|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>SSA Operands (GNU Compiler Collection (GCC) Internals)</title>
-
- <meta name="description" content="SSA Operands (GNU Compiler Collection (GCC) Internals)">
- <meta name="keywords" content="SSA Operands (GNU Compiler Collection (GCC) Internals)">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Tree-SSA.html#Tree-SSA" rel="up" title="Tree SSA">
- <link href="SSA.html#SSA" rel="next" title="SSA">
- <link href="Annotations.html#Annotations" rel="prev" title="Annotations">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="SSA-Operands"></a>
- <div class="header">
- <p>
- Next: <a href="SSA.html#SSA" accesskey="n" rel="next">SSA</a>, Previous: <a href="Annotations.html#Annotations" accesskey="p" rel="prev">Annotations</a>, Up: <a href="Tree-SSA.html#Tree-SSA" accesskey="u" rel="up">Tree SSA</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="SSA-Operands-1"></a>
- <h3 class="section">13.2 SSA Operands</h3>
- <a name="index-operands"></a>
- <a name="index-virtual-operands"></a>
- <a name="index-real-operands"></a>
- <a name="index-update_005fstmt-1"></a>
-
- <p>Almost every GIMPLE statement will contain a reference to a variable
- or memory location. Since statements come in different shapes and
- sizes, their operands are going to be located at various spots inside
- the statement’s tree. To facilitate access to the statement’s
- operands, they are organized into lists associated inside each
- statement’s annotation. Each element in an operand list is a pointer
- to a <code>VAR_DECL</code>, <code>PARM_DECL</code> or <code>SSA_NAME</code> tree node.
- This provides a very convenient way of examining and replacing
- operands.
- </p>
- <p>Data flow analysis and optimization is done on all tree nodes
- representing variables. Any node for which <code>SSA_VAR_P</code> returns
- nonzero is considered when scanning statement operands. However, not
- all <code>SSA_VAR_P</code> variables are processed in the same way. For the
- purposes of optimization, we need to distinguish between references to
- local scalar variables and references to globals, statics, structures,
- arrays, aliased variables, etc. The reason is simple, the compiler
- can gather complete data flow information for a local scalar. On the
- other hand, a global variable may be modified by a function call, it
- may not be possible to keep track of all the elements of an array or
- the fields of a structure, etc.
- </p>
- <p>The operand scanner gathers two kinds of operands: <em>real</em> and
- <em>virtual</em>. An operand for which <code>is_gimple_reg</code> returns true
- is considered real, otherwise it is a virtual operand. We also
- distinguish between uses and definitions. An operand is used if its
- value is loaded by the statement (e.g., the operand at the RHS of an
- assignment). If the statement assigns a new value to the operand, the
- operand is considered a definition (e.g., the operand at the LHS of
- an assignment).
- </p>
- <p>Virtual and real operands also have very different data flow
- properties. Real operands are unambiguous references to the
- full object that they represent. For instance, given
- </p>
- <div class="smallexample">
- <pre class="smallexample">{
- int a, b;
- a = b
- }
- </pre></div>
-
- <p>Since <code>a</code> and <code>b</code> are non-aliased locals, the statement
- <code>a = b</code> will have one real definition and one real use because
- variable <code>a</code> is completely modified with the contents of
- variable <code>b</code>. Real definition are also known as <em>killing
- definitions</em>. Similarly, the use of <code>b</code> reads all its bits.
- </p>
- <p>In contrast, virtual operands are used with variables that can have
- a partial or ambiguous reference. This includes structures, arrays,
- globals, and aliased variables. In these cases, we have two types of
- definitions. For globals, structures, and arrays, we can determine from
- a statement whether a variable of these types has a killing definition.
