|
- /* Functions to support general ended bitmaps.
- Copyright (C) 1997-2020 Free Software Foundation, Inc.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
-
- #ifndef GCC_BITMAP_H
- #define GCC_BITMAP_H
-
- /* Implementation of sparse integer sets as a linked list or tree.
-
- This sparse set representation is suitable for sparse sets with an
- unknown (a priori) universe.
-
- Sets are represented as double-linked lists of container nodes of
- type "struct bitmap_element" or as a binary trees of the same
- container nodes. Each container node consists of an index for the
- first member that could be held in the container, a small array of
- integers that represent the members in the container, and pointers
- to the next and previous element in the linked list, or left and
- right children in the tree. In linked-list form, the container
- nodes in the list are sorted in ascending order, i.e. the head of
- the list holds the element with the smallest member of the set.
- In tree form, nodes to the left have a smaller container index.
-
- For a given member I in the set:
- - the element for I will have index is I / (bits per element)
- - the position for I within element is I % (bits per element)
-
- This representation is very space-efficient for large sparse sets, and
- the size of the set can be changed dynamically without much overhead.
- An important parameter is the number of bits per element. In this
- implementation, there are 128 bits per element. This results in a
- high storage overhead *per element*, but a small overall overhead if
- the set is very sparse.
-
- The storage requirements for linked-list sparse sets are O(E), with E->N
- in the worst case (a sparse set with large distances between the values
- of the set members).
-
- This representation also works well for data flow problems where the size
- of the set may grow dynamically, but care must be taken that the member_p,
- add_member, and remove_member operations occur with a suitable access
- pattern.
-
- The linked-list set representation works well for problems involving very
- sparse sets. The canonical example in GCC is, of course, the "set of
- sets" for some CFG-based data flow problems (liveness analysis, dominance
- frontiers, etc.).
-
- For random-access sparse sets of unknown universe, the binary tree
- representation is likely to be a more suitable choice. Theoretical
- access times for the binary tree representation are better than those
- for the linked-list, but in practice this is only true for truely
- random access.
-
- Often the most suitable representation during construction of the set
- is not the best choice for the usage of the set. For such cases, the
- "view" of the set can be changed from one representation to the other.
- This is an O(E) operation:
-
- * from list to tree view : bitmap_tree_view
- * from tree to list view : bitmap_list_view
-
- Traversing linked lists or trees can be cache-unfriendly. Performance
- can be improved by keeping container nodes in the set grouped together
- in memory, using a dedicated obstack for a set (or group of related
- sets). Elements allocated on obstacks are released to a free-list and
- taken off the free list. If multiple sets are allocated on the same
- obstack, elements freed from one set may be re-used for one of the other
- sets. This usually helps avoid cache misses.
-
- A single free-list is used for all sets allocated in GGC space. This is
- bad for persistent sets, so persistent sets should be allocated on an
- obstack whenever possible.
-
- For random-access sets with a known, relatively small universe size, the
- SparseSet or simple bitmap representations may be more efficient than a
- linked-list set.
-
-
- LINKED LIST FORM
- ================
-
- In linked-list form, in-order iterations of the set can be executed
- efficiently. The downside is that many random-access operations are
- relatively slow, because the linked list has to be traversed to test
- membership (i.e. member_p/ add_member/remove_member).
-
- To improve the performance of this set representation, the last
- accessed element and its index are cached. For membership tests on
- members close to recently accessed members, the cached last element
- improves membership test to a constant-time operation.
-
- The following operations can always be performed in O(1) time in
- list view:
-
- * clear : bitmap_clear
- * smallest_member : bitmap_first_set_bit
- * choose_one : (not implemented, but could be
- in constant time)
-
- The following operations can be performed in O(E) time worst-case in
- list view (with E the number of elements in the linked list), but in
- O(1) time with a suitable access patterns:
-
- * member_p : bitmap_bit_p
- * add_member : bitmap_set_bit / bitmap_set_range
- * remove_member : bitmap_clear_bit / bitmap_clear_range
-
- The following operations can be performed in O(E) time in list view:
-
- * cardinality : bitmap_count_bits
- * largest_member : bitmap_last_set_bit (but this could
- in constant time with a pointer to
- the last element in the chain)
- * set_size : bitmap_last_set_bit
-
- In tree view the following operations can all be performed in O(log E)
- amortized time with O(E) worst-case behavior.
