|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Vector Extensions (Using the GNU Compiler Collection (GCC))</title>
-
- <meta name="description" content="Vector Extensions (Using the GNU Compiler Collection (GCC))">
- <meta name="keywords" content="Vector Extensions (Using the GNU Compiler Collection (GCC))">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="C-Extensions.html#C-Extensions" rel="up" title="C Extensions">
- <link href="Offsetof.html#Offsetof" rel="next" title="Offsetof">
- <link href="Return-Address.html#Return-Address" rel="prev" title="Return Address">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="Vector-Extensions"></a>
- <div class="header">
- <p>
- Next: <a href="Offsetof.html#Offsetof" accesskey="n" rel="next">Offsetof</a>, Previous: <a href="Return-Address.html#Return-Address" accesskey="p" rel="prev">Return Address</a>, Up: <a href="C-Extensions.html#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="Using-Vector-Instructions-through-Built_002din-Functions"></a>
- <h3 class="section">6.52 Using Vector Instructions through Built-in Functions</h3>
-
- <p>On some targets, the instruction set contains SIMD vector instructions which
- operate on multiple values contained in one large register at the same time.
- For example, on the x86 the MMX, 3DNow! and SSE extensions can be used
- this way.
- </p>
- <p>The first step in using these extensions is to provide the necessary data
- types. This should be done using an appropriate <code>typedef</code>:
- </p>
- <div class="smallexample">
- <pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
- </pre></div>
-
- <p>The <code>int</code> type specifies the <em>base type</em>, while the attribute specifies
- the vector size for the variable, measured in bytes. For example, the
- declaration above causes the compiler to set the mode for the <code>v4si</code>
- type to be 16 bytes wide and divided into <code>int</code> sized units. For
- a 32-bit <code>int</code> this means a vector of 4 units of 4 bytes, and the
- corresponding mode of <code>foo</code> is <acronym>V4SI</acronym>.
- </p>
- <p>The <code>vector_size</code> attribute is only applicable to integral and
- floating scalars, although arrays, pointers, and function return values
- are allowed in conjunction with this construct. Only sizes that are
- positive power-of-two multiples of the base type size are currently allowed.
- </p>
- <p>All the basic integer types can be used as base types, both as signed
- and as unsigned: <code>char</code>, <code>short</code>, <code>int</code>, <code>long</code>,
- <code>long long</code>. In addition, <code>float</code> and <code>double</code> can be
- used to build floating-point vector types.
- </p>
- <p>Specifying a combination that is not valid for the current architecture
- causes GCC to synthesize the instructions using a narrower mode.
- For example, if you specify a variable of type <code>V4SI</code> and your
- architecture does not allow for this specific SIMD type, GCC
- produces code that uses 4 <code>SIs</code>.
- </p>
- <p>The types defined in this manner can be used with a subset of normal C
- operations. Currently, GCC allows using the following operators
- on these types: <code>+, -, *, /, unary minus, ^, |, &, ~, %</code>.
- </p>
- <p>The operations behave like C++ <code>valarrays</code>. Addition is defined as
- the addition of the corresponding elements of the operands. For
- example, in the code below, each of the 4 elements in <var>a</var> is
- added to the corresponding 4 elements in <var>b</var> and the resulting
- vector is stored in <var>c</var>.
- </p>
- <div class="smallexample">
- <pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a, b, c;
-
- c = a + b;
- </pre></div>
-
- <p>Subtraction, multiplication, division, and the logical operations
- operate in a similar manner. Likewise, the result of using the unary
- minus or complement operators on a vector type is a vector whose
- elements are the negative or complemented values of the corresponding
- elements in the operand.
- </p>
- <p>It is possible to use shifting operators <code><<</code>, <code>>></code> on
- integer-type vectors. The operation is defined as following: <code>{a0,
- a1, …, an} >> {b0, b1, …, bn} == {a0 >> b0, a1 >> b1,
- …, an >> bn}</code>. Vector operands must have the same number of
- elements.
- </p>
- <p>For convenience, it is allowed to use a binary vector operation
- where one operand is a scalar. In that case the compiler transforms
- the scalar operand into a vector where each element is the scalar from
- the operation. The transformation happens only if the scalar could be
- safely converted to the vector-element type.
