You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1881 lines
68KB

  1. /* Vectorizer
  2. Copyright (C) 2003-2020 Free Software Foundation, Inc.
  3. Contributed by Dorit Naishlos <dorit@il.ibm.com>
  4. This file is part of GCC.
  5. GCC is free software; you can redistribute it and/or modify it under
  6. the terms of the GNU General Public License as published by the Free
  7. Software Foundation; either version 3, or (at your option) any later
  8. version.
  9. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  10. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with GCC; see the file COPYING3. If not see
  15. <http://www.gnu.org/licenses/>. */
  16. #ifndef GCC_TREE_VECTORIZER_H
  17. #define GCC_TREE_VECTORIZER_H
  18. typedef class _stmt_vec_info *stmt_vec_info;
  19. #include "tree-data-ref.h"
  20. #include "tree-hash-traits.h"
  21. #include "target.h"
  22. #include <utility>
  23. /* Used for naming of new temporaries. */
  24. enum vect_var_kind {
  25. vect_simple_var,
  26. vect_pointer_var,
  27. vect_scalar_var,
  28. vect_mask_var
  29. };
  30. /* Defines type of operation. */
  31. enum operation_type {
  32. unary_op = 1,
  33. binary_op,
  34. ternary_op
  35. };
  36. /* Define type of available alignment support. */
  37. enum dr_alignment_support {
  38. dr_unaligned_unsupported,
  39. dr_unaligned_supported,
  40. dr_explicit_realign,
  41. dr_explicit_realign_optimized,
  42. dr_aligned
  43. };
  44. /* Define type of def-use cross-iteration cycle. */
  45. enum vect_def_type {
  46. vect_uninitialized_def = 0,
  47. vect_constant_def = 1,
  48. vect_external_def,
  49. vect_internal_def,
  50. vect_induction_def,
  51. vect_reduction_def,
  52. vect_double_reduction_def,
  53. vect_nested_cycle,
  54. vect_unknown_def_type
  55. };
  56. /* Define type of reduction. */
  57. enum vect_reduction_type {
  58. TREE_CODE_REDUCTION,
  59. COND_REDUCTION,
  60. INTEGER_INDUC_COND_REDUCTION,
  61. CONST_COND_REDUCTION,
  62. /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
  63. to implement:
  64. for (int i = 0; i < VF; ++i)
  65. res = cond[i] ? val[i] : res; */
  66. EXTRACT_LAST_REDUCTION,
  67. /* Use a folding reduction within the loop to implement:
  68. for (int i = 0; i < VF; ++i)
  69. res = res OP val[i];
  70. (with no reassocation). */
  71. FOLD_LEFT_REDUCTION
  72. };
  73. #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
  74. || ((D) == vect_double_reduction_def) \
  75. || ((D) == vect_nested_cycle))
  76. /* Structure to encapsulate information about a group of like
  77. instructions to be presented to the target cost model. */
  78. struct stmt_info_for_cost {
  79. int count;
  80. enum vect_cost_for_stmt kind;
  81. enum vect_cost_model_location where;
  82. stmt_vec_info stmt_info;
  83. int misalign;
  84. };
  85. typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
  86. /* Maps base addresses to an innermost_loop_behavior that gives the maximum
  87. known alignment for that base. */
  88. typedef hash_map<tree_operand_hash,
  89. innermost_loop_behavior *> vec_base_alignments;
  90. /************************************************************************
  91. SLP
  92. ************************************************************************/
  93. typedef struct _slp_tree *slp_tree;
  94. /* A computation tree of an SLP instance. Each node corresponds to a group of
  95. stmts to be packed in a SIMD stmt. */
  96. struct _slp_tree {
  97. /* Nodes that contain def-stmts of this node statements operands. */
  98. vec<slp_tree> children;
  99. /* A group of scalar stmts to be vectorized together. */
  100. vec<stmt_vec_info> stmts;
  101. /* A group of scalar operands to be vectorized together. */
  102. vec<tree> ops;
  103. /* Load permutation relative to the stores, NULL if there is no
  104. permutation. */
  105. vec<unsigned> load_permutation;
  106. /* Vectorized stmt/s. */
  107. vec<stmt_vec_info> vec_stmts;
  108. /* Number of vector stmts that are created to replace the group of scalar
  109. stmts. It is calculated during the transformation phase as the number of
  110. scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
  111. divided by vector size. */
  112. unsigned int vec_stmts_size;
  113. /* Reference count in the SLP graph. */
  114. unsigned int refcnt;
  115. /* The maximum number of vector elements for the subtree rooted
  116. at this node. */
  117. poly_uint64 max_nunits;
  118. /* Whether the scalar computations use two different operators. */
  119. bool two_operators;
  120. /* The DEF type of this node. */
  121. enum vect_def_type def_type;
  122. };
  123. /* SLP instance is a sequence of stmts in a loop that can be packed into
  124. SIMD stmts. */
  125. typedef class _slp_instance {
  126. public:
  127. /* The root of SLP tree. */
  128. slp_tree root;
  129. /* For vector constructors, the constructor stmt that the SLP tree is built
  130. from, NULL otherwise. */
  131. stmt_vec_info root_stmt;
  132. /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
  133. unsigned int group_size;
  134. /* The unrolling factor required to vectorized this SLP instance. */
  135. poly_uint64 unrolling_factor;
  136. /* The group of nodes that contain loads of this SLP instance. */
  137. vec<slp_tree> loads;
  138. /* The SLP node containing the reduction PHIs. */
  139. slp_tree reduc_phis;
  140. } *slp_instance;
  141. /* Access Functions. */
  142. #define SLP_INSTANCE_TREE(S) (S)->root
  143. #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
  144. #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
  145. #define SLP_INSTANCE_LOADS(S) (S)->loads
  146. #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
  147. #define SLP_TREE_CHILDREN(S) (S)->children
  148. #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
  149. #define SLP_TREE_SCALAR_OPS(S) (S)->ops
  150. #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
  151. #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
  152. #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
  153. #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
  154. #define SLP_TREE_DEF_TYPE(S) (S)->def_type
  155. /* Key for map that records association between
  156. scalar conditions and corresponding loop mask, and
  157. is populated by vect_record_loop_mask. */
  158. struct scalar_cond_masked_key
  159. {
  160. scalar_cond_masked_key (tree t, unsigned ncopies_)
  161. : ncopies (ncopies_)
  162. {
  163. get_cond_ops_from_tree (t);
  164. }
  165. void get_cond_ops_from_tree (tree);
  166. unsigned ncopies;
  167. tree_code code;
  168. tree op0;
  169. tree op1;
  170. };
  171. template<>
  172. struct default_hash_traits<scalar_cond_masked_key>
  173. {
  174. typedef scalar_cond_masked_key compare_type;
  175. typedef scalar_cond_masked_key value_type;
  176. static inline hashval_t
  177. hash (value_type v)
  178. {
  179. inchash::hash h;
  180. h.add_int (v.code);
  181. inchash::add_expr (v.op0, h, 0);
  182. inchash::add_expr (v.op1, h, 0);
  183. h.add_int (v.ncopies);
  184. return h.end ();
  185. }
  186. static inline bool
  187. equal (value_type existing, value_type candidate)
  188. {
  189. return (existing.ncopies == candidate.ncopies
  190. && existing.code == candidate.code
  191. && operand_equal_p (existing.op0, candidate.op0, 0)
  192. && operand_equal_p (existing.op1, candidate.op1, 0));
