|
- /* Operations with very long integers. -*- C++ -*-
- Copyright (C) 2012-2020 Free Software Foundation, Inc.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 3, or (at your option) any
- later version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
-
- #ifndef WIDE_INT_H
- #define WIDE_INT_H
-
- /* wide-int.[cc|h] implements a class that efficiently performs
- mathematical operations on finite precision integers. wide_ints
- are designed to be transient - they are not for long term storage
- of values. There is tight integration between wide_ints and the
- other longer storage GCC representations (rtl and tree).
-
- The actual precision of a wide_int depends on the flavor. There
- are three predefined flavors:
-
- 1) wide_int (the default). This flavor does the math in the
- precision of its input arguments. It is assumed (and checked)
- that the precisions of the operands and results are consistent.
- This is the most efficient flavor. It is not possible to examine
- bits above the precision that has been specified. Because of
- this, the default flavor has semantics that are simple to
- understand and in general model the underlying hardware that the
- compiler is targetted for.
-
- This flavor must be used at the RTL level of gcc because there
- is, in general, not enough information in the RTL representation
- to extend a value beyond the precision specified in the mode.
-
- This flavor should also be used at the TREE and GIMPLE levels of
- the compiler except for the circumstances described in the
- descriptions of the other two flavors.
-
- The default wide_int representation does not contain any
- information inherent about signedness of the represented value,
- so it can be used to represent both signed and unsigned numbers.
- For operations where the results depend on signedness (full width
- multiply, division, shifts, comparisons, and operations that need
- overflow detected), the signedness must be specified separately.
-
- 2) offset_int. This is a fixed-precision integer that can hold
- any address offset, measured in either bits or bytes, with at
- least one extra sign bit. At the moment the maximum address
- size GCC supports is 64 bits. With 8-bit bytes and an extra
- sign bit, offset_int therefore needs to have at least 68 bits
- of precision. We round this up to 128 bits for efficiency.
- Values of type T are converted to this precision by sign- or
- zero-extending them based on the signedness of T.
-
- The extra sign bit means that offset_int is effectively a signed
- 128-bit integer, i.e. it behaves like int128_t.
-
- Since the values are logically signed, there is no need to
- distinguish between signed and unsigned operations. Sign-sensitive
- comparison operators <, <=, > and >= are therefore supported.
- Shift operators << and >> are also supported, with >> being
- an _arithmetic_ right shift.
-
- [ Note that, even though offset_int is effectively int128_t,
- it can still be useful to use unsigned comparisons like
- wi::leu_p (a, b) as a more efficient short-hand for
- "a >= 0 && a <= b". ]
-
- 3) widest_int. This representation is an approximation of
- infinite precision math. However, it is not really infinite
- precision math as in the GMP library. It is really finite
- precision math where the precision is 4 times the size of the
- largest integer that the target port can represent.
-
- Like offset_int, widest_int is wider than all the values that
- it needs to represent, so the integers are logically signed.
- Sign-sensitive comparison operators <, <=, > and >= are supported,
- as are << and >>.
-
- There are several places in the GCC where this should/must be used:
-
- * Code that does induction variable optimizations. This code
- works with induction variables of many different types at the
- same time. Because of this, it ends up doing many different
- calculations where the operands are not compatible types. The
- widest_int makes this easy, because it provides a field where
- nothing is lost when converting from any variable,
-
- * There are a small number of passes that currently use the
- widest_int that should use the default. These should be
- changed.
-
- There are surprising features of offset_int and widest_int
- that the users should be careful about:
-
- 1) Shifts and rotations are just weird. You have to specify a
- precision in which the shift or rotate is to happen in. The bits
- above this precision are zeroed. While this is what you
- want, it is clearly non obvious.
-
- 2) Larger precision math sometimes does not produce the same
- answer as would be expected for doing the math at the proper
- precision. In particular, a multiply followed by a divide will
- produce a different answer if the first product is larger than
- what can be represented in the input precision.
