code> attribute specifies that the function
- return value should be a non-null pointer. For instance, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern void *
- mymalloc (size_t len) __attribute__((returns_nonnull));
- </pre></div>
-
- <p>lets the compiler optimize callers based on the knowledge
- that the return value will never be null.
- </p>
- </dd>
- <dt><code>returns_twice</code></dt>
- <dd><a name="index-returns_005ftwice-function-attribute"></a>
- <a name="index-functions-that-return-more-than-once"></a>
- <p>The <code>returns_twice</code> attribute tells the compiler that a function may
- return more than one time. The compiler ensures that all registers
- are dead before calling such a function and emits a warning about
- the variables that may be clobbered after the second return from the
- function. Examples of such functions are <code>setjmp</code> and <code>vfork</code>.
- The <code>longjmp</code>-like counterpart of such function, if any, might need
- to be marked with the <code>noreturn</code> attribute.
- </p>
- </dd>
- <dt><code>section ("<var>section-name</var>")</code></dt>
- <dd><a name="index-section-function-attribute"></a>
- <a name="index-functions-in-arbitrary-sections"></a>
- <p>Normally, the compiler places the code it generates in the <code>text</code> section.
- Sometimes, however, you need additional sections, or you need certain
- particular functions to appear in special sections. The <code>section</code>
- attribute specifies that a function lives in a particular section.
- For example, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern void foobar (void) __attribute__ ((section ("bar")));
- </pre></div>
-
- <p>puts the function <code>foobar</code> in the <code>bar</code> section.
- </p>
- <p>Some file formats do not support arbitrary sections so the <code>section</code>
- attribute is not available on all platforms.
- If you need to map the entire contents of a module to a particular
- section, consider using the facilities of the linker instead.
- </p>
- </dd>
- <dt><code>sentinel</code></dt>
- <dt><code>sentinel (<var>position</var>)</code></dt>
- <dd><a name="index-sentinel-function-attribute"></a>
- <p>This function attribute indicates that an argument in a call to the function
- is expected to be an explicit <code>NULL</code>. The attribute is only valid on
- variadic functions. By default, the sentinel is expected to be the last
- argument of the function call. If the optional <var>position</var> argument
- is specified to the attribute, the sentinel must be located at
- <var>position</var> counting backwards from the end of the argument list.
- </p>
- <div class="smallexample">
- <pre class="smallexample">__attribute__ ((sentinel))
- is equivalent to
- __attribute__ ((sentinel(0)))
- </pre></div>
-
- <p>The attribute is automatically set with a position of 0 for the built-in
- functions <code>execl</code> and <code>execlp</code>. The built-in function
- <code>execle</code> has the attribute set with a position of 1.
- </p>
- <p>A valid <code>NULL</code> in this context is defined as zero with any object
- pointer type. If your system defines the <code>NULL</code> macro with
- an integer type then you need to add an explicit cast. During
- installation GCC replaces the system <code><stddef.h></code> header with
- a copy that redefines NULL appropriately.
- </p>
- <p>The warnings for missing or incorrect sentinels are enabled with
- <samp>-Wformat</samp>.
- </p>
- </dd>
- <dt><code>simd</code></dt>
- <dt><code>simd("<var>mask</var>")</code></dt>
- <dd><a name="index-simd-function-attribute"></a>
- <p>This attribute enables creation of one or more function versions that
- can process multiple arguments using SIMD instructions from a
- single invocation. Specifying this attribute allows compiler to
- assume that such versions are available at link time (provided
- in the same or another translation unit). Generated versions are
- target-dependent and described in the corresponding Vector ABI document. For
- x86_64 target this document can be found
- <a href="https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt">here</a><!-- /@w -->.
- </p>
- <p>The optional argument <var>mask</var> may have the value
- <code>notinbranch</code> or <code>inbranch</code>,
- and instructs the compiler to generate non-masked or masked
- clones correspondingly. By default, all clones are generated.