  193. }
  194. static const bool empty_zero_p = true;
  195. static inline void
  196. mark_empty (value_type &v)
  197. {
  198. v.ncopies = 0;
  199. }
  200. static inline bool
  201. is_empty (value_type v)
  202. {
  203. return v.ncopies == 0;
  204. }
  205. static inline void mark_deleted (value_type &) {}
  206. static inline bool is_deleted (const value_type &)
  207. {
  208. return false;
  209. }
  210. static inline void remove (value_type &) {}
  211. };
  212. typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
  213. /* Describes two objects whose addresses must be unequal for the vectorized
  214. loop to be valid. */
  215. typedef std::pair<tree, tree> vec_object_pair;
  216. /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
  217. UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
  218. class vec_lower_bound {
  219. public:
  220. vec_lower_bound () {}
  221. vec_lower_bound (tree e, bool u, poly_uint64 m)
  222. : expr (e), unsigned_p (u), min_value (m) {}
  223. tree expr;
  224. bool unsigned_p;
  225. poly_uint64 min_value;
  226. };
  227. /* Vectorizer state shared between different analyses like vector sizes
  228. of the same CFG region. */
  229. class vec_info_shared {
  230. public:
  231. vec_info_shared();
  232. ~vec_info_shared();
  233. void save_datarefs();
  234. void check_datarefs();
  235. /* All data references. Freed by free_data_refs, so not an auto_vec. */
  236. vec<data_reference_p> datarefs;
  237. vec<data_reference> datarefs_copy;
  238. /* The loop nest in which the data dependences are computed. */
  239. auto_vec<loop_p> loop_nest;
  240. /* All data dependences. Freed by free_dependence_relations, so not
  241. an auto_vec. */
  242. vec<ddr_p> ddrs;
  243. };
  244. /* Vectorizer state common between loop and basic-block vectorization. */
  245. class vec_info {
  246. public:
  247. typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
  248. enum vec_kind { bb, loop };
  249. vec_info (vec_kind, void *, vec_info_shared *);
  250. ~vec_info ();
  251. stmt_vec_info add_stmt (gimple *);
  252. stmt_vec_info lookup_stmt (gimple *);
  253. stmt_vec_info lookup_def (tree);
  254. stmt_vec_info lookup_single_use (tree);
  255. class dr_vec_info *lookup_dr (data_reference *);
  256. void move_dr (stmt_vec_info, stmt_vec_info);
  257. void remove_stmt (stmt_vec_info);
  258. void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
  259. /* The type of vectorization. */
  260. vec_kind kind;
  261. /* Shared vectorizer state. */
  262. vec_info_shared *shared;
  263. /* The mapping of GIMPLE UID to stmt_vec_info. */
  264. vec<stmt_vec_info> stmt_vec_infos;
  265. /* All SLP instances. */
  266. auto_vec<slp_instance> slp_instances;
  267. /* Maps base addresses to an innermost_loop_behavior that gives the maximum
  268. known alignment for that base. */
  269. vec_base_alignments base_alignments;
  270. /* All interleaving chains of stores, represented by the first
  271. stmt in the chain. */
  272. auto_vec<stmt_vec_info> grouped_stores;
  273. /* Cost data used by the target cost model. */
  274. void *target_cost_data;
  275. /* The set of vector modes used in the vectorized region. */
  276. mode_set used_vector_modes;
  277. /* The argument we should pass to related_vector_mode when looking up
  278. the vector mode for a scalar mode, or VOIDmode if we haven't yet
  279. made any decisions about which vector modes to use. */
  280. machine_mode vector_mode;
  281. private:
  282. stmt_vec_info new_stmt_vec_info (gimple *stmt);
  283. void set_vinfo_for_stmt (gimple *, stmt_vec_info);
  284. void free_stmt_vec_infos ();
  285. void free_stmt_vec_info (stmt_vec_info);
  286. };
  287. class _loop_vec_info;
  288. class _bb_vec_info;
  289. template<>
  290. template<>
  291. inline bool
  292. is_a_helper <_loop_vec_info *>::test (vec_info *i)
  293. {
  294. return i->kind == vec_info::loop;
  295. }
  296. template<>
  297. template<>
  298. inline bool
  299. is_a_helper <_bb_vec_info *>::test (vec_info *i)
  300. {
  301. return i->kind == vec_info::bb;
  302. }
  303. /* In general, we can divide the vector statements in a vectorized loop
  304. into related groups ("rgroups") and say that for each rgroup there is
  305. some nS such that the rgroup operates on nS values from one scalar
  306. iteration followed by nS values from the next. That is, if VF is the
  307. vectorization factor of the loop, the rgroup operates on a sequence:
  308. (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
  309. where (i,j) represents a scalar value with index j in a scalar
  310. iteration with index i.
  311. [ We use the term "rgroup" to emphasise that this grouping isn't
  312. necessarily the same as the grouping of statements used elsewhere.
  313. For example, if we implement a group of scalar loads using gather
  314. loads, we'll use a separate gather load for each scalar load, and
  315. thus each gather load will belong to its own rgroup. ]
  316. In general this sequence will occupy nV vectors concatenated
  317. together. If these vectors have nL lanes each, the total number
  318. of scalar values N is given by:
  319. N = nS * VF = nV * nL
  320. None of nS, VF, nV and nL are required to be a power of 2. nS and nV
  321. are compile-time constants but VF and nL can be variable (if the target
  322. supports variable-length vectors).
  323. In classical vectorization, each iteration of the vector loop would
  324. handle exactly VF iterations of the original scalar loop. However,
  325. in a fully-masked loop, a particular iteration of the vector loop
  326. might handle fewer than VF iterations of the scalar loop. The vector
  327. lanes that correspond to iterations of the scalar loop are said to be
  328. "active" and the other lanes are said to be "inactive".
  329. In a fully-masked loop, many rgroups need to be masked to ensure that
  330. they have no effect for the inactive lanes. Each such rgroup needs a
  331. sequence of booleans in the same order as above, but with each (i,j)
  332. replaced by a boolean that indicates whether iteration i is active.
  333. This sequence occupies nV vector masks that again have nL lanes each.
  334. Thus the mask sequence as a whole consists of VF independent booleans
  335. that are each repeated nS times.
  336. We make the simplifying assumption that if a sequence of nV masks is
  337. suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
  338. VIEW_CONVERTing it. This holds for all current targets that support
  339. fully-masked loops. For example, suppose the scalar loop is:
  340. float *f;
  341. double *d;
  342. for (int i = 0; i < n; ++i)
  343. {
  344. f[i * 2 + 0] += 1.0f;
  345. f[i * 2 + 1] += 2.0f;
  346. d[i] += 3.0;
  347. }
  348. and suppose that vectors have 256 bits. The vectorized f accesses
  349. will belong to one rgroup and the vectorized d access to another:
  350. f rgroup: nS = 2, nV = 1, nL = 8
  351. d rgroup: nS = 1, nV = 1, nL = 4
  352. VF = 4
  353. [ In this simple example the rgroups do correspond to the normal
  354. SLP grouping scheme. ]
  355. If only the first three lanes are active, the masks we need are:
  356. f rgroup: 1 1 | 1 1 | 1 1 | 0 0
  357. d rgroup: 1 | 1 | 1 | 0
  358. Here we can use a mask calculated for f's rgroup for d's, but not
  359. vice versa.
