|
- /* Sets (bit vectors) of hard registers, and operations on them.
- Copyright (C) 1987-2020 Free Software Foundation, Inc.
-
- This file is part of GCC
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
-
- #ifndef GCC_HARD_REG_SET_H
- #define GCC_HARD_REG_SET_H
-
- #include "array-traits.h"
-
- /* Define the type of a set of hard registers. */
-
- /* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
- will be used for hard reg sets, either alone or in an array.
-
- If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
- and it has enough bits to represent all the target machine's hard
- registers. Otherwise, it is a typedef for a suitably sized array
- of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many.
-
- Note that lots of code assumes that the first part of a regset is
- the same format as a HARD_REG_SET. To help make sure this is true,
- we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
- instead of all the smaller types. This approach loses only if
- there are very few registers and then only in the few cases where
- we have an array of HARD_REG_SETs, so it needn't be as complex as
- it used to be. */
-
- typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE;
-
- #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
-
- typedef HARD_REG_ELT_TYPE HARD_REG_SET;
- typedef const HARD_REG_SET const_hard_reg_set;
-
- #else
-
- #define HARD_REG_SET_LONGS \
- ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1) \
- / HOST_BITS_PER_WIDEST_FAST_INT)
-
- struct HARD_REG_SET
- {
- HARD_REG_SET
- operator~ () const
- {
- HARD_REG_SET res;
- for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
- res.elts[i] = ~elts[i];
- return res;
- }
-
- HARD_REG_SET
- operator& (const HARD_REG_SET &other) const
- {
- HARD_REG_SET res;
- for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
- res.elts[i] = elts[i] & other.elts[i];
- return res;
- }
-
- HARD_REG_SET &
- operator&= (const HARD_REG_SET &other)
- {
- for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
- elts[i] &= other.elts[i];
- return *this;
- }
-
- HARD_REG_SET
- operator| (const HARD_REG_SET &other) const
- {
- HARD_REG_SET res;
- for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
- res.elts[i] = elts[i] | other.elts[i];
- return res;
- }
-
- HARD_REG_SET &
- operator|= (const HARD_REG_SET &other)
- {
- for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
- elts[i] |= other.elts[i];
- return *this;
- }
-
- bool
- operator== (const HARD_REG_SET &other) const
- {
- HARD_REG_ELT_TYPE bad = 0;
- for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
- bad |= (elts[i] ^ other.elts[i]);
- return bad == 0;
- }
-
- bool
- operator!= (const HARD_REG_SET &other) const
- {
- return !operator== (other);
- }
-
- HARD_REG_ELT_TYPE elts[HARD_REG_SET_LONGS];
- };
- typedef const HARD_REG_SET &const_hard_reg_set;
-
- template<>
- struct array_traits<HARD_REG_SET>
- {
- typedef HARD_REG_ELT_TYPE element_type;
- static const bool has_constant_size = true;
- static const size_t constant_size = HARD_REG_SET_LONGS;
- static const element_type *base (const HARD_REG_SET &x) { return x.elts; }
- static size_t size (const HARD_REG_SET &) { return HARD_REG_SET_LONGS; }
- };
-
- #endif
-
- /* HARD_REG_SET wrapped into a structure, to make it possible to
- use HARD_REG_SET even in APIs that should not include
- hard-reg-set.h. */
- struct hard_reg_set_container
- {
- HARD_REG_SET set;
- };
-
- /* HARD_CONST is used to cast a constant to the appropriate type
- for use with a HARD_REG_SET. */
-
- #define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))
-
- /* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
- to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
- All three take two arguments: the set and the register number.
-
- In the case where sets are arrays of longs, the first argument
- is actually a pointer to a long.
-
- Define two macros for initializing a set:
- CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
- These take just one argument.
