|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>The Language (GNU Compiler Collection (GCC) Internals)</title>
-
- <meta name="description" content="The Language (GNU Compiler Collection (GCC) Internals)">
- <meta name="keywords" content="The Language (GNU Compiler Collection (GCC) Internals)">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Match-and-Simplify.html#Match-and-Simplify" rel="up" title="Match and Simplify">
- <link href="Static-Analyzer.html#Static-Analyzer" rel="next" title="Static Analyzer">
- <link href="GIMPLE-API.html#GIMPLE-API" rel="prev" title="GIMPLE API">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="The-Language"></a>
- <div class="header">
- <p>
- Previous: <a href="GIMPLE-API.html#GIMPLE-API" accesskey="p" rel="prev">GIMPLE API</a>, Up: <a href="Match-and-Simplify.html#Match-and-Simplify" accesskey="u" rel="up">Match and Simplify</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="The-Language-1"></a>
- <h3 class="section">26.2 The Language</h3>
- <a name="index-The-Language"></a>
-
- <p>The language to write expression simplifications in resembles other
- domain-specific languages GCC uses. Thus it is lispy. Lets start
- with an example from the match.pd file:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (bit_and @0 integer_all_onesp)
- @0)
- </pre></div>
-
- <p>This example contains all required parts of an expression simplification.
- A simplification is wrapped inside a <code>(simplify ...)</code> expression.
- That contains at least two operands - an expression that is matched
- with the GIMPLE or GENERIC IL and a replacement expression that is
- returned if the match was successful.
- </p>
- <p>Expressions have an operator ID, <code>bit_and</code> in this case. Expressions can
- be lower-case tree codes with <code>_expr</code> stripped off or builtin
- function code names in all-caps, like <code>BUILT_IN_SQRT</code>.
- </p>
- <p><code>@n</code> denotes a so-called capture. It captures the operand and lets
- you refer to it in other places of the match-and-simplify. In the
- above example it is refered to in the replacement expression. Captures
- are <code>@</code> followed by a number or an identifier.
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (bit_xor @0 @0)
- { build_zero_cst (type); })
- </pre></div>
-
- <p>In this example <code>@0</code> is mentioned twice which constrains the matched
- expression to have two equal operands. Usually matches are constraint
- to equal types. If operands may be constants and conversions are involved
- matching by value might be preferred in which case use <code>@@0</code> to
- denote a by value match and the specific operand you want to refer to
- in the result part. This example also introduces
- operands written in C code. These can be used in the expression
- replacements and are supposed to evaluate to a tree node which has to
- be a valid GIMPLE operand (so you cannot generate expressions in C code).
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (trunc_mod integer_zerop@0 @1)
- (if (!integer_zerop (@1))
- @0))
- </pre></div>
-
- <p>Here <code>@0</code> captures the first operand of the trunc_mod expression
- which is also predicated with <code>integer_zerop</code>. Expression operands
- may be either expressions, predicates or captures. Captures
- can be unconstrained or capture expresions or predicates.
- </p>
- <p>This example introduces an optional operand of simplify,
- the if-expression. This condition is evaluated after the
- expression matched in the IL and is required to evaluate to true
- to enable the replacement expression in the second operand
- position. The expression operand of the <code>if</code> is a standard C
- expression which may contain references to captures. The <code>if</code>
- has an optional third operand which may contain the replacement
- expression that is enabled when the condition evaluates to false.
- </p>
- <p>A <code>if</code> expression can be used to specify a common condition
- for multiple simplify patterns, avoiding the need
- to repeat that multiple times:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(if (!TYPE_SATURATING (type)
- && !FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
- (simplify
- (minus (plus @0 @1) @0)
- @1)
- (simplify
- (minus (minus @0 @1) @0)
- (negate @1)))
- </pre></div>
-
- <p>Note that <code>if</code>s in outer position do not have the optional
- else clause but instead have multiple then clauses.
- </p>
- <p>Ifs can be nested.
- </p>
- <p>There exists a <code>switch</code> expression which can be used to
- chain conditions avoiding nesting <code>if</code>s too much:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (simple_comparison @0 REAL_CST@1)
- (switch
- /* a CMP (-0) -> a CMP 0 */
- (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
- (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
- /* x != NaN is always true, other ops are always false. */
- (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
- && ! HONOR_SNANS (@1))
- { constant_boolean_node (cmp == NE_EXPR, type); })))
- </pre></div>
-
- <p>Is equal to
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (simple_comparison @0 REAL_CST@1)
- (switch
- /* a CMP (-0) -> a CMP 0 */
- (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
- (cmp @0 { build_real (TREE_TYPE (@1), dconst0); })
- /* x != NaN is always true, other ops are always false. */
- (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
- && ! HONOR_SNANS (@1))
- { constant_boolean_node (cmp == NE_EXPR, type); }))))
- </pre></div>
-
- <p>which has the second <code>if</code> in the else operand of the first.