  360. Thus for each value of nV, it is enough to provide nV masks, with the
  361. mask being calculated based on the highest nL (or, equivalently, based
  362. on the highest nS) required by any rgroup with that nV. We therefore
  363. represent the entire collection of masks as a two-level table, with the
  364. first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
  365. the second being indexed by the mask index 0 <= i < nV. */
  366. /* The masks needed by rgroups with nV vectors, according to the
  367. description above. */
  368. struct rgroup_masks {
  369. /* The largest nS for all rgroups that use these masks. */
  370. unsigned int max_nscalars_per_iter;
  371. /* The type of mask to use, based on the highest nS recorded above. */
  372. tree mask_type;
  373. /* A vector of nV masks, in iteration order. */
  374. vec<tree> masks;
  375. };
  376. typedef auto_vec<rgroup_masks> vec_loop_masks;
  377. typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
  378. /*-----------------------------------------------------------------*/
  379. /* Info on vectorized loops. */
  380. /*-----------------------------------------------------------------*/
  381. typedef class _loop_vec_info : public vec_info {
  382. public:
  383. _loop_vec_info (class loop *, vec_info_shared *);
  384. ~_loop_vec_info ();
  385. /* The loop to which this info struct refers to. */
  386. class loop *loop;
  387. /* The loop basic blocks. */
  388. basic_block *bbs;
  389. /* Number of latch executions. */
  390. tree num_itersm1;
  391. /* Number of iterations. */
  392. tree num_iters;
  393. /* Number of iterations of the original loop. */
  394. tree num_iters_unchanged;
  395. /* Condition under which this loop is analyzed and versioned. */
  396. tree num_iters_assumptions;
  397. /* Threshold of number of iterations below which vectorization will not be
  398. performed. It is calculated from MIN_PROFITABLE_ITERS and
  399. param_min_vect_loop_bound. */
  400. unsigned int th;
  401. /* When applying loop versioning, the vector form should only be used
  402. if the number of scalar iterations is >= this value, on top of all
  403. the other requirements. Ignored when loop versioning is not being
  404. used. */
  405. poly_uint64 versioning_threshold;
  406. /* Unrolling factor */
  407. poly_uint64 vectorization_factor;
  408. /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
  409. if there is no particular limit. */
  410. unsigned HOST_WIDE_INT max_vectorization_factor;
  411. /* The masks that a fully-masked loop should use to avoid operating
  412. on inactive scalars. */
  413. vec_loop_masks masks;
  414. /* Set of scalar conditions that have loop mask applied. */
  415. scalar_cond_masked_set_type scalar_cond_masked_set;
  416. /* If we are using a loop mask to align memory addresses, this variable
  417. contains the number of vector elements that we should skip in the
  418. first iteration of the vector loop (i.e. the number of leading
  419. elements that should be false in the first mask). */
  420. tree mask_skip_niters;
  421. /* Type of the variables to use in the WHILE_ULT call for fully-masked
  422. loops. */
  423. tree mask_compare_type;
  424. /* For #pragma omp simd if (x) loops the x expression. If constant 0,
  425. the loop should not be vectorized, if constant non-zero, simd_if_cond
  426. shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
  427. should be versioned on that condition, using scalar loop if the condition
  428. is false and vectorized loop otherwise. */
  429. tree simd_if_cond;
  430. /* Type of the IV to use in the WHILE_ULT call for fully-masked
  431. loops. */
  432. tree iv_type;
  433. /* Unknown DRs according to which loop was peeled. */
  434. class dr_vec_info *unaligned_dr;
  435. /* peeling_for_alignment indicates whether peeling for alignment will take
  436. place, and what the peeling factor should be:
  437. peeling_for_alignment = X means:
  438. If X=0: Peeling for alignment will not be applied.
  439. If X>0: Peel first X iterations.
  440. If X=-1: Generate a runtime test to calculate the number of iterations
  441. to be peeled, using the dataref recorded in the field
  442. unaligned_dr. */
  443. int peeling_for_alignment;
  444. /* The mask used to check the alignment of pointers or arrays. */
  445. int ptr_mask;
  446. /* Data Dependence Relations defining address ranges that are candidates
  447. for a run-time aliasing check. */
  448. auto_vec<ddr_p> may_alias_ddrs;
  449. /* Data Dependence Relations defining address ranges together with segment
  450. lengths from which the run-time aliasing check is built. */
  451. auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
  452. /* Check that the addresses of each pair of objects is unequal. */
  453. auto_vec<vec_object_pair> check_unequal_addrs;
  454. /* List of values that are required to be nonzero. This is used to check
  455. whether things like "x[i * n] += 1;" are safe and eventually gets added
  456. to the checks for lower bounds below. */
  457. auto_vec<tree> check_nonzero;
  458. /* List of values that need to be checked for a minimum value. */
  459. auto_vec<vec_lower_bound> lower_bounds;
  460. /* Statements in the loop that have data references that are candidates for a
  461. runtime (loop versioning) misalignment check. */
  462. auto_vec<stmt_vec_info> may_misalign_stmts;
  463. /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
  464. auto_vec<stmt_vec_info> reductions;
  465. /* All reduction chains in the loop, represented by the first
  466. stmt in the chain. */
  467. auto_vec<stmt_vec_info> reduction_chains;
  468. /* Cost vector for a single scalar iteration. */
  469. auto_vec<stmt_info_for_cost> scalar_cost_vec;
  470. /* Map of IV base/step expressions to inserted name in the preheader. */
  471. hash_map<tree_operand_hash, tree> *ivexpr_map;
  472. /* Map of OpenMP "omp simd array" scan variables to corresponding
  473. rhs of the store of the initializer. */
  474. hash_map<tree, tree> *scan_map;
  475. /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
  476. applied to the loop, i.e., no unrolling is needed, this is 1. */
  477. poly_uint64 slp_unrolling_factor;
  478. /* Cost of a single scalar iteration. */
  479. int single_scalar_iteration_cost;
  480. /* The cost of the vector prologue and epilogue, including peeled
  481. iterations and set-up code. */
  482. int vec_outside_cost;
  483. /* The cost of the vector loop body. */
  484. int vec_inside_cost;
  485. /* Is the loop vectorizable? */
  486. bool vectorizable;
  487. /* Records whether we still have the option of using a fully-masked loop. */
  488. bool can_fully_mask_p;
  489. /* True if have decided to use a fully-masked loop. */
  490. bool fully_masked_p;
  491. /* When we have grouped data accesses with gaps, we may introduce invalid
  492. memory accesses. We peel the last iteration of the loop to prevent
  493. this. */
  494. bool peeling_for_gaps;
  495. /* When the number of iterations is not a multiple of the vector size
  496. we need to peel off iterations at the end to form an epilogue loop. */
  497. bool peeling_for_niter;
  498. /* True if there are no loop carried data dependencies in the loop.
  499. If loop->safelen <= 1, then this is always true, either the loop
  500. didn't have any loop carried data dependencies, or the loop is being
  501. vectorized guarded with some runtime alias checks, or couldn't
  502. be vectorized at all, but then this field shouldn't be used.