- If the variable does, then the statement is marked as having a
- <em>must definition</em> of that variable. However, if a statement is only
- defining a part of the variable (i.e. a field in a structure), or if we
- know that a statement might define the variable but we cannot say for sure,
- then we mark that statement as having a <em>may definition</em>. For
- instance, given
- </p>
- <div class="smallexample">
- <pre class="smallexample">{
- int a, b, *p;
-
- if (…)
- p = &a;
- else
- p = &b;
- *p = 5;
- return *p;
- }
- </pre></div>
-
- <p>The assignment <code>*p = 5</code> may be a definition of <code>a</code> or
- <code>b</code>. If we cannot determine statically where <code>p</code> is
- pointing to at the time of the store operation, we create virtual
- definitions to mark that statement as a potential definition site for
- <code>a</code> and <code>b</code>. Memory loads are similarly marked with virtual
- use operands. Virtual operands are shown in tree dumps right before
- the statement that contains them. To request a tree dump with virtual
- operands, use the <samp>-vops</samp> option to <samp>-fdump-tree</samp>:
- </p>
- <div class="smallexample">
- <pre class="smallexample">{
- int a, b, *p;
-
- if (…)
- p = &a;
- else
- p = &b;
- # a = VDEF <a>
- # b = VDEF <b>
- *p = 5;
-
- # VUSE <a>
- # VUSE <b>
- return *p;
- }
- </pre></div>
-
- <p>Notice that <code>VDEF</code> operands have two copies of the referenced
- variable. This indicates that this is not a killing definition of
- that variable. In this case we refer to it as a <em>may definition</em>
- or <em>aliased store</em>. The presence of the second copy of the
- variable in the <code>VDEF</code> operand will become important when the
- function is converted into SSA form. This will be used to link all
- the non-killing definitions to prevent optimizations from making
- incorrect assumptions about them.
- </p>
- <p>Operands are updated as soon as the statement is finished via a call
- to <code>update_stmt</code>. If statement elements are changed via
- <code>SET_USE</code> or <code>SET_DEF</code>, then no further action is required
- (i.e., those macros take care of updating the statement). If changes
- are made by manipulating the statement’s tree directly, then a call
- must be made to <code>update_stmt</code> when complete. Calling one of the
- <code>bsi_insert</code> routines or <code>bsi_replace</code> performs an implicit
- call to <code>update_stmt</code>.
- </p>
- <a name="Operand-Iterators-And-Access-Routines"></a>
- <h4 class="subsection">13.2.1 Operand Iterators And Access Routines</h4>
- <a name="index-Operand-Iterators"></a>
- <a name="index-Operand-Access-Routines"></a>
-
- <p>Operands are collected by <samp>tree-ssa-operands.c</samp>. They are stored
- inside each statement’s annotation and can be accessed through either the
- operand iterators or an access routine.
- </p>
- <p>The following access routines are available for examining operands:
- </p>
- <ol>
- <li> <code>SINGLE_SSA_{USE,DEF,TREE}_OPERAND</code>: These accessors will return
- NULL unless there is exactly one operand matching the specified flags. If
- there is exactly one operand, the operand is returned as either a <code>tree</code>,
- <code>def_operand_p</code>, or <code>use_operand_p</code>.
-
- <div class="smallexample">
- <pre class="smallexample">tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
- use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
- def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);
- </pre></div>
-
- </li><li> <code>ZERO_SSA_OPERANDS</code>: This macro returns true if there are no
- operands matching the specified flags.
-
- <div class="smallexample">
- <pre class="smallexample">if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
- return;
- </pre></div>
-
- </li><li> <code>NUM_SSA_OPERANDS</code>: This macro Returns the number of operands
- matching ’flags’. This actually executes a loop to perform the count, so
- only use this if it is really needed.
-
- <div class="smallexample">
- <pre class="smallexample">int count = NUM_SSA_OPERANDS (stmt, flags)
- </pre></div>
- </li></ol>
-
-
- <p>If you wish to iterate over some or all operands, use the
- <code>FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND</code> iterator. For example, to print
- all the operands for a statement:
- </p>
- <div class="smallexample">
- <pre class="smallexample">void
- print_ops (tree stmt)
- {
- ssa_op_iter;
- tree var;
-
- FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
- print_generic_expr (stderr, var, TDF_SLIM);
- }
- </pre></div>
-
-
- <p>How to choose the appropriate iterator:
- </p>
- <ol>
- <li> Determine whether you are need to see the operand pointers, or just the
- trees, and choose the appropriate macro:
-
- <div class="smallexample">
- <pre class="smallexample">Need Macro:
- ---- -------
- use_operand_p FOR_EACH_SSA_USE_OPERAND
- def_operand_p FOR_EACH_SSA_DEF_OPERAND
- tree FOR_EACH_SSA_TREE_OPERAND
- </pre></div>
-
- </li><li> You need to declare a variable of the type you are interested
- in, and an ssa_op_iter structure which serves as the loop controlling
- variable.