- The <code>switch</code> expression takes <code>if</code> expressions as
- operands (which may not have else clauses) and as a last operand
- a replacement expression which should be enabled by default if
- no other condition evaluated to true.
- </p>
- <p>Captures can also be used for capturing results of sub-expressions.
- </p>
- <div class="smallexample">
- <pre class="smallexample">#if GIMPLE
- (simplify
- (pointer_plus (addr@2 @0) INTEGER_CST_P@1)
- (if (is_gimple_min_invariant (@2)))
- {
- poly_int64 off;
- tree base = get_addr_base_and_unit_offset (@0, &off);
- off += tree_to_uhwi (@1);
- /* Now with that we should be able to simply write
- (addr (mem_ref (addr @base) (plus @off @1))) */
- build1 (ADDR_EXPR, type,
- build2 (MEM_REF, TREE_TYPE (TREE_TYPE (@2)),
- build_fold_addr_expr (base),
- build_int_cst (ptr_type_node, off)));
- })
- #endif
- </pre></div>
-
- <p>In the above example, <code>@2</code> captures the result of the expression
- <code>(addr @0)</code>. For outermost expression only its type can be captured,
- and the keyword <code>type</code> is reserved for this purpose. The above
- example also gives a way to conditionalize patterns to only apply
- to <code>GIMPLE</code> or <code>GENERIC</code> by means of using the pre-defined
- preprocessor macros <code>GIMPLE</code> and <code>GENERIC</code> and using
- preprocessor directives.
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (bit_and:c integral_op_p@0 (bit_ior:c (bit_not @0) @1))
- (bit_and @1 @0))
- </pre></div>
-
- <p>Here we introduce flags on match expressions. The flag used
- above, <code>c</code>, denotes that the expression should
- be also matched commutated. Thus the above match expression
- is really the following four match expressions:
- </p>
- <div class="smallexample">
- <pre class="smallexample"> (bit_and integral_op_p@0 (bit_ior (bit_not @0) @1))
- (bit_and (bit_ior (bit_not @0) @1) integral_op_p@0)
- (bit_and integral_op_p@0 (bit_ior @1 (bit_not @0)))
- (bit_and (bit_ior @1 (bit_not @0)) integral_op_p@0)
- </pre></div>
-
- <p>Usual canonicalizations you know from GENERIC expressions are
- applied before matching, so for example constant operands always
- come second in commutative expressions.
- </p>
- <p>The second supported flag is <code>s</code> which tells the code
- generator to fail the pattern if the expression marked with
- <code>s</code> does have more than one use and the simplification
- results in an expression with more than one operator.
- For example in
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (pointer_plus (pointer_plus:s @0 @1) @3)
- (pointer_plus @0 (plus @1 @3)))
- </pre></div>
-
- <p>this avoids the association if <code>(pointer_plus @0 @1)</code> is
- used outside of the matched expression and thus it would stay
- live and not trivially removed by dead code elimination.
- Now consider <code>((x + 3) + -3)</code> with the temporary
- holding <code>(x + 3)</code> used elsewhere. This simplifies down
- to <code>x</code> which is desirable and thus flagging with <code>s</code>
- does not prevent the transform. Now consider <code>((x + 3) + 1)</code>
- which simplifies to <code>(x + 4)</code>. Despite being flagged with
- <code>s</code> the simplification will be performed. The
- simplification of <code>((x + a) + 1)</code> to <code>(x + (a + 1))</code> will
- not performed in this case though.
- </p>
- <p>More features exist to avoid too much repetition.
- </p>
- <div class="smallexample">
- <pre class="smallexample">(for op (plus pointer_plus minus bit_ior bit_xor)
- (simplify
- (op @0 integer_zerop)
- @0))
- </pre></div>
-
- <p>A <code>for</code> expression can be used to repeat a pattern for each
- operator specified, substituting <code>op</code>. <code>for</code> can be
- nested and a <code>for</code> can have multiple operators to iterate.
- </p>
- <div class="smallexample">
- <pre class="smallexample">(for opa (plus minus)
- opb (minus plus)
- (for opc (plus minus)
- (simplify...
- </pre></div>
-
- <p>In this example the pattern will be repeated four times with
- <code>opa, opb, opc</code> being <code>plus, minus, plus</code>;
- <code>plus, minus, minus</code>; <code>minus, plus, plus</code>;
- <code>minus, plus, minus</code>.
- </p>
- <p>To avoid repeating operator lists in <code>for</code> you can name
- them via
- </p>
- <div class="smallexample">
- <pre class="smallexample">(define_operator_list pmm plus minus mult)
- </pre></div>
-
- <p>and use them in <code>for</code> operator lists where they get expanded.
