|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Scalar evolutions (GNU Compiler Collection (GCC) Internals)</title>
-
- <meta name="description" content="Scalar evolutions (GNU Compiler Collection (GCC) Internals)">
- <meta name="keywords" content="Scalar evolutions (GNU Compiler Collection (GCC) Internals)">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Loop-Analysis-and-Representation.html#Loop-Analysis-and-Representation" rel="up" title="Loop Analysis and Representation">
- <link href="loop_002div.html#loop_002div" rel="next" title="loop-iv">
- <link href="LCSSA.html#LCSSA" rel="prev" title="LCSSA">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="Scalar-evolutions"></a>
- <div class="header">
- <p>
- Next: <a href="loop_002div.html#loop_002div" accesskey="n" rel="next">loop-iv</a>, Previous: <a href="LCSSA.html#LCSSA" accesskey="p" rel="prev">LCSSA</a>, Up: <a href="Loop-Analysis-and-Representation.html#Loop-Analysis-and-Representation" accesskey="u" rel="up">Loop Analysis and Representation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="Scalar-evolutions-1"></a>
- <h3 class="section">16.5 Scalar evolutions</h3>
- <a name="index-Scalar-evolutions"></a>
- <a name="index-IV-analysis-on-GIMPLE"></a>
-
- <p>Scalar evolutions (SCEV) are used to represent results of induction
- variable analysis on GIMPLE. They enable us to represent variables with
- complicated behavior in a simple and consistent way (we only use it to
- express values of polynomial induction variables, but it is possible to
- extend it). The interfaces to SCEV analysis are declared in
- <samp>tree-scalar-evolution.h</samp>. To use scalar evolutions analysis,
- <code>scev_initialize</code> must be used. To stop using SCEV,
- <code>scev_finalize</code> should be used. SCEV analysis caches results in
- order to save time and memory. This cache however is made invalid by
- most of the loop transformations, including removal of code. If such a
- transformation is performed, <code>scev_reset</code> must be called to clean
- the caches.
- </p>
- <p>Given an SSA name, its behavior in loops can be analyzed using the
- <code>analyze_scalar_evolution</code> function. The returned SCEV however
- does not have to be fully analyzed and it may contain references to
- other SSA names defined in the loop. To resolve these (potentially
- recursive) references, <code>instantiate_parameters</code> or
- <code>resolve_mixers</code> functions must be used.
- <code>instantiate_parameters</code> is useful when you use the results of SCEV
- only for some analysis, and when you work with whole nest of loops at
- once. It will try replacing all SSA names by their SCEV in all loops,
- including the super-loops of the current loop, thus providing a complete
- information about the behavior of the variable in the loop nest.
- <code>resolve_mixers</code> is useful if you work with only one loop at a
- time, and if you possibly need to create code based on the value of the
- induction variable. It will only resolve the SSA names defined in the
- current loop, leaving the SSA names defined outside unchanged, even if
- their evolution in the outer loops is known.
- </p>
- <p>The SCEV is a normal tree expression, except for the fact that it may
- contain several special tree nodes. One of them is
- <code>SCEV_NOT_KNOWN</code>, used for SSA names whose value cannot be
- expressed. The other one is <code>POLYNOMIAL_CHREC</code>. Polynomial chrec
- has three arguments – base, step and loop (both base and step may
- contain further polynomial chrecs). Type of the expression and of base
- and step must be the same. A variable has evolution
- <code>POLYNOMIAL_CHREC(base, step, loop)</code> if it is (in the specified
- loop) equivalent to <code>x_1</code> in the following example
- </p>
- <div class="smallexample">
- <pre class="smallexample">while (…)
- {
- x_1 = phi (base, x_2);
- x_2 = x_1 + step;
- }
- </pre></div>
-
- <p>Note that this includes the language restrictions on the operations.
- For example, if we compile C code and <code>x</code> has signed type, then the
- overflow in addition would cause undefined behavior, and we may assume
- that this does not happen. Hence, the value with this SCEV cannot
- overflow (which restricts the number of iterations of such a loop).
- </p>
- <p>In many cases, one wants to restrict the attention just to affine
- induction variables. In this case, the extra expressive power of SCEV
- is not useful, and may complicate the optimizations. In this case,
- <code>simple_iv</code> function may be used to analyze a value – the result
- is a loop-invariant base and step.
- </p>
- <hr>
- <div class="header">
- <p>
- Next: <a href="loop_002div.html#loop_002div" accesskey="n" rel="next">loop-iv</a>, Previous: <a href="LCSSA.html#LCSSA" accesskey="p" rel="prev">LCSSA</a>, Up: <a href="Loop-Analysis-and-Representation.html#Loop-Analysis-and-Representation" accesskey="u" rel="up">Loop Analysis and Representation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|