-
- Also define:
-
- hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
- hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
- hard_reg_set_empty_p (X), which returns true if X is empty. */
-
- #define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
-
- #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
-
- #define SET_HARD_REG_BIT(SET, BIT) \
- ((SET) |= HARD_CONST (1) << (BIT))
- #define CLEAR_HARD_REG_BIT(SET, BIT) \
- ((SET) &= ~(HARD_CONST (1) << (BIT)))
- #define TEST_HARD_REG_BIT(SET, BIT) \
- (!!((SET) & (HARD_CONST (1) << (BIT))))
-
- #define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
- #define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))
-
- static inline bool
- hard_reg_set_subset_p (const_hard_reg_set x, const_hard_reg_set y)
- {
- return (x & ~y) == HARD_CONST (0);
- }
-
- static inline bool
- hard_reg_set_intersect_p (const_hard_reg_set x, const_hard_reg_set y)
- {
- return (x & y) != HARD_CONST (0);
- }
-
- static inline bool
- hard_reg_set_empty_p (const_hard_reg_set x)
- {
- return x == HARD_CONST (0);
- }
-
- #else
-
- inline void
- SET_HARD_REG_BIT (HARD_REG_SET &set, unsigned int bit)
- {
- set.elts[bit / UHOST_BITS_PER_WIDE_INT]
- |= HARD_CONST (1) << (bit % UHOST_BITS_PER_WIDE_INT);
- }
-
- inline void
- CLEAR_HARD_REG_BIT (HARD_REG_SET &set, unsigned int bit)
- {
- set.elts[bit / UHOST_BITS_PER_WIDE_INT]
- &= ~(HARD_CONST (1) << (bit % UHOST_BITS_PER_WIDE_INT));
- }
-
- inline bool
- TEST_HARD_REG_BIT (const_hard_reg_set set, unsigned int bit)
- {
- return (set.elts[bit / UHOST_BITS_PER_WIDE_INT]
- & (HARD_CONST (1) << (bit % UHOST_BITS_PER_WIDE_INT)));
- }
-
- inline void
- CLEAR_HARD_REG_SET (HARD_REG_SET &set)
- {
- for (unsigned int i = 0; i < ARRAY_SIZE (set.elts); ++i)
- set.elts[i] = 0;
- }
-
- inline void
- SET_HARD_REG_SET (HARD_REG_SET &set)
- {
- for (unsigned int i = 0; i < ARRAY_SIZE (set.elts); ++i)
- set.elts[i] = -1;
- }
-
- static inline bool
- hard_reg_set_subset_p (const_hard_reg_set x, const_hard_reg_set y)
- {
- HARD_REG_ELT_TYPE bad = 0;
- for (unsigned int i = 0; i < ARRAY_SIZE (x.elts); ++i)
- bad |= (x.elts[i] & ~y.elts[i]);
- return bad == 0;
- }
-
- static inline bool
- hard_reg_set_intersect_p (const_hard_reg_set x, const_hard_reg_set y)
- {
- HARD_REG_ELT_TYPE good = 0;
- for (unsigned int i = 0; i < ARRAY_SIZE (x.elts); ++i)
- good |= (x.elts[i] & y.elts[i]);
- return good != 0;
- }
-
- static inline bool
- hard_reg_set_empty_p (const_hard_reg_set x)
- {
- HARD_REG_ELT_TYPE bad = 0;
- for (unsigned int i = 0; i < ARRAY_SIZE (x.elts); ++i)
- bad |= x.elts[i];
- return bad == 0;
- }
- #endif
-
- /* Iterator for hard register sets. */
-
- struct hard_reg_set_iterator
- {
- /* Pointer to the current element. */
- const HARD_REG_ELT_TYPE *pelt;
-
- /* The length of the set. */
- unsigned short length;
-
- /* Word within the current element. */
- unsigned short word_no;
-
- /* Contents of the actually processed word. When finding next bit
- it is shifted right, so that the actual bit is always the least
- significant bit of ACTUAL. */
- HARD_REG_ELT_TYPE bits;
- };
-
- #define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT
-
- /* The implementation of the iterator functions is fully analogous to
- the bitmap iterators. */
- static inline void
- hard_reg_set_iter_init (hard_reg_set_iterator *iter, const_hard_reg_set set,