- Consider the following code.
- </p>
- <div class="smallexample">
- <pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a, b, c;
- long l;
-
- a = b + 1; /* a = b + {1,1,1,1}; */
- a = 2 * b; /* a = {2,2,2,2} * b; */
-
- a = l + a; /* Error, cannot convert long to int. */
- </pre></div>
-
- <p>Vectors can be subscripted as if the vector were an array with
- the same number of elements and base type. Out of bound accesses
- invoke undefined behavior at run time. Warnings for out of bound
- accesses for vector subscription can be enabled with
- <samp>-Warray-bounds</samp>.
- </p>
- <p>Vector comparison is supported with standard comparison
- operators: <code>==, !=, <, <=, >, >=</code>. Comparison operands can be
- vector expressions of integer-type or real-type. Comparison between
- integer-type vectors and real-type vectors are not supported. The
- result of the comparison is a vector of the same width and number of
- elements as the comparison operands with a signed integral element
- type.
- </p>
- <p>Vectors are compared element-wise producing 0 when comparison is false
- and -1 (constant of the appropriate type where all bits are set)
- otherwise. Consider the following example.
- </p>
- <div class="smallexample">
- <pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a = {1,2,3,4};
- v4si b = {3,2,1,4};
- v4si c;
-
- c = a > b; /* The result would be {0, 0,-1, 0} */
- c = a == b; /* The result would be {0,-1, 0,-1} */
- </pre></div>
-
- <p>In C++, the ternary operator <code>?:</code> is available. <code>a?b:c</code>, where
- <code>b</code> and <code>c</code> are vectors of the same type and <code>a</code> is an
- integer vector with the same number of elements of the same size as <code>b</code>
- and <code>c</code>, computes all three arguments and creates a vector
- <code>{a[0]?b[0]:c[0], a[1]?b[1]:c[1], …}</code>. Note that unlike in
- OpenCL, <code>a</code> is thus interpreted as <code>a != 0</code> and not <code>a < 0</code>.
- As in the case of binary operations, this syntax is also accepted when
- one of <code>b</code> or <code>c</code> is a scalar that is then transformed into a
- vector. If both <code>b</code> and <code>c</code> are scalars and the type of
- <code>true?b:c</code> has the same size as the element type of <code>a</code>, then
- <code>b</code> and <code>c</code> are converted to a vector type whose elements have
- this type and with the same number of elements as <code>a</code>.
- </p>
- <p>In C++, the logic operators <code>!, &&, ||</code> are available for vectors.
- <code>!v</code> is equivalent to <code>v == 0</code>, <code>a && b</code> is equivalent to
- <code>a!=0 & b!=0</code> and <code>a || b</code> is equivalent to <code>a!=0 | b!=0</code>.
- For mixed operations between a scalar <code>s</code> and a vector <code>v</code>,
- <code>s && v</code> is equivalent to <code>s?v!=0:0</code> (the evaluation is
- short-circuit) and <code>v && s</code> is equivalent to <code>v!=0 & (s?-1:0)</code>.
- </p>
- <a name="index-_005f_005fbuiltin_005fshuffle"></a>
- <p>Vector shuffling is available using functions
- <code>__builtin_shuffle (vec, mask)</code> and
- <code>__builtin_shuffle (vec0, vec1, mask)</code>.
- Both functions construct a permutation of elements from one or two
- vectors and return a vector of the same type as the input vector(s).
- The <var>mask</var> is an integral vector with the same width (<var>W</var>)
- and element count (<var>N</var>) as the output vector.
- </p>
- <p>The elements of the input vectors are numbered in memory ordering of
- <var>vec0</var> beginning at 0 and <var>vec1</var> beginning at <var>N</var>. The
- elements of <var>mask</var> are considered modulo <var>N</var> in the single-operand
- case and modulo <em>2*<var>N</var></em> in the two-operand case.
- </p>
- <p>Consider the following example,
- </p>
- <div class="smallexample">
- <pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
-
- v4si a = {1,2,3,4};
- v4si b = {5,6,7,8};
- v4si mask1 = {0,1,1,3};
- v4si mask2 = {0,4,2,5};
- v4si res;
-
- res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */
- res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */
- </pre></div>
-
- <p>Note that <code>__builtin_shuffle</code> is intentionally semantically
- compatible with the OpenCL <code>shuffle</code> and <code>shuffle2</code> functions.