-
- * smallest_member
- * largest_member
- * set_size
- * member_p
- * add_member
- * remove_member
-
- Additionally, the linked-list sparse set representation supports
- enumeration of the members in O(E) time:
-
- * forall : EXECUTE_IF_SET_IN_BITMAP
- * set_copy : bitmap_copy
- * set_intersection : bitmap_intersect_p /
- bitmap_and / bitmap_and_into /
- EXECUTE_IF_AND_IN_BITMAP
- * set_union : bitmap_ior / bitmap_ior_into
- * set_difference : bitmap_intersect_compl_p /
- bitmap_and_comp / bitmap_and_comp_into /
- EXECUTE_IF_AND_COMPL_IN_BITMAP
- * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
- * set_compare : bitmap_equal_p
-
- Some operations on 3 sets that occur frequently in data flow problems
- are also implemented:
-
- * A | (B & C) : bitmap_ior_and_into
- * A | (B & ~C) : bitmap_ior_and_compl /
- bitmap_ior_and_compl_into
-
-
- BINARY TREE FORM
- ================
- An alternate "view" of a bitmap is its binary tree representation.
- For this representation, splay trees are used because they can be
- implemented using the same data structures as the linked list, with
- no overhead for meta-data (like color, or rank) on the tree nodes.
-
- In binary tree form, random-access to the set is much more efficient
- than for the linked-list representation. Downsides are the high cost
- of clearing the set, and the relatively large number of operations
- necessary to balance the tree. Also, iterating the set members is
- not supported.
-
- As for the linked-list representation, the last accessed element and
- its index are cached, so that membership tests on the latest accessed
- members is a constant-time operation. Other lookups take O(logE)
- time amortized (but O(E) time worst-case).
-
- The following operations can always be performed in O(1) time:
-
- * choose_one : (not implemented, but could be
- implemented in constant time)
-
- The following operations can be performed in O(logE) time amortized
- but O(E) time worst-case, but in O(1) time if the same element is
- accessed.
-
- * member_p : bitmap_bit_p
- * add_member : bitmap_set_bit
- * remove_member : bitmap_clear_bit
-
- The following operations can be performed in O(logE) time amortized
- but O(E) time worst-case:
-
- * smallest_member : bitmap_first_set_bit
- * largest_member : bitmap_last_set_bit
- * set_size : bitmap_last_set_bit
-
- The following operations can be performed in O(E) time:
-
- * clear : bitmap_clear
-
- The binary tree sparse set representation does *not* support any form
- of enumeration, and does also *not* support logical operations on sets.
- The binary tree representation is only supposed to be used for sets
- on which many random-access membership tests will happen. */
-
- #include "obstack.h"
- #include "array-traits.h"
-
- /* Bitmap memory usage. */
- class bitmap_usage: public mem_usage
- {
- public:
- /* Default contructor. */
- bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
- /* Constructor. */
- bitmap_usage (size_t allocated, size_t times, size_t peak,
- uint64_t nsearches, uint64_t search_iter)
- : mem_usage (allocated, times, peak),
- m_nsearches (nsearches), m_search_iter (search_iter) {}
-
- /* Sum the usage with SECOND usage. */
- bitmap_usage
- operator+ (const bitmap_usage &second)
- {
- return bitmap_usage (m_allocated + second.m_allocated,
- m_times + second.m_times,
- m_peak + second.m_peak,
- m_nsearches + second.m_nsearches,
- m_search_iter + second.m_search_iter);
- }
-
- /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
- inline void
- dump (mem_location *loc, mem_usage &total) const
- {
- char *location_string = loc->to_string ();
-
- fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
- PRsa (9) PRsa (9) ":%5.1f%%"
- PRsa (11) PRsa (11) "%10s\n",
- location_string, SIZE_AMOUNT (m_allocated),