- unsigned min, unsigned *regno)
- {
- #ifdef HARD_REG_SET_LONGS
- iter->pelt = set.elts;
- iter->length = HARD_REG_SET_LONGS;
- #else
- iter->pelt = &set;
- iter->length = 1;
- #endif
- iter->word_no = min / HARD_REG_ELT_BITS;
- if (iter->word_no < iter->length)
- {
- iter->bits = iter->pelt[iter->word_no];
- iter->bits >>= min % HARD_REG_ELT_BITS;
-
- /* This is required for correct search of the next bit. */
- min += !iter->bits;
- }
- *regno = min;
- }
-
- static inline bool
- hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
- {
- while (1)
- {
- /* Return false when we're advanced past the end of the set. */
- if (iter->word_no >= iter->length)
- return false;
-
- if (iter->bits)
- {
- /* Find the correct bit and return it. */
- while (!(iter->bits & 1))
- {
- iter->bits >>= 1;
- *regno += 1;
- }
- return (*regno < FIRST_PSEUDO_REGISTER);
- }
-
- /* Round to the beginning of the next word. */
- *regno = (*regno + HARD_REG_ELT_BITS - 1);
- *regno -= *regno % HARD_REG_ELT_BITS;
-
- /* Find the next non-zero word. */
- while (++iter->word_no < iter->length)
- {
- iter->bits = iter->pelt[iter->word_no];
- if (iter->bits)
- break;
- *regno += HARD_REG_ELT_BITS;
- }
- }
- }
-
- static inline void
- hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
- {
- iter->bits >>= 1;
- *regno += 1;
- }
-
- #define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER) \
- for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \
- hard_reg_set_iter_set (&(ITER), &(REGNUM)); \
- hard_reg_set_iter_next (&(ITER), &(REGNUM)))
-
-
- /* Define some standard sets of registers. */
-
- /* Indexed by hard register number, contains 1 for registers
- that are being used for global register decls.
- These must be exempt from ordinary flow analysis
- and are also considered fixed. */
-
- extern char global_regs[FIRST_PSEUDO_REGISTER];
-
- class simplifiable_subreg;
- class subreg_shape;
-
- struct simplifiable_subregs_hasher : nofree_ptr_hash <simplifiable_subreg>
- {
- typedef const subreg_shape *compare_type;
-
- static inline hashval_t hash (const simplifiable_subreg *);
- static inline bool equal (const simplifiable_subreg *, const subreg_shape *);
- };
-
- struct target_hard_regs {
- void finalize ();
-
- /* The set of registers that actually exist on the current target. */
- HARD_REG_SET x_accessible_reg_set;
-
- /* The set of registers that should be considered to be register
- operands. It is a subset of x_accessible_reg_set. */
- HARD_REG_SET x_operand_reg_set;
-
- /* Indexed by hard register number, contains 1 for registers
- that are fixed use (stack pointer, pc, frame pointer, etc.;.
- These are the registers that cannot be used to allocate
- a pseudo reg whose life does not cross calls. */
- char x_fixed_regs[FIRST_PSEUDO_REGISTER];
-
- /* The same info as a HARD_REG_SET. */
- HARD_REG_SET x_fixed_reg_set;
-
- /* Indexed by hard register number, contains 1 for registers
- that are fixed use or are clobbered by function calls.
- These are the registers that cannot be used to allocate
- a pseudo reg whose life crosses calls. */
- char x_call_used_regs[FIRST_PSEUDO_REGISTER];
-
- /* For targets that use reload rather than LRA, this is the set
- of registers that we are able to save and restore around calls
- (i.e. those for which we know a suitable mode and set of
- load/store instructions exist). For LRA targets it contains
- all registers.