  503. For loop->safelen >= 2, the user has asserted that there are no
  504. backward dependencies, but there still could be loop carried forward
  505. dependencies in such loops. This flag will be false if normal
  506. vectorizer data dependency analysis would fail or require versioning
  507. for alias, but because of loop->safelen >= 2 it has been vectorized
  508. even without versioning for alias. E.g. in:
  509. #pragma omp simd
  510. for (int i = 0; i < m; i++)
  511. a[i] = a[i + k] * c;
  512. (or #pragma simd or #pragma ivdep) we can vectorize this and it will
  513. DTRT even for k > 0 && k < m, but without safelen we would not
  514. vectorize this, so this field would be false. */
  515. bool no_data_dependencies;
  516. /* Mark loops having masked stores. */
  517. bool has_mask_store;
  518. /* Queued scaling factor for the scalar loop. */
  519. profile_probability scalar_loop_scaling;
  520. /* If if-conversion versioned this loop before conversion, this is the
  521. loop version without if-conversion. */
  522. class loop *scalar_loop;
  523. /* For loops being epilogues of already vectorized loops
  524. this points to the original vectorized loop. Otherwise NULL. */
  525. _loop_vec_info *orig_loop_info;
  526. /* Used to store loop_vec_infos of epilogues of this loop during
  527. analysis. */
  528. vec<_loop_vec_info *> epilogue_vinfos;
  529. } *loop_vec_info;
  530. /* Access Functions. */
  531. #define LOOP_VINFO_LOOP(L) (L)->loop
  532. #define LOOP_VINFO_BBS(L) (L)->bbs
  533. #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
  534. #define LOOP_VINFO_NITERS(L) (L)->num_iters
  535. /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
  536. prologue peeling retain total unchanged scalar loop iterations for
  537. cost model. */
  538. #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
  539. #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
  540. #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
  541. #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
  542. #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
  543. #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
  544. #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
  545. #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
  546. #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
  547. #define LOOP_VINFO_MASKS(L) (L)->masks
  548. #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
  549. #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
  550. #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
  551. #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
  552. #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
  553. #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
  554. #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
  555. #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
  556. #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
  557. #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
  558. #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
  559. #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
  560. #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
  561. #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
  562. #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
  563. #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
  564. #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
  565. #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
  566. #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
  567. #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
  568. #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
  569. #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
  570. #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
  571. #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
  572. #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
  573. #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
  574. #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
  575. #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
  576. #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
  577. #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
  578. #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
  579. #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
  580. #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
  581. ((L)->may_misalign_stmts.length () > 0)
  582. #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
  583. ((L)->comp_alias_ddrs.length () > 0 \
  584. || (L)->check_unequal_addrs.length () > 0 \
  585. || (L)->lower_bounds.length () > 0)
  586. #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
  587. (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
  588. #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
  589. (LOOP_VINFO_SIMD_IF_COND (L))
  590. #define LOOP_REQUIRES_VERSIONING(L) \
  591. (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
  592. || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
  593. || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
  594. || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
  595. #define LOOP_VINFO_NITERS_KNOWN_P(L) \
  596. (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
  597. #define LOOP_VINFO_EPILOGUE_P(L) \
  598. (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
  599. #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
  600. (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
  601. /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
  602. value signifies success, and a NULL value signifies failure, supporting
  603. propagating an opt_problem * describing the failure back up the call
  604. stack. */
  605. typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
  606. static inline loop_vec_info
  607. loop_vec_info_for_loop (class loop *loop)
  608. {
  609. return (loop_vec_info) loop->aux;
  610. }
  611. typedef class _bb_vec_info : public vec_info
  612. {
  613. public:
  614. _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
  615. ~_bb_vec_info ();
  616. basic_block bb;
  617. gimple_stmt_iterator region_begin;
  618. gimple_stmt_iterator region_end;
  619. } *bb_vec_info;
  620. #define BB_VINFO_BB(B) (B)->bb
  621. #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
  622. #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
  623. #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
  624. #define BB_VINFO_DDRS(B) (B)->shared->ddrs
  625. #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
  626. static inline bb_vec_info
  627. vec_info_for_bb (basic_block bb)
  628. {
  629. return (bb_vec_info) bb->aux;
  630. }
  631. /*-----------------------------------------------------------------*/
  632. /* Info on vectorized defs. */
  633. /*-----------------------------------------------------------------*/
  634. enum stmt_vec_info_type {
  635. undef_vec_info_type = 0,
  636. load_vec_info_type,
  637. store_vec_info_type,
  638. shift_vec_info_type,
  639. op_vec_info_type,
  640. call_vec_info_type,
  641. call_simd_clone_vec_info_type,
  642. assignment_vec_info_type,
  643. condition_vec_info_type,
  644. comparison_vec_info_type,
  645. reduc_vec_info_type,
  646. induc_vec_info_type,
  647. type_promotion_vec_info_type,
  648. type_demotion_vec_info_type,
  649. type_conversion_vec_info_type,
  650. cycle_phi_info_type,
  651. lc_phi_info_type,
  652. loop_exit_ctrl_vec_info_type
  653. };
  654. /* Indicates whether/how a variable is used in the scope of loop/basic
  655. block. */
  656. enum vect_relevant {
  657. vect_unused_in_scope = 0,
  658. /* The def is only used outside the loop. */
  659. vect_used_only_live,
  660. /* The def is in the inner loop, and the use is in the outer loop, and the
  661. use is a reduction stmt. */
  662. vect_used_in_outer_by_reduction,
  663. /* The def is in the inner loop, and the use is in the outer loop (and is
  664. not part of reduction). */
  665. vect_used_in_outer,
  666. /* defs that feed computations that end up (only) in a reduction. These
  667. defs may be used by non-reduction stmts, but eventually, any
  668. computations/values that are affected by these defs are used to compute
  669. a reduction (i.e. don't get stored to memory, for example). We use this
  670. to identify computations that we can change the order in which they are
  671. computed. */
  672. vect_used_by_reduction,
  673. vect_used_in_scope
  674. };
  675. /* The type of vectorization that can be applied to the stmt: regular loop-based
  676. vectorization; pure SLP - the stmt is a part of SLP instances and does not
  677. have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
  678. a part of SLP instance and also must be loop-based vectorized, since it has
  679. uses outside SLP sequences.
  680. In the loop context the meanings of pure and hybrid SLP are slightly
  681. different. By saying that pure SLP is applied to the loop, we mean that we
  682. exploit only intra-iteration parallelism in the loop; i.e., the loop can be
  683. vectorized without doing any conceptual unrolling, cause we don't pack
  684. together stmts from different iterations, only within a single iteration.
  685. Loop hybrid SLP means that we exploit both intra-iteration and
  686. inter-iteration parallelism (e.g., number of elements in the vector is 4
  687. and the slp-group-size is 2, in which case we don't have enough parallelism
  688. within an iteration, so we obtain the rest of the parallelism from subsequent
  689. iterations by unrolling the loop by 2). */
  690. enum slp_vect_type {
  691. loop_vect = 0,
  692. pure_slp,
  693. hybrid
  694. };
  695. /* Says whether a statement is a load, a store of a vectorized statement
  696. result, or a store of an invariant value. */
  697. enum vec_load_store_type {
  698. VLS_LOAD,
  699. VLS_STORE,
  700. VLS_STORE_INVARIANT
  701. };
  702. /* Describes how we're going to vectorize an individual load or store,
  703. or a group of loads or stores. */
  704. enum vect_memory_access_type {
  705. /* An access to an invariant address. This is used only for loads. */
  706. VMAT_INVARIANT,
  707. /* A simple contiguous access. */
  708. VMAT_CONTIGUOUS,
  709. /* A contiguous access that goes down in memory rather than up,
  710. with no additional permutation. This is used only for stores
  711. of invariants. */
  712. VMAT_CONTIGUOUS_DOWN,
  713. /* A simple contiguous access in which the elements need to be permuted
  714. after loading or before storing. Only used for loop vectorization;
  715. SLP uses separate permutes. */
  716. VMAT_CONTIGUOUS_PERMUTE,
  717. /* A simple contiguous access in which the elements need to be reversed
  718. after loading or before storing. */
  719. VMAT_CONTIGUOUS_REVERSE,
  720. /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
  721. VMAT_LOAD_STORE_LANES,
  722. /* An access in which each scalar element is loaded or stored
  723. individually. */
  724. VMAT_ELEMENTWISE,
  725. /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
  726. SLP accesses. Each unrolled iteration uses a contiguous load
  727. or store for the whole group, but the groups from separate iterations
  728. are combined in the same way as for VMAT_ELEMENTWISE. */
  729. VMAT_STRIDED_SLP,
  730. /* The access uses gather loads or scatter stores. */
  731. VMAT_GATHER_SCATTER
  732. };
  733. class dr_vec_info {
  734. public:
  735. /* The data reference itself. */
  736. data_reference *dr;
  737. /* The statement that contains the data reference. */
  738. stmt_vec_info stmt;
  739. /* The misalignment in bytes of the reference, or -1 if not known. */
  740. int misalignment;
  741. /* The byte alignment that we'd ideally like the reference to have,
  742. and the value that misalignment is measured against. */
  743. poly_uint64 target_alignment;
  744. /* If true the alignment of base_decl needs to be increased. */
  745. bool base_misaligned;
  746. tree base_decl;
  747. /* Stores current vectorized loop's offset. To be added to the DR's
  748. offset to calculate current offset of data reference. */
  749. tree offset;
  750. };
  751. typedef struct data_reference *dr_p;
  752. class _stmt_vec_info {
  753. public:
  754. enum stmt_vec_info_type type;
  755. /* Indicates whether this stmts is part of a computation whose result is
  756. used outside the loop. */
  757. bool live;
  758. /* Stmt is part of some pattern (computation idiom) */
  759. bool in_pattern_p;
  760. /* True if the statement was created during pattern recognition as
  761. part of the replacement for RELATED_STMT. This implies that the
  762. statement isn't part of any basic block, although for convenience
  763. its gimple_bb is the same as for RELATED_STMT. */
  764. bool pattern_stmt_p;
  765. /* Is this statement vectorizable or should it be skipped in (partial)
  766. vectorization. */
  767. bool vectorizable;
  768. /* The stmt to which this info struct refers to. */
  769. gimple *stmt;
  770. /* The vec_info with respect to which STMT is vectorized. */
  771. vec_info *vinfo;
  772. /* The vector type to be used for the LHS of this statement. */
  773. tree vectype;
  774. /* The vectorized version of the stmt. */
  775. stmt_vec_info vectorized_stmt;
  776. /* The following is relevant only for stmts that contain a non-scalar
  777. data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
  778. at most one such data-ref. */
  779. dr_vec_info dr_aux;
  780. /* Information about the data-ref relative to this loop
  781. nest (the loop that is being considered for vectorization). */
  782. innermost_loop_behavior dr_wrt_vec_loop;
  783. /* For loop PHI nodes, the base and evolution part of it. This makes sure
  784. this information is still available in vect_update_ivs_after_vectorizer
  785. where we may not be able to re-analyze the PHI nodes evolution as
  786. peeling for the prologue loop can make it unanalyzable. The evolution
  787. part is still correct after peeling, but the base may have changed from
  788. the version here. */
  789. tree loop_phi_evolution_base_unchanged;
  790. tree loop_phi_evolution_part;
  791. /* Used for various bookkeeping purposes, generally holding a pointer to
  792. some other stmt S that is in some way "related" to this stmt.