-
- The offset_int and the widest_int flavors are more expensive
- than the default wide int, so in addition to the caveats with these
- two, the default is the prefered representation.
-
- All three flavors of wide_int are represented as a vector of
- HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
- to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
- enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
- in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
- in element 0.
-
- The default wide_int contains three fields: the vector (VAL),
- the precision and a length (LEN). The length is the number of HWIs
- needed to represent the value. widest_int and offset_int have a
- constant precision that cannot be changed, so they only store the
- VAL and LEN fields.
-
- Since most integers used in a compiler are small values, it is
- generally profitable to use a representation of the value that is
- as small as possible. LEN is used to indicate the number of
- elements of the vector that are in use. The numbers are stored as
- sign extended numbers as a means of compression. Leading
- HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
- as long as they can be reconstructed from the top bit that is being
- represented.
-
- The precision and length of a wide_int are always greater than 0.
- Any bits in a wide_int above the precision are sign-extended from the
- most significant bit. For example, a 4-bit value 0x8 is represented as
- VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
- constants to be represented with undefined bits above the precision.
- This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
- so that the INTEGER_CST representation can be used both in TYPE_PRECISION
- and in wider precisions.
-
- There are constructors to create the various forms of wide_int from
- trees, rtl and constants. For trees the options are:
-
- tree t = ...;
- wi::to_wide (t) // Treat T as a wide_int
- wi::to_offset (t) // Treat T as an offset_int
- wi::to_widest (t) // Treat T as a widest_int
-
- All three are light-weight accessors that should have no overhead
- in release builds. If it is useful for readability reasons to
- store the result in a temporary variable, the preferred method is:
-
- wi::tree_to_wide_ref twide = wi::to_wide (t);
- wi::tree_to_offset_ref toffset = wi::to_offset (t);
- wi::tree_to_widest_ref twidest = wi::to_widest (t);
-
- To make an rtx into a wide_int, you have to pair it with a mode.
- The canonical way to do this is with rtx_mode_t as in:
-
- rtx r = ...
- wide_int x = rtx_mode_t (r, mode);
-
- Similarly, a wide_int can only be constructed from a host value if
- the target precision is given explicitly, such as in:
-
- wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
- wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
-
- However, offset_int and widest_int have an inherent precision and so
- can be initialized directly from a host value:
-
- offset_int x = (int) c; // sign-extend C
- widest_int x = (unsigned int) c; // zero-extend C
-
- It is also possible to do arithmetic directly on rtx_mode_ts and
- constants. For example:
-
- wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2
- wi::add (r1, 1); // add 1 to rtx_mode_t r1
- wi::lshift (1, 100); // 1 << 100 as a widest_int
-
- Many binary operations place restrictions on the combinations of inputs,
- using the following rules:
-
- - {rtx, wide_int} op {rtx, wide_int} -> wide_int
- The inputs must be the same precision. The result is a wide_int
- of the same precision
-
- - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
- (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int
- The HOST_WIDE_INT is extended or truncated to the precision of
- the other input. The result is a wide_int of the same precision
- as that input.
-
- - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
- The inputs are extended to widest_int precision and produce a
- widest_int result.
-
- - offset_int op offset_int -> offset_int
- offset_int op (un)signed HOST_WIDE_INT -> offset_int
- (un)signed HOST_WIDE_INT op offset_int -> offset_int
-
- - widest_int op widest_int -> widest_int
- widest_int op (un)signed HOST_WIDE_INT -> widest_int
- (un)signed HOST_WIDE_INT op widest_int -> widest_int
-
- Other combinations like:
-
- - widest_int op offset_int and
- - wide_int op offset_int
-
- are not allowed. The inputs should instead be extended or truncated
- so that they match.