- </p>
- <p>If the attribute is specified and <code>#pragma omp declare simd</code> is
- present on a declaration and the <samp>-fopenmp</samp> or <samp>-fopenmp-simd</samp>
- switch is specified, then the attribute is ignored.
- </p>
- </dd>
- <dt><code>stack_protect</code></dt>
- <dd><a name="index-stack_005fprotect-function-attribute"></a>
- <p>This attribute adds stack protection code to the function if
- flags <samp>-fstack-protector</samp>, <samp>-fstack-protector-strong</samp>
- or <samp>-fstack-protector-explicit</samp> are set.
- </p>
- </dd>
- <dt><code>target (<var>string</var>, …)</code></dt>
- <dd><a name="index-target-function-attribute"></a>
- <p>Multiple target back ends implement the <code>target</code> attribute
- to specify that a function is to
- be compiled with different target options than specified on the
- command line. One or more strings can be provided as arguments.
- Each string consists of one or more comma-separated suffixes to
- the <code>-m</code> prefix jointly forming the name of a machine-dependent
- option. See <a href="Submodel-Options.html#Submodel-Options">Machine-Dependent Options</a>.
- </p>
- <p>The <code>target</code> attribute can be used for instance to have a function
- compiled with a different ISA (instruction set architecture) than the
- default. ‘<samp>#pragma GCC target</samp>’ can be used to specify target-specific
- options for more than one function. See <a href="Function-Specific-Option-Pragmas.html#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>,
- for details about the pragma.
- </p>
- <p>For instance, on an x86, you could declare one function with the
- <code>target("sse4.1,arch=core2")</code> attribute and another with
- <code>target("sse4a,arch=amdfam10")</code>. This is equivalent to
- compiling the first function with <samp>-msse4.1</samp> and
- <samp>-march=core2</samp> options, and the second function with
- <samp>-msse4a</samp> and <samp>-march=amdfam10</samp> options. It is up to you
- to make sure that a function is only invoked on a machine that
- supports the particular ISA it is compiled for (for example by using
- <code>cpuid</code> on x86 to determine what feature bits and architecture
- family are used).
- </p>
- <div class="smallexample">
- <pre class="smallexample">int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
- int sse3_func (void) __attribute__ ((__target__ ("sse3")));
- </pre></div>
-
- <p>Providing multiple strings as arguments separated by commas to specify
- multiple options is equivalent to separating the option suffixes with
- a comma (‘<samp>,</samp>’) within a single string. Spaces are not permitted
- within the strings.
- </p>
- <p>The options supported are specific to each target; refer to <a href="x86-Function-Attributes.html#x86-Function-Attributes">x86 Function Attributes</a>, <a href="PowerPC-Function-Attributes.html#PowerPC-Function-Attributes">PowerPC Function Attributes</a>,
- <a href="ARM-Function-Attributes.html#ARM-Function-Attributes">ARM Function Attributes</a>, <a href="AArch64-Function-Attributes.html#AArch64-Function-Attributes">AArch64 Function Attributes</a>,
- <a href="Nios-II-Function-Attributes.html#Nios-II-Function-Attributes">Nios II Function Attributes</a>, and <a href="S_002f390-Function-Attributes.html#S_002f390-Function-Attributes">S/390 Function Attributes</a>
- for details.
- </p>
- </dd>
- <dt><code>symver ("<var>name2</var>@<var>nodename</var>")</code></dt>
- <dd><a name="index-symver-function-attribute"></a>
- <p>On ELF targets this attribute creates a symbol version. The <var>name2</var> part
- of the parameter is the actual name of the symbol by which it will be
- externally referenced. The <code>nodename</code> portion should be the name of a
- node specified in the version script supplied to the linker when building a
- shared library. Versioned symbol must be defined and must be exported with
- default visibility.