- get_percent (m_allocated, total.m_allocated),
- SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
- get_percent (m_times, total.m_times),
- SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
- loc->m_ggc ? "ggc" : "heap");
-
- free (location_string);
- }
-
- /* Dump header with NAME. */
- static inline void
- dump_header (const char *name)
- {
- fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
- "Times", "N searches", "Search iter", "Type");
- }
-
- /* Number search operations. */
- uint64_t m_nsearches;
- /* Number of search iterations. */
- uint64_t m_search_iter;
- };
-
- /* Bitmap memory description. */
- extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
-
- /* Fundamental storage type for bitmap. */
-
- typedef unsigned long BITMAP_WORD;
- /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
- it is used in preprocessor directives -- hence the 1u. */
- #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
-
- /* Number of words to use for each element in the linked list. */
-
- #ifndef BITMAP_ELEMENT_WORDS
- #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
- #endif
-
- /* Number of bits in each actual element of a bitmap. */
-
- #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
-
- /* Obstack for allocating bitmaps and elements from. */
- struct bitmap_obstack {
- struct bitmap_element *elements;
- bitmap_head *heads;
- struct obstack obstack;
- };
-
- /* Bitmap set element. We use a linked list to hold only the bits that
- are set. This allows for use to grow the bitset dynamically without
- having to realloc and copy a giant bit array.
-
- The free list is implemented as a list of lists. There is one
- outer list connected together by prev fields. Each element of that
- outer is an inner list (that may consist only of the outer list
- element) that are connected by the next fields. The prev pointer
- is undefined for interior elements. This allows
- bitmap_elt_clear_from to be implemented in unit time rather than
- linear in the number of elements to be freed. */
-
- struct GTY((chain_next ("%h.next"))) bitmap_element {
- /* In list form, the next element in the linked list;
- in tree form, the left child node in the tree. */
- struct bitmap_element *next;
- /* In list form, the previous element in the linked list;
- in tree form, the right child node in the tree. */
- struct bitmap_element *prev;
- /* regno/BITMAP_ELEMENT_ALL_BITS. */
- unsigned int indx;
- /* Bits that are set, counting from INDX, inclusive */
- BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
- };
-
- /* Head of bitmap linked list. The 'current' member points to something
- already pointed to by the chain started by first, so GTY((skip)) it. */
-
- class GTY(()) bitmap_head {
- public:
- static bitmap_obstack crashme;
- /* Poison obstack to not make it not a valid initialized GC bitmap. */
- CONSTEXPR bitmap_head()
- : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL),
- current (NULL), obstack (&crashme)
- {}
- /* Index of last element looked at. */
- unsigned int indx;
- /* False if the bitmap is in list form; true if the bitmap is in tree form.
- Bitmap iterators only work on bitmaps in list form. */
- unsigned tree_form: 1;
- /* Next integer is shifted, so padding is needed. */
- unsigned padding: 2;
- /* Bitmap UID used for memory allocation statistics. */
- unsigned alloc_descriptor: 29;
- /* In list form, the first element in the linked list;
- in tree form, the root of the tree. */
- bitmap_element *first;
- /* Last element looked at. */
- bitmap_element * GTY((skip(""))) current;
- /* Obstack to allocate elements from. If NULL, then use GGC allocation. */
- bitmap_obstack * GTY((skip(""))) obstack;
-
- /* Dump bitmap. */
- void dump ();
-
- /* Get bitmap descriptor UID casted to an unsigned integer pointer.