  793. Current use of this field is:
  794. If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
  795. true): S is the "pattern stmt" that represents (and replaces) the
  796. sequence of stmts that constitutes the pattern. Similarly, the
  797. related_stmt of the "pattern stmt" points back to this stmt (which is
  798. the last stmt in the original sequence of stmts that constitutes the
  799. pattern). */
  800. stmt_vec_info related_stmt;
  801. /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
  802. The sequence is attached to the original statement rather than the
  803. pattern statement. */
  804. gimple_seq pattern_def_seq;
  805. /* List of datarefs that are known to have the same alignment as the dataref
  806. of this stmt. */
  807. vec<dr_p> same_align_refs;
  808. /* Selected SIMD clone's function info. First vector element
  809. is SIMD clone's function decl, followed by a pair of trees (base + step)
  810. for linear arguments (pair of NULLs for other arguments). */
  811. vec<tree> simd_clone_info;
  812. /* Classify the def of this stmt. */
  813. enum vect_def_type def_type;
  814. /* Whether the stmt is SLPed, loop-based vectorized, or both. */
  815. enum slp_vect_type slp_type;
  816. /* Interleaving and reduction chains info. */
  817. /* First element in the group. */
  818. stmt_vec_info first_element;
  819. /* Pointer to the next element in the group. */
  820. stmt_vec_info next_element;
  821. /* The size of the group. */
  822. unsigned int size;
  823. /* For stores, number of stores from this group seen. We vectorize the last
  824. one. */
  825. unsigned int store_count;
  826. /* For loads only, the gap from the previous load. For consecutive loads, GAP
  827. is 1. */
  828. unsigned int gap;
  829. /* The minimum negative dependence distance this stmt participates in
  830. or zero if none. */
  831. unsigned int min_neg_dist;
  832. /* Not all stmts in the loop need to be vectorized. e.g, the increment
  833. of the loop induction variable and computation of array indexes. relevant
  834. indicates whether the stmt needs to be vectorized. */
  835. enum vect_relevant relevant;
  836. /* For loads if this is a gather, for stores if this is a scatter. */
  837. bool gather_scatter_p;
  838. /* True if this is an access with loop-invariant stride. */
  839. bool strided_p;
  840. /* For both loads and stores. */
  841. unsigned simd_lane_access_p : 3;
  842. /* Classifies how the load or store is going to be implemented
  843. for loop vectorization. */
  844. vect_memory_access_type memory_access_type;
  845. /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
  846. tree induc_cond_initial_val;
  847. /* If not NULL the value to be added to compute final reduction value. */
  848. tree reduc_epilogue_adjustment;
  849. /* On a reduction PHI the reduction type as detected by
  850. vect_is_simple_reduction and vectorizable_reduction. */
  851. enum vect_reduction_type reduc_type;
  852. /* The original reduction code, to be used in the epilogue. */
  853. enum tree_code reduc_code;
  854. /* An internal function we should use in the epilogue. */
  855. internal_fn reduc_fn;
  856. /* On a stmt participating in the reduction the index of the operand
  857. on the reduction SSA cycle. */
  858. int reduc_idx;
  859. /* On a reduction PHI the def returned by vect_force_simple_reduction.
  860. On the def returned by vect_force_simple_reduction the
  861. corresponding PHI. */
  862. stmt_vec_info reduc_def;
  863. /* The vector input type relevant for reduction vectorization. */
  864. tree reduc_vectype_in;
  865. /* The vector type for performing the actual reduction. */
  866. tree reduc_vectype;
  867. /* Whether we force a single cycle PHI during reduction vectorization. */
  868. bool force_single_cycle;
  869. /* Whether on this stmt reduction meta is recorded. */
  870. bool is_reduc_info;
  871. /* The number of scalar stmt references from active SLP instances. */
  872. unsigned int num_slp_uses;
  873. /* If nonzero, the lhs of the statement could be truncated to this
  874. many bits without affecting any users of the result. */
  875. unsigned int min_output_precision;
  876. /* If nonzero, all non-boolean input operands have the same precision,
  877. and they could each be truncated to this many bits without changing
  878. the result. */
  879. unsigned int min_input_precision;
  880. /* If OPERATION_BITS is nonzero, the statement could be performed on
  881. an integer with the sign and number of bits given by OPERATION_SIGN
  882. and OPERATION_BITS without changing the result. */
  883. unsigned int operation_precision;
  884. signop operation_sign;
  885. /* If the statement produces a boolean result, this value describes
  886. how we should choose the associated vector type. The possible
  887. values are:
  888. - an integer precision N if we should use the vector mask type
  889. associated with N-bit integers. This is only used if all relevant
  890. input booleans also want the vector mask type for N-bit integers,
  891. or if we can convert them into that form by pattern-matching.
  892. - ~0U if we considered choosing a vector mask type but decided
  893. to treat the boolean as a normal integer type instead.