- </p>
- <p>You can declare variables and use them in function calls and returns, as
- well as in assignments and some casts. You can specify a vector type as
- a return type for a function. Vector types can also be used as function
- arguments. It is possible to cast from one vector type to another,
- provided they are of the same size (in fact, you can also cast vectors
- to and from other datatypes of the same size).
- </p>
- <p>You cannot operate between vectors of different lengths or different
- signedness without a cast.
- </p>
- <a name="index-_005f_005fbuiltin_005fconvertvector"></a>
- <p>Vector conversion is available using the
- <code>__builtin_convertvector (vec, vectype)</code>
- function. <var>vec</var> must be an expression with integral or floating
- vector type and <var>vectype</var> an integral or floating vector type with the
- same number of elements. The result has <var>vectype</var> type and value of
- a C cast of every element of <var>vec</var> to the element type of <var>vectype</var>.
- </p>
- <p>Consider the following example,
- </p><div class="smallexample">
- <pre class="smallexample">typedef int v4si __attribute__ ((vector_size (16)));
- typedef float v4sf __attribute__ ((vector_size (16)));
- typedef double v4df __attribute__ ((vector_size (32)));
- typedef unsigned long long v4di __attribute__ ((vector_size (32)));
-
- v4si a = {1,-2,3,-4};
- v4sf b = {1.5f,-2.5f,3.f,7.f};
- v4di c = {1ULL,5ULL,0ULL,10ULL};
- v4sf d = __builtin_convertvector (a, v4sf); /* d is {1.f,-2.f,3.f,-4.f} */
- /* Equivalent of:
- v4sf d = { (float)a[0], (float)a[1], (float)a[2], (float)a[3] }; */
- v4df e = __builtin_convertvector (a, v4df); /* e is {1.,-2.,3.,-4.} */
- v4df f = __builtin_convertvector (b, v4df); /* f is {1.5,-2.5,3.,7.} */
- v4si g = __builtin_convertvector (f, v4si); /* g is {1,-2,3,7} */
- v4si h = __builtin_convertvector (c, v4si); /* h is {1,5,0,10} */
- </pre></div>
-
- <a name="index-vector-types_002c-using-with-x86-intrinsics"></a>
- <p>Sometimes it is desirable to write code using a mix of generic vector
- operations (for clarity) and machine-specific vector intrinsics (to
- access vector instructions that are not exposed via generic built-ins).
- On x86, intrinsic functions for integer vectors typically use the same
- vector type <code>__m128i</code> irrespective of how they interpret the vector,
- making it necessary to cast their arguments and return values from/to
- other vector types. In C, you can make use of a <code>union</code> type:
- </p><div class="smallexample">
- <pre class="smallexample">#include <immintrin.h>
-
- typedef unsigned char u8x16 __attribute__ ((vector_size (16)));
- typedef unsigned int u32x4 __attribute__ ((vector_size (16)));
-
- typedef union {
- __m128i mm;
- u8x16 u8;
- u32x4 u32;
- } v128;
- </pre></div>
-
- <p>for variables that can be used with both built-in operators and x86
- intrinsics:
- </p>
- <div class="smallexample">
- <pre class="smallexample">v128 x, y = { 0 };
- memcpy (&x, ptr, sizeof x);
- y.u8 += 0x80;
- x.mm = _mm_adds_epu8 (x.mm, y.mm);
- x.u32 &= 0xffffff;
-
- /* Instead of a variable, a compound literal may be used to pass the
- return value of an intrinsic call to a function expecting the union: */
- v128 foo (v128);
- x = foo ((v128) {_mm_adds_epu8 (x.mm, y.mm)});
- </pre></div>
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="Offsetof.html#Offsetof" accesskey="n" rel="next">Offsetof</a>, Previous: <a href="Return-Address.html#Return-Address" accesskey="p" rel="prev">Return Address</a>, Up: <a href="C-Extensions.html#C-Extensions" accesskey="u" rel="up">C Extensions</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|