- </p>
- <div class="smallexample">
- <pre class="smallexample">(for opa (pmm trunc_div)
- (simplify...
- </pre></div>
-
- <p>So this example iterates over <code>plus</code>, <code>minus</code>, <code>mult</code>
- and <code>trunc_div</code>.
- </p>
- <p>Using operator lists can also remove the need to explicitely write
- a <code>for</code>. All operator list uses that appear in a <code>simplify</code>
- or <code>match</code> pattern in operator positions will implicitely
- be added to a new <code>for</code>. For example
- </p>
- <div class="smallexample">
- <pre class="smallexample">(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
- (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
- (simplify
- (SQRT (POW @0 @1))
- (POW (abs @0) (mult @1 { built_real (TREE_TYPE (@1), dconsthalf); })))
- </pre></div>
-
- <p>is the same as
- </p>
- <div class="smallexample">
- <pre class="smallexample">(for SQRT (BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
- POW (BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
- (simplify
- (SQRT (POW @0 @1))
- (POW (abs @0) (mult @1 { built_real (TREE_TYPE (@1), dconsthalf); }))))
- </pre></div>
-
- <p><code>for</code>s and operator lists can include the special identifier
- <code>null</code> that matches nothing and can never be generated. This can
- be used to pad an operator list so that it has a standard form,
- even if there isn’t a suitable operator for every form.
- </p>
- <p>Another building block are <code>with</code> expressions in the
- result expression which nest the generated code in a new C block
- followed by its argument:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (convert (mult @0 @1))
- (with { tree utype = unsigned_type_for (type); }
- (convert (mult (convert:utype @0) (convert:utype @1)))))
- </pre></div>
-
- <p>This allows code nested in the <code>with</code> to refer to the declared
- variables. In the above case we use the feature to specify the
- type of a generated expression with the <code>:type</code> syntax where
- <code>type</code> needs to be an identifier that refers to the desired type.
- Usually the types of the generated result expressions are
- determined from the context, but sometimes like in the above case
- it is required that you specify them explicitely.
- </p>
- <p>As intermediate conversions are often optional there is a way to
- avoid the need to repeat patterns both with and without such
- conversions. Namely you can mark a conversion as being optional
- with a <code>?</code>:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (eq (convert@0 @1) (convert? @2))
- (eq @1 (convert @2)))
- </pre></div>
-
- <p>which will match both <code>(eq (convert @1) (convert @2))</code> and
- <code>(eq (convert @1) @2)</code>. The optional converts are supposed
- to be all either present or not, thus
- <code>(eq (convert? @1) (convert? @2))</code> will result in two
- patterns only. If you want to match all four combinations you
- have access to two additional conditional converts as in
- <code>(eq (convert1? @1) (convert2? @2))</code>.
- </p>
- <p>The support for <code>?</code> marking extends to all unary operations
- including predicates you declare yourself with <code>match</code>.
- </p>
- <p>Predicates available from the GCC middle-end need to be made
- available explicitely via <code>define_predicates</code>:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(define_predicates
- integer_onep integer_zerop integer_all_onesp)
- </pre></div>
-
- <p>You can also define predicates using the pattern matching language
- and the <code>match</code> form:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(match negate_expr_p
- INTEGER_CST
- (if (TYPE_OVERFLOW_WRAPS (type)
- || may_negate_without_overflow_p (t))))
- (match negate_expr_p
- (negate @0))
- </pre></div>
-
- <p>This shows that for <code>match</code> expressions there is <code>t</code>
- available which captures the outermost expression (something
- not possible in the <code>simplify</code> context). As you can see
- <code>match</code> has an identifier as first operand which is how
- you refer to the predicate in patterns. Multiple <code>match</code>
- for the same identifier add additional cases where the predicate
- matches.
- </p>
- <p>Predicates can also match an expression in which case you need
- to provide a template specifying the identifier and where to
- get its operands from:
- </p>
- <div class="smallexample">
- <pre class="smallexample">(match (logical_inverted_value @0)
- (eq @0 integer_zerop))
- (match (logical_inverted_value @0)
- (bit_not truth_valued_p@0))
- </pre></div>
-
- <p>You can use the above predicate like
- </p>
- <div class="smallexample">
- <pre class="smallexample">(simplify
- (bit_and @0 (logical_inverted_value @0))
- { build_zero_cst (type); })
- </pre></div>
-
- <p>Which will match a bitwise and of an operand with its logical
- inverted value.
- </p>
-
- <hr>
- <div class="header">
- <p>
- Previous: <a href="GIMPLE-API.html#GIMPLE-API" accesskey="p" rel="prev">GIMPLE API</a>, Up: <a href="Match-and-Simplify.html#Match-and-Simplify" accesskey="u" rel="up">Match and Simplify</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|