  894. - 0 otherwise. This means either that the operation isn't one that
  895. could have a vector mask type (and so should have a normal vector
  896. type instead) or that we simply haven't made a choice either way. */
  897. unsigned int mask_precision;
  898. /* True if this is only suitable for SLP vectorization. */
  899. bool slp_vect_only_p;
  900. };
  901. /* Information about a gather/scatter call. */
  902. struct gather_scatter_info {
  903. /* The internal function to use for the gather/scatter operation,
  904. or IFN_LAST if a built-in function should be used instead. */
  905. internal_fn ifn;
  906. /* The FUNCTION_DECL for the built-in gather/scatter function,
  907. or null if an internal function should be used instead. */
  908. tree decl;
  909. /* The loop-invariant base value. */
  910. tree base;
  911. /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
  912. tree offset;
  913. /* Each offset element should be multiplied by this amount before
  914. being added to the base. */
  915. int scale;
  916. /* The definition type for the vectorized offset. */
  917. enum vect_def_type offset_dt;
  918. /* The type of the vectorized offset. */
  919. tree offset_vectype;
  920. /* The type of the scalar elements after loading or before storing. */
  921. tree element_type;
  922. /* The type of the scalar elements being loaded or stored. */
  923. tree memory_type;
  924. };
  925. /* Access Functions. */
  926. #define STMT_VINFO_TYPE(S) (S)->type
  927. #define STMT_VINFO_STMT(S) (S)->stmt
  928. inline loop_vec_info
  929. STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
  930. {
  931. if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
  932. return loop_vinfo;
  933. return NULL;
  934. }
  935. inline bb_vec_info
  936. STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
  937. {
  938. if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
  939. return bb_vinfo;
  940. return NULL;
  941. }
  942. #define STMT_VINFO_RELEVANT(S) (S)->relevant
  943. #define STMT_VINFO_LIVE_P(S) (S)->live
  944. #define STMT_VINFO_VECTYPE(S) (S)->vectype
  945. #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
  946. #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
  947. #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
  948. #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
  949. #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
  950. #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
  951. #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
  952. #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
  953. #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
  954. #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
  955. #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
  956. #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
  957. #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
  958. #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
  959. #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
  960. #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
  961. #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
  962. #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
  963. (S)->dr_wrt_vec_loop.base_misalignment
  964. #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
  965. (S)->dr_wrt_vec_loop.offset_alignment
  966. #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
  967. (S)->dr_wrt_vec_loop.step_alignment
  968. #define STMT_VINFO_DR_INFO(S) \
  969. (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
  970. #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
  971. #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
  972. #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
  973. #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
  974. #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
  975. #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
  976. #define STMT_VINFO_GROUPED_ACCESS(S) \
  977. ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
  978. #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
  979. #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
  980. #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
  981. #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
  982. #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
  983. #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
  984. #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
  985. #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
  986. #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
  987. #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
  988. #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
  989. #define DR_GROUP_FIRST_ELEMENT(S) \
  990. (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
  991. #define DR_GROUP_NEXT_ELEMENT(S) \
  992. (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
  993. #define DR_GROUP_SIZE(S) \
  994. (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
  995. #define DR_GROUP_STORE_COUNT(S) \
  996. (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
  997. #define DR_GROUP_GAP(S) \
  998. (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
  999. #define REDUC_GROUP_FIRST_ELEMENT(S) \
  1000. (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
  1001. #define REDUC_GROUP_NEXT_ELEMENT(S) \
  1002. (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
  1003. #define REDUC_GROUP_SIZE(S) \
  1004. (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
  1005. #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
  1006. #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
  1007. #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
  1008. #define STMT_SLP_TYPE(S) (S)->slp_type
  1009. #define VECT_MAX_COST 1000
  1010. /* The maximum number of intermediate steps required in multi-step type
  1011. conversion. */
  1012. #define MAX_INTERM_CVT_STEPS 3
  1013. #define MAX_VECTORIZATION_FACTOR INT_MAX
  1014. /* Nonzero if TYPE represents a (scalar) boolean type or type
  1015. in the middle-end compatible with it (unsigned precision 1 integral
  1016. types). Used to determine which types should be vectorized as
  1017. VECTOR_BOOLEAN_TYPE_P. */
  1018. #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
  1019. (TREE_CODE (TYPE) == BOOLEAN_TYPE \
  1020. || ((TREE_CODE (TYPE) == INTEGER_TYPE \
  1021. || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
  1022. && TYPE_PRECISION (TYPE) == 1 \
  1023. && TYPE_UNSIGNED (TYPE)))
  1024. static inline bool
  1025. nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
  1026. {
  1027. return (loop->inner
  1028. && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
  1029. }
  1030. /* Return true if STMT_INFO should produce a vector mask type rather than
  1031. a normal nonmask type. */
  1032. static inline bool
  1033. vect_use_mask_type_p (stmt_vec_info stmt_info)
  1034. {
  1035. return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
  1036. }
  1037. /* Return TRUE if a statement represented by STMT_INFO is a part of a
  1038. pattern. */
  1039. static inline bool
  1040. is_pattern_stmt_p (stmt_vec_info stmt_info)
  1041. {
  1042. return stmt_info->pattern_stmt_p;
  1043. }
  1044. /* If STMT_INFO is a pattern statement, return the statement that it
  1045. replaces, otherwise return STMT_INFO itself. */
  1046. inline stmt_vec_info
  1047. vect_orig_stmt (stmt_vec_info stmt_info)
  1048. {
  1049. if (is_pattern_stmt_p (stmt_info))
  1050. return STMT_VINFO_RELATED_STMT (stmt_info);
  1051. return stmt_info;
  1052. }
  1053. /* Return the later statement between STMT1_INFO and STMT2_INFO. */
  1054. static inline stmt_vec_info
  1055. get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
  1056. {
  1057. if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
  1058. > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
  1059. return stmt1_info;
  1060. else
  1061. return stmt2_info;
  1062. }
  1063. /* If STMT_INFO has been replaced by a pattern statement, return the
  1064. replacement statement, otherwise return STMT_INFO itself. */
  1065. inline stmt_vec_info
  1066. vect_stmt_to_vectorize (stmt_vec_info stmt_info)
  1067. {
  1068. if (STMT_VINFO_IN_PATTERN_P (stmt_info))
  1069. return STMT_VINFO_RELATED_STMT (stmt_info);
  1070. return stmt_info;
  1071. }
  1072. /* Return true if BB is a loop header. */
  1073. static inline bool
  1074. is_loop_header_bb_p (basic_block bb)
  1075. {
  1076. if (bb == (bb->loop_father)->header)
  1077. return true;
  1078. gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
  1079. return false;
  1080. }
  1081. /* Return pow2 (X). */
  1082. static inline int
  1083. vect_pow2 (int x)
  1084. {
  1085. int i, res = 1;
  1086. for (i = 0; i < x; i++)
  1087. res *= 2;
  1088. return res;
  1089. }
  1090. /* Alias targetm.vectorize.builtin_vectorization_cost. */
  1091. static inline int
  1092. builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
  1093. tree vectype, int misalign)
  1094. {
  1095. return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
  1096. vectype, misalign);
  1097. }
  1098. /* Get cost by calling cost target builtin. */
  1099. static inline
  1100. int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
  1101. {
  1102. return builtin_vectorization_cost (type_of_cost, NULL, 0);
  1103. }
  1104. /* Alias targetm.vectorize.init_cost. */
  1105. static inline void *
  1106. init_cost (class loop *loop_info)
  1107. {
  1108. return targetm.vectorize.init_cost (loop_info);
  1109. }
  1110. extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
  1111. stmt_vec_info, int, unsigned,
  1112. enum vect_cost_model_location);
  1113. /* Alias targetm.vectorize.add_stmt_cost. */
  1114. static inline unsigned
  1115. add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
  1116. stmt_vec_info stmt_info, int misalign,
  1117. enum vect_cost_model_location where)
  1118. {
  1119. unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
  1120. stmt_info, misalign, where);
  1121. if (dump_file && (dump_flags & TDF_DETAILS))