- Shift the descriptor because pointer_hash<Type>::hash is
- doing >> 3 shift operation. */
- unsigned *get_descriptor ()
- {
- return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3);
- }
- };
-
- /* Global data */
- extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
- extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
-
- /* Change the view of the bitmap to list, or tree. */
- void bitmap_list_view (bitmap);
- void bitmap_tree_view (bitmap);
-
- /* Clear a bitmap by freeing up the linked list. */
- extern void bitmap_clear (bitmap);
-
- /* Copy a bitmap to another bitmap. */
- extern void bitmap_copy (bitmap, const_bitmap);
-
- /* Move a bitmap to another bitmap. */
- extern void bitmap_move (bitmap, bitmap);
-
- /* True if two bitmaps are identical. */
- extern bool bitmap_equal_p (const_bitmap, const_bitmap);
-
- /* True if the bitmaps intersect (their AND is non-empty). */
- extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
-
- /* True if the complement of the second intersects the first (their
- AND_COMPL is non-empty). */
- extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
-
- /* True if MAP is an empty bitmap. */
- inline bool bitmap_empty_p (const_bitmap map)
- {
- return !map->first;
- }
-
- /* True if the bitmap has only a single bit set. */
- extern bool bitmap_single_bit_set_p (const_bitmap);
-
- /* Count the number of bits set in the bitmap. */
- extern unsigned long bitmap_count_bits (const_bitmap);
-
- /* Count the number of unique bits set across the two bitmaps. */
- extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
-
- /* Boolean operations on bitmaps. The _into variants are two operand
- versions that modify the first source operand. The other variants
- are three operand versions that to not destroy the source bitmaps.
- The operations supported are &, & ~, |, ^. */
- extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
- extern bool bitmap_and_into (bitmap, const_bitmap);
- extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
- extern bool bitmap_and_compl_into (bitmap, const_bitmap);
- #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
- extern void bitmap_compl_and_into (bitmap, const_bitmap);
- extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
- extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
- extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
- extern bool bitmap_ior_into (bitmap, const_bitmap);
- extern bool bitmap_ior_into_and_free (bitmap, bitmap *);
- extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
- extern void bitmap_xor_into (bitmap, const_bitmap);
-
- /* DST = A | (B & C). Return true if DST changes. */
- extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
- /* DST = A | (B & ~C). Return true if DST changes. */
- extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
- const_bitmap B, const_bitmap C);
- /* A |= (B & ~C). Return true if A changes. */
- extern bool bitmap_ior_and_compl_into (bitmap A,
- const_bitmap B, const_bitmap C);
-
- /* Clear a single bit in a bitmap. Return true if the bit changed. */
- extern bool bitmap_clear_bit (bitmap, int);
-
- /* Set a single bit in a bitmap. Return true if the bit changed. */
- extern bool bitmap_set_bit (bitmap, int);
-
- /* Return true if a bit is set in a bitmap. */
- extern int bitmap_bit_p (const_bitmap, int);
-
- /* Debug functions to print a bitmap. */
- extern void debug_bitmap (const_bitmap);
- extern void debug_bitmap_file (FILE *, const_bitmap);
-
- /* Print a bitmap. */
- extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
-
- /* Initialize and release a bitmap obstack. */
- extern void bitmap_obstack_initialize (bitmap_obstack *);
- extern void bitmap_obstack_release (bitmap_obstack *);
- extern void bitmap_register (bitmap MEM_STAT_DECL);
- extern void dump_bitmap_statistics (void);
-
- /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
- to allocate from, NULL for GC'd bitmap. */
-
- static inline void
- bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
- {
- head->first = head->current = NULL;
- head->indx = head->tree_form = 0;
- head->padding = 0;
- head->alloc_descriptor = 0;
- head->obstack = obstack;
- if (GATHER_STATISTICS)
- bitmap_register (head PASS_MEM_STAT);
- }
-
- /* Release a bitmap (but not its head). This is suitable for pairing with
- bitmap_initialize. */
-
- static inline void
- bitmap_release (bitmap head)
- {
- bitmap_clear (head);
- /* Poison the obstack pointer so the obstack can be safely released.