- </p>
- <div class="smallexample">
- <pre class="smallexample">__attribute__ ((__symver__ ("foo@VERS_1"))) int
- foo_v1 (void)
- {
- }
- </pre></div>
-
- <p>Will produce a <code>.symver foo_v1, foo@VERS_1</code> directive in the assembler
- output.
- </p>
- <p>It’s an error to define multiple version of a given symbol. In such case
- an alias can be used.
- </p>
- <div class="smallexample">
- <pre class="smallexample">__attribute__ ((__symver__ ("foo@VERS_2")))
- __attribute__ ((alias ("foo_v1")))
- int symver_foo_v1 (void);
- </pre></div>
-
- <p>This example creates an alias of <code>foo_v1</code> with symbol name
- <code>symver_foo_v1</code> which will be version <code>VERS_2</code> of <code>foo</code>.
- </p>
- <p>Finally if the parameter is <code>"<var>name2</var>@@<var>nodename</var>"</code> then in
- addition to creating a symbol version (as if
- <code>"<var>name2</var>@<var>nodename</var>"</code> was used) the version will be also used
- to resolve <var>name2</var> by the linker.
- </p>
- </dd>
- <dt><code>target_clones (<var>options</var>)</code></dt>
- <dd><a name="index-target_005fclones-function-attribute"></a>
- <p>The <code>target_clones</code> attribute is used to specify that a function
- be cloned into multiple versions compiled with different target options
- than specified on the command line. The supported options and restrictions
- are the same as for <code>target</code> attribute.
- </p>
- <p>For instance, on an x86, you could compile a function with
- <code>target_clones("sse4.1,avx")</code>. GCC creates two function clones,
- one compiled with <samp>-msse4.1</samp> and another with <samp>-mavx</samp>.
- </p>
- <p>On a PowerPC, you can compile a function with
- <code>target_clones("cpu=power9,default")</code>. GCC will create two
- function clones, one compiled with <samp>-mcpu=power9</samp> and another
- with the default options. GCC must be configured to use GLIBC 2.23 or
- newer in order to use the <code>target_clones</code> attribute.
- </p>
- <p>It also creates a resolver function (see
- the <code>ifunc</code> attribute above) that dynamically selects a clone
- suitable for current architecture. The resolver is created only if there
- is a usage of a function with <code>target_clones</code> attribute.
- </p>
- <p>Note that any subsequent call of a function without <code>target_clone</code>
- from a <code>target_clone</code> caller will not lead to copying
- (target clone) of the called function.
- If you want to enforce such behaviour,
- we recommend declaring the calling function with the <code>flatten</code> attribute?
- </p>
- </dd>
- <dt><code>unused</code></dt>
- <dd><a name="index-unused-function-attribute"></a>
- <p>This attribute, attached to a function, means that the function is meant
- to be possibly unused. GCC does not produce a warning for this
- function.
- </p>
- </dd>
- <dt><code>used</code></dt>
- <dd><a name="index-used-function-attribute"></a>
- <p>This attribute, attached to a function, means that code must be emitted
- for the function even if it appears that the function is not referenced.
- This is useful, for example, when the function is referenced only in
- inline assembly.
- </p>
- <p>When applied to a member function of a C++ class template, the
- attribute also means that the function is instantiated if the
- class itself is instantiated.
- </p>
- </dd>
- <dt><code>visibility ("<var>visibility_type</var>")</code></dt>
- <dd><a name="index-visibility-function-attribute"></a>
- <p>This attribute affects the linkage of the declaration to which it is attached.
- It can be applied to variables (see <a href="Common-Variable-Attributes.html#Common-Variable-Attributes">Common Variable Attributes</a>) and types
- (see <a href="Common-Type-Attributes.html#Common-Type-Attributes">Common Type Attributes</a>) as well as functions.
- </p>
- <p>There are four supported <var>visibility_type</var> values: default,
- hidden, protected or internal visibility.