  1122. dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
  1123. cost, where);
  1124. return cost;
  1125. }
  1126. /* Alias targetm.vectorize.finish_cost. */
  1127. static inline void
  1128. finish_cost (void *data, unsigned *prologue_cost,
  1129. unsigned *body_cost, unsigned *epilogue_cost)
  1130. {
  1131. targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
  1132. }
  1133. /* Alias targetm.vectorize.destroy_cost_data. */
  1134. static inline void
  1135. destroy_cost_data (void *data)
  1136. {
  1137. targetm.vectorize.destroy_cost_data (data);
  1138. }
  1139. inline void
  1140. add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
  1141. {
  1142. stmt_info_for_cost *cost;
  1143. unsigned i;
  1144. FOR_EACH_VEC_ELT (*cost_vec, i, cost)
  1145. add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
  1146. cost->misalign, cost->where);
  1147. }
  1148. /*-----------------------------------------------------------------*/
  1149. /* Info on data references alignment. */
  1150. /*-----------------------------------------------------------------*/
  1151. #define DR_MISALIGNMENT_UNKNOWN (-1)
  1152. #define DR_MISALIGNMENT_UNINITIALIZED (-2)
  1153. inline void
  1154. set_dr_misalignment (dr_vec_info *dr_info, int val)
  1155. {
  1156. dr_info->misalignment = val;
  1157. }
  1158. inline int
  1159. dr_misalignment (dr_vec_info *dr_info)
  1160. {
  1161. int misalign = dr_info->misalignment;
  1162. gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
  1163. return misalign;
  1164. }
  1165. /* Reflects actual alignment of first access in the vectorized loop,
  1166. taking into account peeling/versioning if applied. */
  1167. #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
  1168. #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
  1169. /* Only defined once DR_MISALIGNMENT is defined. */
  1170. #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
  1171. /* Return true if data access DR_INFO is aligned to its target alignment
  1172. (which may be less than a full vector). */
  1173. static inline bool
  1174. aligned_access_p (dr_vec_info *dr_info)
  1175. {
  1176. return (DR_MISALIGNMENT (dr_info) == 0);
  1177. }
  1178. /* Return TRUE if the alignment of the data access is known, and FALSE
  1179. otherwise. */
  1180. static inline bool
  1181. known_alignment_for_access_p (dr_vec_info *dr_info)
  1182. {
  1183. return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
  1184. }
  1185. /* Return the minimum alignment in bytes that the vectorized version
  1186. of DR_INFO is guaranteed to have. */
  1187. static inline unsigned int
  1188. vect_known_alignment_in_bytes (dr_vec_info *dr_info)
  1189. {
  1190. if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
  1191. return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
  1192. if (DR_MISALIGNMENT (dr_info) == 0)
  1193. return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
  1194. return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
  1195. }
  1196. /* Return the behavior of DR_INFO with respect to the vectorization context
  1197. (which for outer loop vectorization might not be the behavior recorded
  1198. in DR_INFO itself). */
  1199. static inline innermost_loop_behavior *
  1200. vect_dr_behavior (dr_vec_info *dr_info)
  1201. {
  1202. stmt_vec_info stmt_info = dr_info->stmt;
  1203. loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  1204. if (loop_vinfo == NULL
  1205. || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
  1206. return &DR_INNERMOST (dr_info->dr);
  1207. else
  1208. return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
  1209. }
  1210. /* Return the offset calculated by adding the offset of this DR_INFO to the
  1211. corresponding data_reference's offset. If CHECK_OUTER then use
  1212. vect_dr_behavior to select the appropriate data_reference to use. */
  1213. inline tree
  1214. get_dr_vinfo_offset (dr_vec_info *dr_info, bool check_outer = false)
  1215. {
  1216. innermost_loop_behavior *base;
  1217. if (check_outer)
  1218. base = vect_dr_behavior (dr_info);
  1219. else
  1220. base = &dr_info->dr->innermost;
  1221. tree offset = base->offset;
  1222. if (!dr_info->offset)
  1223. return offset;
  1224. offset = fold_convert (sizetype, offset);
  1225. return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
  1226. dr_info->offset);
  1227. }
  1228. /* Return true if the vect cost model is unlimited. */
  1229. static inline bool
  1230. unlimited_cost_model (loop_p loop)
  1231. {
  1232. if (loop != NULL && loop->force_vectorize
  1233. && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
  1234. return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
  1235. return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
  1236. }
  1237. /* Return true if the loop described by LOOP_VINFO is fully-masked and
  1238. if the first iteration should use a partial mask in order to achieve
  1239. alignment. */
  1240. static inline bool
  1241. vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
  1242. {
  1243. return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
  1244. && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
  1245. }
  1246. /* Return the number of vectors of type VECTYPE that are needed to get
  1247. NUNITS elements. NUNITS should be based on the vectorization factor,
  1248. so it is always a known multiple of the number of elements in VECTYPE. */
  1249. static inline unsigned int
  1250. vect_get_num_vectors (poly_uint64 nunits, tree vectype)
  1251. {
  1252. return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
  1253. }
  1254. /* Return the number of copies needed for loop vectorization when
  1255. a statement operates on vectors of type VECTYPE. This is the
  1256. vectorization factor divided by the number of elements in
  1257. VECTYPE and is always known at compile time. */
  1258. static inline unsigned int
  1259. vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
  1260. {
  1261. return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
  1262. }
  1263. /* Update maximum unit count *MAX_NUNITS so that it accounts for
  1264. NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
  1265. static inline void
  1266. vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
  1267. {
  1268. /* All unit counts have the form vec_info::vector_size * X for some
  1269. rational X, so two unit sizes must have a common multiple.
  1270. Everything is a multiple of the initial value of 1. */
  1271. *max_nunits = force_common_multiple (*max_nunits, nunits);
  1272. }
  1273. /* Update maximum unit count *MAX_NUNITS so that it accounts for
  1274. the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
  1275. if we haven't yet recorded any vector types. */
  1276. static inline void
  1277. vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
  1278. {
  1279. vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
  1280. }
  1281. /* Return the vectorization factor that should be used for costing
  1282. purposes while vectorizing the loop described by LOOP_VINFO.
  1283. Pick a reasonable estimate if the vectorization factor isn't
  1284. known at compile time. */
  1285. static inline unsigned int
  1286. vect_vf_for_cost (loop_vec_info loop_vinfo)
  1287. {
  1288. return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
  1289. }
  1290. /* Estimate the number of elements in VEC_TYPE for costing purposes.
  1291. Pick a reasonable estimate if the exact number isn't known at
  1292. compile time. */
  1293. static inline unsigned int
  1294. vect_nunits_for_cost (tree vec_type)
  1295. {
  1296. return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
  1297. }
  1298. /* Return the maximum possible vectorization factor for LOOP_VINFO. */
  1299. static inline unsigned HOST_WIDE_INT
  1300. vect_max_vf (loop_vec_info loop_vinfo)
  1301. {
  1302. unsigned HOST_WIDE_INT vf;
  1303. if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
  1304. return vf;
  1305. return MAX_VECTORIZATION_FACTOR;
  1306. }
  1307. /* Return the size of the value accessed by unvectorized data reference
  1308. DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
  1309. for the associated gimple statement, since that guarantees that DR_INFO
  1310. accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
  1311. here includes things like V1SI, which can be vectorized in the same way
  1312. as a plain SI.) */
  1313. inline unsigned int
  1314. vect_get_scalar_dr_size (dr_vec_info *dr_info)
  1315. {
  1316. return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
  1317. }
  1318. /* Return true if LOOP_VINFO requires a runtime check for whether the
  1319. vector loop is profitable. */
  1320. inline bool
  1321. vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
  1322. {
  1323. unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
  1324. return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
  1325. && th >= vect_vf_for_cost (loop_vinfo));
  1326. }
  1327. /* Source location + hotness information. */
  1328. extern dump_user_location_t vect_location;
  1329. /* A macro for calling:
  1330. dump_begin_scope (MSG, vect_location);
  1331. via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
  1332. and then calling
  1333. dump_end_scope ();
  1334. once the object goes out of scope, thus capturing the nesting of
  1335. the scopes.
  1336. These scopes affect dump messages within them: dump messages at the
  1337. top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
  1338. in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
  1339. #define DUMP_VECT_SCOPE(MSG) \
  1340. AUTO_DUMP_SCOPE (MSG, vect_location)
  1341. /* A sentinel class for ensuring that the "vect_location" global gets
  1342. reset at the end of a scope.
  1343. The "vect_location" global is used during dumping and contains a
  1344. location_t, which could contain references to a tree block via the
  1345. ad-hoc data. This data is used for tracking inlining information,
  1346. but it's not a GC root; it's simply assumed that such locations never
  1347. get accessed if the blocks are optimized away.