-
- </li><li> Determine which operands you wish to use, and specify the flags of
- those you are interested in. They are documented in
- <samp>tree-ssa-operands.h</samp>:
-
- <div class="smallexample">
- <pre class="smallexample">#define SSA_OP_USE 0x01 /* <span class="roman">Real USE operands.</span> */
- #define SSA_OP_DEF 0x02 /* <span class="roman">Real DEF operands.</span> */
- #define SSA_OP_VUSE 0x04 /* <span class="roman">VUSE operands.</span> */
- #define SSA_OP_VDEF 0x08 /* <span class="roman">VDEF operands.</span> */
-
- /* <span class="roman">These are commonly grouped operand flags.</span> */
- #define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE)
- #define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)
- #define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS)
- #define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
- #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
- #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
- </pre></div>
- </li></ol>
-
- <p>So if you want to look at the use pointers for all the <code>USE</code> and
- <code>VUSE</code> operands, you would do something like:
- </p>
- <div class="smallexample">
- <pre class="smallexample"> use_operand_p use_p;
- ssa_op_iter iter;
-
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
- {
- process_use_ptr (use_p);
- }
- </pre></div>
-
- <p>The <code>TREE</code> macro is basically the same as the <code>USE</code> and
- <code>DEF</code> macros, only with the use or def dereferenced via
- <code>USE_FROM_PTR (use_p)</code> and <code>DEF_FROM_PTR (def_p)</code>. Since we
- aren’t using operand pointers, use and defs flags can be mixed.
- </p>
- <div class="smallexample">
- <pre class="smallexample"> tree var;
- ssa_op_iter iter;
-
- FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)
- {
- print_generic_expr (stderr, var, TDF_SLIM);
- }
- </pre></div>
-
- <p><code>VDEF</code>s are broken into two flags, one for the
- <code>DEF</code> portion (<code>SSA_OP_VDEF</code>) and one for the USE portion
- (<code>SSA_OP_VUSE</code>).
- </p>
- <p>There are many examples in the code, in addition to the documentation
- in <samp>tree-ssa-operands.h</samp> and <samp>ssa-iterators.h</samp>.
- </p>
- <p>There are also a couple of variants on the stmt iterators regarding PHI
- nodes.
- </p>
- <p><code>FOR_EACH_PHI_ARG</code> Works exactly like
- <code>FOR_EACH_SSA_USE_OPERAND</code>, except it works over <code>PHI</code> arguments
- instead of statement operands.
- </p>
- <div class="smallexample">
- <pre class="smallexample">/* Look at every virtual PHI use. */
- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
- {
- my_code;
- }
-
- /* Look at every real PHI use. */
- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
- my_code;
-
- /* Look at every PHI use. */
- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
- my_code;
- </pre></div>
-
- <p><code>FOR_EACH_PHI_OR_STMT_{USE,DEF}</code> works exactly like
- <code>FOR_EACH_SSA_{USE,DEF}_OPERAND</code>, except it will function on
- either a statement or a <code>PHI</code> node. These should be used when it is
- appropriate but they are not quite as efficient as the individual
- <code>FOR_EACH_PHI</code> and <code>FOR_EACH_SSA</code> routines.
- </p>
- <div class="smallexample">
- <pre class="smallexample">FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
- {
- my_code;
- }
-
- FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
- {
- my_code;
- }
- </pre></div>
-
- <a name="Immediate-Uses"></a>
- <h4 class="subsection">13.2.2 Immediate Uses</h4>
- <a name="index-Immediate-Uses"></a>
-
- <p>Immediate use information is now always available. Using the immediate use
- iterators, you may examine every use of any <code>SSA_NAME</code>. For instance,
- to change each use of <code>ssa_var</code> to <code>ssa_var2</code> and call fold_stmt on
- each stmt after that is done:
- </p>
- <div class="smallexample">
- <pre class="smallexample"> use_operand_p imm_use_p;
- imm_use_iterator iterator;
- tree ssa_var, stmt;
-
-
- FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
- {
- FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
- SET_USE (imm_use_p, ssa_var_2);
- fold_stmt (stmt);
- }
- </pre></div>
-
- <p>There are 2 iterators which can be used. <code>FOR_EACH_IMM_USE_FAST</code> is
- used when the immediate uses are not changed, i.e., you are looking at the
- uses, but not setting them.