- Do not zero it as the bitmap then becomes initialized GC. */
- head->obstack = &bitmap_head::crashme;
- }
-
- /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
- extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
- #define BITMAP_ALLOC bitmap_alloc
- extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
- #define BITMAP_GGC_ALLOC bitmap_gc_alloc
- extern void bitmap_obstack_free (bitmap);
-
- /* A few compatibility/functions macros for compatibility with sbitmaps */
- inline void dump_bitmap (FILE *file, const_bitmap map)
- {
- bitmap_print (file, map, "", "\n");
- }
- extern void debug (const bitmap_head &ref);
- extern void debug (const bitmap_head *ptr);
-
- extern unsigned bitmap_first_set_bit (const_bitmap);
- extern unsigned bitmap_last_set_bit (const_bitmap);
-
- /* Compute bitmap hash (for purposes of hashing etc.) */
- extern hashval_t bitmap_hash (const_bitmap);
-
- /* Do any cleanup needed on a bitmap when it is no longer used. */
- #define BITMAP_FREE(BITMAP) \
- ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
-
- /* Iterator for bitmaps. */
-
- struct bitmap_iterator
- {
- /* Pointer to the current bitmap element. */
- bitmap_element *elt1;
-
- /* Pointer to 2nd bitmap element when two are involved. */
- bitmap_element *elt2;
-
- /* Word within the current element. */
- unsigned word_no;
-
- /* Contents of the actually processed word. When finding next bit
- it is shifted right, so that the actual bit is always the least
- significant bit of ACTUAL. */
- BITMAP_WORD bits;
- };
-
- /* Initialize a single bitmap iterator. START_BIT is the first bit to
- iterate from. */
-
- static inline void
- bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
- unsigned start_bit, unsigned *bit_no)
- {
- bi->elt1 = map->first;
- bi->elt2 = NULL;
-
- gcc_checking_assert (!map->tree_form);
-
- /* Advance elt1 until it is not before the block containing start_bit. */
- while (1)
- {
- if (!bi->elt1)
- {
- bi->elt1 = &bitmap_zero_bits;
- break;
- }
-
- if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
- break;
- bi->elt1 = bi->elt1->next;
- }
-
- /* We might have gone past the start bit, so reinitialize it. */
- if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
- start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
-
- /* Initialize for what is now start_bit. */
- bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
- bi->bits = bi->elt1->bits[bi->word_no];
- bi->bits >>= start_bit % BITMAP_WORD_BITS;
-
- /* If this word is zero, we must make sure we're not pointing at the
- first bit, otherwise our incrementing to the next word boundary
- will fail. It won't matter if this increment moves us into the
- next word. */
- start_bit += !bi->bits;
-
- *bit_no = start_bit;
- }
-
- /* Initialize an iterator to iterate over the intersection of two
- bitmaps. START_BIT is the bit to commence from. */
-
- static inline void
- bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
- unsigned start_bit, unsigned *bit_no)
- {
- bi->elt1 = map1->first;
- bi->elt2 = map2->first;
-
- gcc_checking_assert (!map1->tree_form && !map2->tree_form);
-
- /* Advance elt1 until it is not before the block containing
- start_bit. */
- while (1)
- {
- if (!bi->elt1)
- {
- bi->elt2 = NULL;
- break;
- }
-
- if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
- break;
- bi->elt1 = bi->elt1->next;
- }
-
- /* Advance elt2 until it is not before elt1. */
- while (1)
- {
- if (!bi->elt2)
- {
- bi->elt1 = bi->elt2 = &bitmap_zero_bits;
- break;
- }
-
- if (bi->elt2->indx >= bi->elt1->indx)
- break;
- bi->elt2 = bi->elt2->next;
- }
-
- /* If we're at the same index, then we have some intersecting bits. */
- if (bi->elt1->indx == bi->elt2->indx)
- {
- /* We might have advanced beyond the start_bit, so reinitialize
- for that. */
- if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
- start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
-
- bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
- bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
- bi->bits >>= start_bit % BITMAP_WORD_BITS;
- }
- else
- {
- /* Otherwise we must immediately advance elt1, so initialize for
- that. */
- bi->word_no = BITMAP_ELEMENT_WORDS - 1;
- bi->bits = 0;
- }
-
- /* If this word is zero, we must make sure we're not pointing at the
- first bit, otherwise our incrementing to the next word boundary
- will fail. It won't matter if this increment moves us into the
- next word. */
- start_bit += !bi->bits;
-
- *bit_no = start_bit;
- }
-
- /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */
-
- static inline void
- bmp_iter_and_compl_init (bitmap_iterator *bi,
- const_bitmap map1, const_bitmap map2,
- unsigned start_bit, unsigned *bit_no)
- {
- bi->elt1 = map1->first;
- bi->elt2 = map2->first;
-
- gcc_checking_assert (!map1->tree_form && !map2->tree_form);
-
- /* Advance elt1 until it is not before the block containing start_bit. */
- while (1)
- {
- if (!bi->elt1)
- {
- bi->elt1 = &bitmap_zero_bits;
- break;
- }
-
- if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
- break;
- bi->elt1 = bi->elt1->next;
- }
-
- /* Advance elt2 until it is not before elt1. */
- while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
- bi->elt2 = bi->elt2->next;
-
- /* We might have advanced beyond the start_bit, so reinitialize for
- that. */
- if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
- start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
-
- bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
- bi->bits = bi->elt1->bits[bi->word_no];
- if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
- bi->bits &= ~bi->elt2->bits[bi->word_no];
- bi->bits >>= start_bit % BITMAP_WORD_BITS;
-
- /* If this word is zero, we must make sure we're not pointing at the
- first bit, otherwise our incrementing to the next word boundary
- will fail. It won't matter if this increment moves us into the
- next word. */
- start_bit += !bi->bits;
-
- *bit_no = start_bit;
- }
-
- /* Advance to the next bit in BI. We don't advance to the next
- nonzero bit yet. */
-
- static inline void
- bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
- {
- bi->bits >>= 1;
- *bit_no += 1;
- }
-
- /* Advance to first set bit in BI. */
-
- static inline void
- bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
- {
- #if (GCC_VERSION >= 3004)
- {
- unsigned int n = __builtin_ctzl (bi->bits);
- gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
- bi->bits >>= n;
- *bit_no += n;
- }
- #else
- while (!(bi->bits & 1))
- {
- bi->bits >>= 1;
- *bit_no += 1;
- }
- #endif
- }
-
- /* Advance to the next nonzero bit of a single bitmap, we will have
- already advanced past the just iterated bit. Return true if there
- is a bit to iterate. */
-
- static inline bool
- bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
- {
- /* If our current word is nonzero, it contains the bit we want. */
- if (bi->bits)
- {
- next_bit:
- bmp_iter_next_bit (bi, bit_no);
- return true;
- }
-
- /* Round up to the word boundary. We might have just iterated past
- the end of the last word, hence the -1. It is not possible for
- bit_no to point at the beginning of the now last word. */
- *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
- / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
- bi->word_no++;
-
- while (1)
- {
- /* Find the next nonzero word in this elt. */
- while (bi->word_no != BITMAP_ELEMENT_WORDS)
- {
- bi->bits = bi->elt1->bits[bi->word_no];
- if (bi->bits)
- goto next_bit;
- *bit_no += BITMAP_WORD_BITS;
- bi->word_no++;
- }
-
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt1->indx != -1U);
-
- /* Advance to the next element. */
- bi->elt1 = bi->elt1->next;
- if (!bi->elt1)
- return false;
- *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = 0;
- }
- }
-
- /* Advance to the next nonzero bit of an intersecting pair of
- bitmaps. We will have already advanced past the just iterated bit.