- </p>
- <div class="smallexample">
- <pre class="smallexample">void __attribute__ ((visibility ("protected")))
- f () { /* <span class="roman">Do something.</span> */; }
- int i __attribute__ ((visibility ("hidden")));
- </pre></div>
-
- <p>The possible values of <var>visibility_type</var> correspond to the
- visibility settings in the ELF gABI.
- </p>
- <dl compact="compact">
- <dt><code>default</code></dt>
- <dd><p>Default visibility is the normal case for the object file format.
- This value is available for the visibility attribute to override other
- options that may change the assumed visibility of entities.
- </p>
- <p>On ELF, default visibility means that the declaration is visible to other
- modules and, in shared libraries, means that the declared entity may be
- overridden.
- </p>
- <p>On Darwin, default visibility means that the declaration is visible to
- other modules.
- </p>
- <p>Default visibility corresponds to “external linkage” in the language.
- </p>
- </dd>
- <dt><code>hidden</code></dt>
- <dd><p>Hidden visibility indicates that the entity declared has a new
- form of linkage, which we call “hidden linkage”. Two
- declarations of an object with hidden linkage refer to the same object
- if they are in the same shared object.
- </p>
- </dd>
- <dt><code>internal</code></dt>
- <dd><p>Internal visibility is like hidden visibility, but with additional
- processor specific semantics. Unless otherwise specified by the
- psABI, GCC defines internal visibility to mean that a function is
- <em>never</em> called from another module. Compare this with hidden
- functions which, while they cannot be referenced directly by other
- modules, can be referenced indirectly via function pointers. By
- indicating that a function cannot be called from outside the module,
- GCC may for instance omit the load of a PIC register since it is known
- that the calling function loaded the correct value.
- </p>
- </dd>
- <dt><code>protected</code></dt>
- <dd><p>Protected visibility is like default visibility except that it
- indicates that references within the defining module bind to the
- definition in that module. That is, the declared entity cannot be
- overridden by another module.
- </p>
- </dd>
- </dl>
-
- <p>All visibilities are supported on many, but not all, ELF targets
- (supported when the assembler supports the ‘<samp>.visibility</samp>’
- pseudo-op). Default visibility is supported everywhere. Hidden
- visibility is supported on Darwin targets.
- </p>
- <p>The visibility attribute should be applied only to declarations that
- would otherwise have external linkage. The attribute should be applied
- consistently, so that the same entity should not be declared with
- different settings of the attribute.
- </p>
- <p>In C++, the visibility attribute applies to types as well as functions
- and objects, because in C++ types have linkage. A class must not have
- greater visibility than its non-static data member types and bases,
- and class members default to the visibility of their class. Also, a
- declaration without explicit visibility is limited to the visibility
- of its type.
- </p>
- <p>In C++, you can mark member functions and static member variables of a
- class with the visibility attribute. This is useful if you know a
- particular method or static member variable should only be used from
- one shared object; then you can mark it hidden while the rest of the
- class has default visibility. Care must be taken to avoid breaking
- the One Definition Rule; for example, it is usually not useful to mark
- an inline method as hidden without marking the whole class as hidden.
- </p>
- <p>A C++ namespace declaration can also have the visibility attribute.
- </p>
- <div class="smallexample">
- <pre class="smallexample">namespace nspace1 __attribute__ ((visibility ("protected")))
- { /* <span class="roman">Do something.</span> */; }
- </pre></div>
-
- <p>This attribute applies only to the particular namespace body, not to
- other definitions of the same namespace; it is equivalent to using
- ‘<samp>#pragma GCC visibility</samp>’ before and after the namespace
- definition (see <a href="Visibility-Pragmas.html#Visibility-Pragmas">Visibility Pragmas</a>).
- </p>
- <p>In C++, if a template argument has limited visibility, this
- restriction is implicitly propagated to the template instantiation.