-
- The inputs to comparison functions like wi::eq_p and wi::lts_p
- follow the same compatibility rules, although their return types
- are different. Unary functions on X produce the same result as
- a binary operation X + X. Shift functions X op Y also produce
- the same result as X + X; the precision of the shift amount Y
- can be arbitrarily different from X. */
-
- /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
- early examination of the target's mode file. The WIDE_INT_MAX_ELTS
- can accomodate at least 1 more bit so that unsigned numbers of that
- mode can be represented as a signed value. Note that it is still
- possible to create fixed_wide_ints that have precisions greater than
- MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
- double-width multiplication result, for example. */
- #define WIDE_INT_MAX_ELTS \
- ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
-
- #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
-
- /* This is the max size of any pointer on any machine. It does not
- seem to be as easy to sniff this out of the machine description as
- it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
- multiple address sizes and may have different address sizes for
- different address spaces. However, currently the largest pointer
- on any platform is 64 bits. When that changes, then it is likely
- that a target hook should be defined so that targets can make this
- value larger for those targets. */
- #define ADDR_MAX_BITSIZE 64
-
- /* This is the internal precision used when doing any address
- arithmetic. The '4' is really 3 + 1. Three of the bits are for
- the number of extra bits needed to do bit addresses and the other bit
- is to allow everything to be signed without loosing any precision.
- Then everything is rounded up to the next HWI for efficiency. */
- #define ADDR_MAX_PRECISION \
- ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
- & ~(HOST_BITS_PER_WIDE_INT - 1))
-
- /* The number of HWIs needed to store an offset_int. */
- #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
-
- /* The type of result produced by a binary operation on types T1 and T2.
- Defined purely for brevity. */
- #define WI_BINARY_RESULT(T1, T2) \
- typename wi::binary_traits <T1, T2>::result_type
-
- /* Likewise for binary operators, which excludes the case in which neither
- T1 nor T2 is a wide-int-based type. */
- #define WI_BINARY_OPERATOR_RESULT(T1, T2) \
- typename wi::binary_traits <T1, T2>::operator_result
-
- /* The type of result produced by T1 << T2. Leads to substitution failure
- if the operation isn't supported. Defined purely for brevity. */
- #define WI_SIGNED_SHIFT_RESULT(T1, T2) \
- typename wi::binary_traits <T1, T2>::signed_shift_result_type
-
- /* The type of result produced by a sign-agnostic binary predicate on
- types T1 and T2. This is bool if wide-int operations make sense for
- T1 and T2 and leads to substitution failure otherwise. */
- #define WI_BINARY_PREDICATE_RESULT(T1, T2) \
- typename wi::binary_traits <T1, T2>::predicate_result
-
- /* The type of result produced by a signed binary predicate on types T1 and T2.
- This is bool if signed comparisons make sense for T1 and T2 and leads to
- substitution failure otherwise. */
- #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
- typename wi::binary_traits <T1, T2>::signed_predicate_result
-
- /* The type of result produced by a unary operation on type T. */
- #define WI_UNARY_RESULT(T) \
- typename wi::binary_traits <T, T>::result_type
-
- /* Define a variable RESULT to hold the result of a binary operation on
- X and Y, which have types T1 and T2 respectively. Define VAL to
- point to the blocks of RESULT. Once the user of the macro has
- filled in VAL, it should call RESULT.set_len to set the number
- of initialized blocks. */
- #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
- WI_BINARY_RESULT (T1, T2) RESULT = \
- wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
- HOST_WIDE_INT *VAL = RESULT.write_val ()
-
- /* Similar for the result of a unary operation on X, which has type T. */
- #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
- WI_UNARY_RESULT (T) RESULT = \
- wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
- HOST_WIDE_INT *VAL = RESULT.write_val ()
-
- template <typename T> class generic_wide_int;
- template <int N> class fixed_wide_int_storage;
- class wide_int_storage;
-
- /* An N-bit integer. Until we can use typedef templates, use this instead. */
- #define FIXED_WIDE_INT(N) \
- generic_wide_int < fixed_wide_int_storage <N> >
-
- typedef generic_wide_int <wide_int_storage> wide_int;
- typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
- typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
- /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
- so as not to confuse gengtype. */
- typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int;
-
- /* wi::storage_ref can be a reference to a primitive type,
- so this is the conservatively-correct setting. */
- template <bool SE, bool HDP = true>
- class wide_int_ref_storage;
-
- typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
-
- /* This can be used instead of wide_int_ref if the referenced value is
- known to have type T. It carries across properties of T's representation,
- such as whether excess upper bits in a HWI are defined, and can therefore
- help avoid redundant work.