- Return true if there is a bit to iterate. */
-
- static inline bool
- bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
- {
- /* If our current word is nonzero, it contains the bit we want. */
- if (bi->bits)
- {
- next_bit:
- bmp_iter_next_bit (bi, bit_no);
- return true;
- }
-
- /* Round up to the word boundary. We might have just iterated past
- the end of the last word, hence the -1. It is not possible for
- bit_no to point at the beginning of the now last word. */
- *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
- / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
- bi->word_no++;
-
- while (1)
- {
- /* Find the next nonzero word in this elt. */
- while (bi->word_no != BITMAP_ELEMENT_WORDS)
- {
- bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
- if (bi->bits)
- goto next_bit;
- *bit_no += BITMAP_WORD_BITS;
- bi->word_no++;
- }
-
- /* Advance to the next identical element. */
- do
- {
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt1->indx != -1U);
-
- /* Advance elt1 while it is less than elt2. We always want
- to advance one elt. */
- do
- {
- bi->elt1 = bi->elt1->next;
- if (!bi->elt1)
- return false;
- }
- while (bi->elt1->indx < bi->elt2->indx);
-
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt2->indx != -1U);
-
- /* Advance elt2 to be no less than elt1. This might not
- advance. */
- while (bi->elt2->indx < bi->elt1->indx)
- {
- bi->elt2 = bi->elt2->next;
- if (!bi->elt2)
- return false;
- }
- }
- while (bi->elt1->indx != bi->elt2->indx);
-
- *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = 0;
- }
- }
-
- /* Advance to the next nonzero bit in the intersection of
- complemented bitmaps. We will have already advanced past the just
- iterated bit. */
-
- static inline bool
- bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
- {
- /* If our current word is nonzero, it contains the bit we want. */
- if (bi->bits)
- {
- next_bit:
- bmp_iter_next_bit (bi, bit_no);
- return true;
- }
-
- /* Round up to the word boundary. We might have just iterated past
- the end of the last word, hence the -1. It is not possible for
- bit_no to point at the beginning of the now last word. */
- *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
- / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
- bi->word_no++;
-
- while (1)
- {
- /* Find the next nonzero word in this elt. */
- while (bi->word_no != BITMAP_ELEMENT_WORDS)
- {
- bi->bits = bi->elt1->bits[bi->word_no];
- if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
- bi->bits &= ~bi->elt2->bits[bi->word_no];
- if (bi->bits)
- goto next_bit;
- *bit_no += BITMAP_WORD_BITS;
- bi->word_no++;
- }
-
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt1->indx != -1U);
-
- /* Advance to the next element of elt1. */
- bi->elt1 = bi->elt1->next;
- if (!bi->elt1)
- return false;
-
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
-
- /* Advance elt2 until it is no less than elt1. */
- while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
- bi->elt2 = bi->elt2->next;
-
- *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = 0;
- }
- }
-
- /* If you are modifying a bitmap you are currently iterating over you
- have to ensure to
- - never remove the current bit;
- - if you set or clear a bit before the current bit this operation
- will not affect the set of bits you are visiting during the iteration;
- - if you set or clear a bit after the current bit it is unspecified
- whether that affects the set of bits you are visiting during the
- iteration.
- If you want to remove the current bit you can delay this to the next
- iteration (and after the iteration in case the last iteration is
- affected). */
-
- /* Loop over all bits set in BITMAP, starting with MIN and setting
- BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
- should be treated as a read-only variable as it contains loop
- state. */
-
- #ifndef EXECUTE_IF_SET_IN_BITMAP
- /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
- #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
- for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
- bmp_iter_set (&(ITER), &(BITNUM)); \
- bmp_iter_next (&(ITER), &(BITNUM)))
- #endif
-
- /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
- and setting BITNUM to the bit number. ITER is a bitmap iterator.
- BITNUM should be treated as a read-only variable as it contains
- loop state. */
-
- #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
- for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
- &(BITNUM)); \
- bmp_iter_and (&(ITER), &(BITNUM)); \
- bmp_iter_next (&(ITER), &(BITNUM)))
-
- /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
- and setting BITNUM to the bit number. ITER is a bitmap iterator.
- BITNUM should be treated as a read-only variable as it contains
- loop state. */
-
- #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
- for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
- &(BITNUM)); \
- bmp_iter_and_compl (&(ITER), &(BITNUM)); \
- bmp_iter_next (&(ITER), &(BITNUM)))
-
- /* A class that ties the lifetime of a bitmap to its scope. */
- class auto_bitmap
- {
- public:
- auto_bitmap () { bitmap_initialize (&m_bits, &bitmap_default_obstack); }
- explicit auto_bitmap (bitmap_obstack *o) { bitmap_initialize (&m_bits, o); }
- ~auto_bitmap () { bitmap_clear (&m_bits); }
- // Allow calling bitmap functions on our bitmap.
- operator bitmap () { return &m_bits; }
-
- private:
- // Prevent making a copy that references our bitmap.