- </p>
- <p>If they do get changed, then care must be taken that things are not changed
- under the iterators, so use the <code>FOR_EACH_IMM_USE_STMT</code> and
- <code>FOR_EACH_IMM_USE_ON_STMT</code> iterators. They attempt to preserve the
- sanity of the use list by moving all the uses for a statement into
- a controlled position, and then iterating over those uses. Then the
- optimization can manipulate the stmt when all the uses have been
- processed. This is a little slower than the FAST version since it adds a
- placeholder element and must sort through the list a bit for each statement.
- This placeholder element must be also be removed if the loop is
- terminated early. The macro <code>BREAK_FROM_IMM_USE_STMT</code> is provided
- to do this :
- </p>
- <div class="smallexample">
- <pre class="smallexample"> FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
- {
- if (stmt == last_stmt)
- BREAK_FROM_IMM_USE_STMT (iterator);
-
- FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
- SET_USE (imm_use_p, ssa_var_2);
- fold_stmt (stmt);
- }
- </pre></div>
-
- <p>There are checks in <code>verify_ssa</code> which verify that the immediate use list
- is up to date, as well as checking that an optimization didn’t break from the
- loop without using this macro. It is safe to simply ’break’; from a
- <code>FOR_EACH_IMM_USE_FAST</code> traverse.
- </p>
- <p>Some useful functions and macros:
- </p><ol>
- <li> <code>has_zero_uses (ssa_var)</code> : Returns true if there are no uses of
- <code>ssa_var</code>.
- </li><li> <code>has_single_use (ssa_var)</code> : Returns true if there is only a
- single use of <code>ssa_var</code>.
- </li><li> <code>single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)</code> :
- Returns true if there is only a single use of <code>ssa_var</code>, and also returns
- the use pointer and statement it occurs in, in the second and third parameters.
- </li><li> <code>num_imm_uses (ssa_var)</code> : Returns the number of immediate uses of
- <code>ssa_var</code>. It is better not to use this if possible since it simply
- utilizes a loop to count the uses.
- </li><li> <code>PHI_ARG_INDEX_FROM_USE (use_p)</code> : Given a use within a <code>PHI</code>
- node, return the index number for the use. An assert is triggered if the use
- isn’t located in a <code>PHI</code> node.
- </li><li> <code>USE_STMT (use_p)</code> : Return the statement a use occurs in.
- </li></ol>
-
- <p>Note that uses are not put into an immediate use list until their statement is
- actually inserted into the instruction stream via a <code>bsi_*</code> routine.
- </p>
- <p>It is also still possible to utilize lazy updating of statements, but this
- should be used only when absolutely required. Both alias analysis and the
- dominator optimizations currently do this.
- </p>
- <p>When lazy updating is being used, the immediate use information is out of date
- and cannot be used reliably. Lazy updating is achieved by simply marking
- statements modified via calls to <code>gimple_set_modified</code> instead of
- <code>update_stmt</code>. When lazy updating is no longer required, all the
- modified statements must have <code>update_stmt</code> called in order to bring them
- up to date. This must be done before the optimization is finished, or
- <code>verify_ssa</code> will trigger an abort.
- </p>
- <p>This is done with a simple loop over the instruction stream:
- </p><div class="smallexample">
- <pre class="smallexample"> block_stmt_iterator bsi;
- basic_block bb;
- FOR_EACH_BB (bb)
- {
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- update_stmt_if_modified (bsi_stmt (bsi));
- }
- </pre></div>
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="SSA.html#SSA" accesskey="n" rel="next">SSA</a>, Previous: <a href="Annotations.html#Annotations" accesskey="p" rel="prev">Annotations</a>, Up: <a href="Tree-SSA.html#Tree-SSA" accesskey="u" rel="up">Tree SSA</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|