  1348. Hence we need to ensure that such locations are purged at the end
  1349. of any operations using them (e.g. via this class). */
  1350. class auto_purge_vect_location
  1351. {
  1352. public:
  1353. ~auto_purge_vect_location ();
  1354. };
  1355. /*-----------------------------------------------------------------*/
  1356. /* Function prototypes. */
  1357. /*-----------------------------------------------------------------*/
  1358. /* Simple loop peeling and versioning utilities for vectorizer's purposes -
  1359. in tree-vect-loop-manip.c. */
  1360. extern void vect_set_loop_condition (class loop *, loop_vec_info,
  1361. tree, tree, tree, bool);
  1362. extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
  1363. class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
  1364. class loop *, edge);
  1365. class loop *vect_loop_versioning (loop_vec_info, gimple *);
  1366. extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
  1367. tree *, tree *, tree *, int, bool, bool,
  1368. tree *);
  1369. extern void vect_prepare_for_masked_peels (loop_vec_info);
  1370. extern dump_user_location_t find_loop_location (class loop *);
  1371. extern bool vect_can_advance_ivs_p (loop_vec_info);
  1372. extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
  1373. /* In tree-vect-stmts.c. */
  1374. extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
  1375. poly_uint64 = 0);
  1376. extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
  1377. extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
  1378. extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
  1379. extern tree get_same_sized_vectype (tree, tree);
  1380. extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
  1381. extern bool vect_get_loop_mask_type (loop_vec_info);
  1382. extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
  1383. stmt_vec_info * = NULL, gimple ** = NULL);
  1384. extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
  1385. tree *, stmt_vec_info * = NULL,
  1386. gimple ** = NULL);
  1387. extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
  1388. tree, tree, enum tree_code *,
  1389. enum tree_code *, int *,
  1390. vec<tree> *);
  1391. extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
  1392. enum tree_code *, int *,
  1393. vec<tree> *);
  1394. extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
  1395. enum vect_cost_for_stmt, stmt_vec_info,
  1396. int, enum vect_cost_model_location);
  1397. extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
  1398. extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
  1399. gimple_stmt_iterator *);
  1400. extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
  1401. extern tree vect_get_store_rhs (stmt_vec_info);
  1402. extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
  1403. extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
  1404. extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
  1405. vec<tree> *, slp_tree);
  1406. extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
  1407. vec<tree> *, vec<tree> *);
  1408. extern tree vect_init_vector (stmt_vec_info, tree, tree,
  1409. gimple_stmt_iterator *);
  1410. extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
  1411. extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
  1412. slp_tree, slp_instance);
  1413. extern void vect_remove_stores (stmt_vec_info);
  1414. extern bool vect_nop_conversion_p (stmt_vec_info);
  1415. extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
  1416. slp_instance, stmt_vector_for_cost *);
  1417. extern void vect_get_load_cost (stmt_vec_info, int, bool,
  1418. unsigned int *, unsigned int *,
  1419. stmt_vector_for_cost *,
  1420. stmt_vector_for_cost *, bool);
  1421. extern void vect_get_store_cost (stmt_vec_info, int,
  1422. unsigned int *, stmt_vector_for_cost *);
  1423. extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
  1424. extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
  1425. extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
  1426. extern void optimize_mask_stores (class loop*);
  1427. extern gcall *vect_gen_while (tree, tree, tree);
  1428. extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
  1429. extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
  1430. tree *, unsigned int = 0);
  1431. extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
  1432. /* In tree-vect-data-refs.c. */
  1433. extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
  1434. extern enum dr_alignment_support vect_supportable_dr_alignment
  1435. (dr_vec_info *, bool);
  1436. extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
  1437. HOST_WIDE_INT *);
  1438. extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
  1439. extern bool vect_slp_analyze_instance_dependence (slp_instance);
  1440. extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
  1441. extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
  1442. extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
  1443. extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
  1444. extern opt_result vect_analyze_data_ref_accesses (vec_info *);
  1445. extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
  1446. extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
  1447. tree, int, internal_fn *, tree *);
  1448. extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
  1449. gather_scatter_info *);
  1450. extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
  1451. vec<data_reference_p> *);
  1452. extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
  1453. extern void vect_record_base_alignments (vec_info *);
  1454. extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
  1455. tree *, gimple_stmt_iterator *,
  1456. gimple **, bool,
  1457. tree = NULL_TREE, tree = NULL_TREE);
  1458. extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
  1459. stmt_vec_info, tree);
  1460. extern void vect_copy_ref_info (tree, tree);
  1461. extern tree vect_create_destination_var (tree, tree);
  1462. extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
  1463. extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
  1464. extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
  1465. extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
  1466. extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
  1467. gimple_stmt_iterator *, vec<tree> *);
  1468. extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
  1469. tree *, enum dr_alignment_support, tree,
  1470. class loop **);
  1471. extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
  1472. gimple_stmt_iterator *);
  1473. extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
  1474. extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
  1475. extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
  1476. const char * = NULL);
  1477. extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
  1478. tree, tree = NULL_TREE);
  1479. /* In tree-vect-loop.c. */
  1480. extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
  1481. /* Used in tree-vect-loop-manip.c */
  1482. extern void determine_peel_for_niter (loop_vec_info);
  1483. /* Used in gimple-loop-interchange.c and tree-parloops.c. */
  1484. extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
  1485. enum tree_code);
  1486. extern bool needs_fold_left_reduction_p (tree, tree_code);
  1487. /* Drive for loop analysis stage. */
  1488. extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
  1489. extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
  1490. extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
  1491. tree *, bool);
  1492. extern tree vect_halve_mask_nunits (tree, machine_mode);
  1493. extern tree vect_double_mask_nunits (tree, machine_mode);
  1494. extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
  1495. unsigned int, tree, tree);
  1496. extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
  1497. unsigned int, tree, unsigned int);
  1498. extern stmt_vec_info info_for_reduction (stmt_vec_info);
  1499. /* Drive for loop transformation stage. */
  1500. extern class loop *vect_transform_loop (loop_vec_info, gimple *);
  1501. extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
  1502. vec_info_shared *);
  1503. extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
  1504. slp_tree, slp_instance, int,
  1505. bool, stmt_vector_for_cost *);
  1506. extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
  1507. stmt_vector_for_cost *);
  1508. extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
  1509. stmt_vec_info *, slp_tree,
  1510. stmt_vector_for_cost *);
  1511. extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
  1512. stmt_vec_info *, slp_tree);
  1513. extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
  1514. slp_tree, slp_instance);
  1515. extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
  1516. extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
  1517. extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
  1518. stmt_vector_for_cost *,
  1519. stmt_vector_for_cost *,
  1520. stmt_vector_for_cost *);
  1521. extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
  1522. /* In tree-vect-slp.c. */
  1523. extern void vect_free_slp_instance (slp_instance, bool);
  1524. extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
  1525. gimple_stmt_iterator *, poly_uint64,
  1526. slp_instance, bool, unsigned *);
  1527. extern bool vect_slp_analyze_operations (vec_info *);
  1528. extern void vect_schedule_slp (vec_info *);
  1529. extern opt_result vect_analyze_slp (vec_info *, unsigned);
  1530. extern bool vect_make_slp_decision (loop_vec_info);
  1531. extern void vect_detect_hybrid_slp (loop_vec_info);
  1532. extern void vect_get_slp_defs (slp_tree, vec<vec<tree> > *, unsigned n = -1U);
  1533. extern bool vect_slp_bb (basic_block);
  1534. extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
  1535. extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
  1536. extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
  1537. unsigned int * = NULL,
  1538. tree * = NULL, tree * = NULL);
  1539. extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
  1540. vec<tree>, unsigned int, vec<tree> &);
  1541. extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
  1542. /* In tree-vect-patterns.c. */
  1543. /* Pattern recognition functions.
  1544. Additional pattern recognition functions can (and will) be added
  1545. in the future. */
  1546. void vect_pattern_recog (vec_info *);
  1547. /* In tree-vectorizer.c. */
  1548. unsigned vectorize_loops (void);
  1549. void vect_free_loop_info_assumptions (class loop *);
  1550. gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
  1551. #endif /* GCC_TREE_VECTORIZER_H */