- auto_bitmap (const auto_bitmap &);
- auto_bitmap &operator = (const auto_bitmap &);
- #if __cplusplus >= 201103L
- auto_bitmap (auto_bitmap &&);
- auto_bitmap &operator = (auto_bitmap &&);
- #endif
-
- bitmap_head m_bits;
- };
-
- /* Base class for bitmap_view; see there for details. */
- template<typename T, typename Traits = array_traits<T> >
- class base_bitmap_view
- {
- public:
- typedef typename Traits::element_type array_element_type;
-
- base_bitmap_view (const T &, bitmap_element *);
- operator const_bitmap () const { return &m_head; }
-
- private:
- base_bitmap_view (const base_bitmap_view &);
-
- bitmap_head m_head;
- };
-
- /* Provides a read-only bitmap view of a single integer bitmask or a
- constant-sized array of integer bitmasks, or of a wrapper around such
- bitmasks. */
- template<typename T, typename Traits>
- class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits>
- {
- public:
- bitmap_view (const T &array)
- : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {}
-
- private:
- /* How many bitmap_elements we need to hold a full T. */
- static const size_t num_bitmap_elements
- = CEIL (CHAR_BIT
- * sizeof (typename Traits::element_type)
- * Traits::constant_size,
- BITMAP_ELEMENT_ALL_BITS);
- bitmap_element m_bitmap_elements[num_bitmap_elements];
- };
-
- /* Initialize the view for array ARRAY, using the array of bitmap
- elements in BITMAP_ELEMENTS (which is known to contain enough
- entries). */
- template<typename T, typename Traits>
- base_bitmap_view<T, Traits>::base_bitmap_view (const T &array,
- bitmap_element *bitmap_elements)
- {
- m_head.obstack = NULL;
-
- /* The code currently assumes that each element of ARRAY corresponds
- to exactly one bitmap_element. */
- const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type);
- STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0);
- size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits;
- size_t array_size = Traits::size (array);
-
- /* Process each potential bitmap_element in turn. The loop is written
- this way rather than per array element because usually there are
- only a small number of array elements per bitmap element (typically
- two or four). The inner loops should therefore unroll completely. */
- const array_element_type *array_elements = Traits::base (array);
- unsigned int indx = 0;
- for (size_t array_base = 0;
- array_base < array_size;
- array_base += array_step, indx += 1)
- {
- /* How many array elements are in this particular bitmap_element. */
- unsigned int array_count
- = (STATIC_CONSTANT_P (array_size % array_step == 0)
- ? array_step : MIN (array_step, array_size - array_base));
-
- /* See whether we need this bitmap element. */
- array_element_type ior = array_elements[array_base];
- for (size_t i = 1; i < array_count; ++i)
- ior |= array_elements[array_base + i];
- if (ior == 0)
- continue;
-
- /* Grab the next bitmap element and chain it. */
- bitmap_element *bitmap_element = bitmap_elements++;
- if (m_head.current)
- m_head.current->next = bitmap_element;
- else
- m_head.first = bitmap_element;
- bitmap_element->prev = m_head.current;
- bitmap_element->next = NULL;
- bitmap_element->indx = indx;
- m_head.current = bitmap_element;
- m_head.indx = indx;
-
- /* Fill in the bits of the bitmap element. */
- if (array_element_bits < BITMAP_WORD_BITS)
- {
- /* Multiple array elements fit in one element of
- bitmap_element->bits. */
- size_t array_i = array_base;
- for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS;
- ++word_i)
- {
- BITMAP_WORD word = 0;
- for (unsigned int shift = 0;
- shift < BITMAP_WORD_BITS && array_i < array_size;
- shift += array_element_bits)
- word |= array_elements[array_i++] << shift;
- bitmap_element->bits[word_i] = word;
- }
- }
- else
- {
- /* Array elements are the same size as elements of
- bitmap_element->bits, or are an exact multiple of that size. */
- unsigned int word_i = 0;
- for (unsigned int i = 0; i < array_count; ++i)
- for (unsigned int shift = 0; shift < array_element_bits;
- shift += BITMAP_WORD_BITS)
- bitmap_element->bits[word_i++]
- = array_elements[array_base + i] >> shift;
- while (word_i < BITMAP_ELEMENT_WORDS)
- bitmap_element->bits[word_i++] = 0;
- }
- }
- }
-
- #endif /* GCC_BITMAP_H */
|