-
- This is legacy information and should be removed if all targets
- switch to LRA. */
- HARD_REG_SET x_savable_regs;
-
- /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- but
- only if they are not merely part of that set because they are global
- regs. Global regs that are not otherwise fixed can still take part
- in register allocation. */
- HARD_REG_SET x_fixed_nonglobal_reg_set;
-
- /* Contains 1 for registers that are set or clobbered by calls. */
- /* ??? Ideally, this would be just call_used_regs plus global_regs, but
- for someone's bright idea to have call_used_regs strictly include
- fixed_regs. Which leaves us guessing as to the set of fixed_regs
- that are actually preserved. We know for sure that those associated
- with the local stack frame are safe, but scant others. */
- HARD_REG_SET x_regs_invalidated_by_call;
-
- /* Table of register numbers in the order in which to try to use them. */
- int x_reg_alloc_order[FIRST_PSEUDO_REGISTER];
-
- /* The inverse of reg_alloc_order. */
- int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
-
- /* For each reg class, a HARD_REG_SET saying which registers are in it. */
- HARD_REG_SET x_reg_class_contents[N_REG_CLASSES];
-
- /* For each reg class, a boolean saying whether the class contains only
- fixed registers. */
- bool x_class_only_fixed_regs[N_REG_CLASSES];
-
- /* For each reg class, number of regs it contains. */
- unsigned int x_reg_class_size[N_REG_CLASSES];
-
- /* For each reg class, table listing all the classes contained in it. */
- enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
-
- /* For each pair of reg classes,
- a largest reg class contained in their union. */
- enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
-
- /* For each pair of reg classes,
- the smallest reg class that contains their union. */
- enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
-
- /* Vector indexed by hardware reg giving its name. */
- const char *x_reg_names[FIRST_PSEUDO_REGISTER];
-
- /* Records which registers can form a particular subreg, with the subreg
- being identified by its outer mode, inner mode and offset. */
- hash_table <simplifiable_subregs_hasher> *x_simplifiable_subregs;
- };
-
- extern struct target_hard_regs default_target_hard_regs;
- #if SWITCHABLE_TARGET
- extern struct target_hard_regs *this_target_hard_regs;
- #else
- #define this_target_hard_regs (&default_target_hard_regs)
- #endif
-
- #define accessible_reg_set \
- (this_target_hard_regs->x_accessible_reg_set)
- #define operand_reg_set \
- (this_target_hard_regs->x_operand_reg_set)
- #define fixed_regs \
- (this_target_hard_regs->x_fixed_regs)
- #define fixed_reg_set \
- (this_target_hard_regs->x_fixed_reg_set)
- #define fixed_nonglobal_reg_set \
- (this_target_hard_regs->x_fixed_nonglobal_reg_set)
- #ifdef IN_TARGET_CODE
- #define call_used_regs \
- (this_target_hard_regs->x_call_used_regs)
- #endif
- #define savable_regs \
- (this_target_hard_regs->x_savable_regs)
- #ifdef IN_TARGET_CODE
- #define regs_invalidated_by_call \
- (this_target_hard_regs->x_regs_invalidated_by_call)
- #define call_used_or_fixed_regs \
- (regs_invalidated_by_call | fixed_reg_set)
- #endif
- #define reg_alloc_order \
- (this_target_hard_regs->x_reg_alloc_order)
- #define inv_reg_alloc_order \
- (this_target_hard_regs->x_inv_reg_alloc_order)
- #define reg_class_contents \
- (this_target_hard_regs->x_reg_class_contents)
- #define class_only_fixed_regs \
- (this_target_hard_regs->x_class_only_fixed_regs)
- #define reg_class_size \
- (this_target_hard_regs->x_reg_class_size)
- #define reg_class_subclasses \
- (this_target_hard_regs->x_reg_class_subclasses)
- #define reg_class_subunion \
- (this_target_hard_regs->x_reg_class_subunion)
- #define reg_class_superunion \
- (this_target_hard_regs->x_reg_class_superunion)
- #define reg_names \
- (this_target_hard_regs->x_reg_names)
-
- /* Vector indexed by reg class giving its name. */
-
- extern const char * reg_class_names[];
-
- /* Given a hard REGN a FROM mode and a TO mode, return true if
- REGN can change from mode FROM to mode TO. */
- #define REG_CAN_CHANGE_MODE_P(REGN, FROM, TO) \
- (targetm.can_change_mode_class (FROM, TO, REGNO_REG_CLASS (REGN)))
-
- #ifdef IN_TARGET_CODE
- /* Return true if register REGNO is either fixed or call-used
- (aka call-clobbered). */
-
- inline bool
- call_used_or_fixed_reg_p (unsigned int regno)
- {
- return fixed_regs[regno] || this_target_hard_regs->x_call_used_regs[regno];
- }
- #endif
-
- #endif /* ! GCC_HARD_REG_SET_H */
|