- Otherwise, template instantiations and specializations default to the
- visibility of their template.
- </p>
- <p>If both the template and enclosing class have explicit visibility, the
- visibility from the template is used.
- </p>
- </dd>
- <dt><code>warn_unused_result</code></dt>
- <dd><a name="index-warn_005funused_005fresult-function-attribute"></a>
- <p>The <code>warn_unused_result</code> attribute causes a warning to be emitted
- if a caller of the function with this attribute does not use its
- return value. This is useful for functions where not checking
- the result is either a security problem or always a bug, such as
- <code>realloc</code>.
- </p>
- <div class="smallexample">
- <pre class="smallexample">int fn () __attribute__ ((warn_unused_result));
- int foo ()
- {
- if (fn () < 0) return -1;
- fn ();
- return 0;
- }
- </pre></div>
-
- <p>results in warning on line 5.
- </p>
- </dd>
- <dt><code>weak</code></dt>
- <dd><a name="index-weak-function-attribute"></a>
- <p>The <code>weak</code> attribute causes a declaration of an external symbol
- to be emitted as a weak symbol rather than a global. This is primarily
- useful in defining library functions that can be overridden in user code,
- though it can also be used with non-function declarations. The overriding
- symbol must have the same type as the weak symbol. In addition, if it
- designates a variable it must also have the same size and alignment as
- the weak symbol. Weak symbols are supported for ELF targets, and also
- for a.out targets when using the GNU assembler and linker.
- </p>
- </dd>
- <dt><code>weakref</code></dt>
- <dt><code>weakref ("<var>target</var>")</code></dt>
- <dd><a name="index-weakref-function-attribute"></a>
- <p>The <code>weakref</code> attribute marks a declaration as a weak reference.
- Without arguments, it should be accompanied by an <code>alias</code> attribute
- naming the target symbol. Alternatively, <var>target</var> may be given as
- an argument to <code>weakref</code> itself, naming the target definition of
- the alias. The <var>target</var> must have the same type as the declaration.
- In addition, if it designates a variable it must also have the same size
- and alignment as the declaration. In either form of the declaration
- <code>weakref</code> implicitly marks the declared symbol as <code>weak</code>. Without
- a <var>target</var> given as an argument to <code>weakref</code> or to <code>alias</code>,
- <code>weakref</code> is equivalent to <code>weak</code> (in that case the declaration
- may be <code>extern</code>).
- </p>
- <div class="smallexample">
- <pre class="smallexample">/* Given the declaration: */
- extern int y (void);
-
- /* the following... */
- static int x (void) __attribute__ ((weakref ("y")));
-
- /* is equivalent to... */
- static int x (void) __attribute__ ((weakref, alias ("y")));
-
- /* or, alternatively, to... */
- static int x (void) __attribute__ ((weakref));
- static int x (void) __attribute__ ((alias ("y")));
- </pre></div>
-
- <p>A weak reference is an alias that does not by itself require a
- definition to be given for the target symbol. If the target symbol is
- only referenced through weak references, then it becomes a <code>weak</code>
- undefined symbol. If it is directly referenced, however, then such
- strong references prevail, and a definition is required for the
- symbol, not necessarily in the same translation unit.
- </p>
- <p>The effect is equivalent to moving all references to the alias to a
- separate translation unit, renaming the alias to the aliased symbol,
- declaring it as weak, compiling the two separate translation units and
- performing a link with relocatable output (i.e. <code>ld -r</code>) on them.
- </p>
- <p>A declaration to which <code>weakref</code> is attached and that is associated
- with a named <code>target</code> must be <code>static</code>.
- </p>
- </dd>
- </dl>
-
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="AArch64-Function-Attributes.html#AArch64-Function-Attributes" accesskey="n" rel="next">AArch64 Function Attributes</a>, Up: <a href="Function-Attributes.html#Function-Attributes" accesskey="u" rel="up">Function Attributes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|