-
- The macro could be replaced with a template typedef, once we're able
- to use those. */
- #define WIDE_INT_REF_FOR(T) \
- generic_wide_int \
- <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \
- wi::int_traits <T>::host_dependent_precision> >
-
- namespace wi
- {
- /* Operations that calculate overflow do so even for
- TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in
- an unsigned int is 0 and does not overflow in C/C++, but wi::add
- will set the overflow argument in case it's needed for further
- analysis.
-
- For operations that require overflow, these are the different
- types of overflow. */
- enum overflow_type {
- OVF_NONE = 0,
- OVF_UNDERFLOW = -1,
- OVF_OVERFLOW = 1,
- /* There was an overflow, but we are unsure whether it was an
- overflow or an underflow. */
- OVF_UNKNOWN = 2
- };
-
- /* Classifies an integer based on its precision. */
- enum precision_type {
- /* The integer has both a precision and defined signedness. This allows
- the integer to be converted to any width, since we know whether to fill
- any extra bits with zeros or signs. */
- FLEXIBLE_PRECISION,
-
- /* The integer has a variable precision but no defined signedness. */
- VAR_PRECISION,
-
- /* The integer has a constant precision (known at GCC compile time)
- and is signed. */
- CONST_PRECISION
- };
-
- /* This class, which has no default implementation, is expected to
- provide the following members:
-
- static const enum precision_type precision_type;
- Classifies the type of T.
-
- static const unsigned int precision;
- Only defined if precision_type == CONST_PRECISION. Specifies the
- precision of all integers of type T.
-
- static const bool host_dependent_precision;
- True if the precision of T depends (or can depend) on the host.
-
- static unsigned int get_precision (const T &x)
- Return the number of bits in X.
-
- static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
- unsigned int precision, const T &x)
- Decompose X as a PRECISION-bit integer, returning the associated
- wi::storage_ref. SCRATCH is available as scratch space if needed.
- The routine should assert that PRECISION is acceptable. */
- template <typename T> struct int_traits;
-
- /* This class provides a single type, result_type, which specifies the
- type of integer produced by a binary operation whose inputs have
- types T1 and T2. The definition should be symmetric. */
- template <typename T1, typename T2,
- enum precision_type P1 = int_traits <T1>::precision_type,
- enum precision_type P2 = int_traits <T2>::precision_type>
- struct binary_traits;
-
- /* Specify the result type for each supported combination of binary
- inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
- mixed, in order to give stronger type checking. When both inputs
- are CONST_PRECISION, they must have the same precision. */
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
- {
- typedef widest_int result_type;
- /* Don't define operators for this combination. */
- };
-
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
- {
- typedef wide_int result_type;
- typedef result_type operator_result;
- typedef bool predicate_result;
- };
-
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
- {
- /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
- so as not to confuse gengtype. */
- typedef generic_wide_int < fixed_wide_int_storage
- <int_traits <T2>::precision> > result_type;
- typedef result_type operator_result;
- typedef bool predicate_result;
- typedef result_type signed_shift_result_type;
- typedef bool signed_predicate_result;
- };
-
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
- {
- typedef wide_int result_type;
- typedef result_type operator_result;
- typedef bool predicate_result;
- };
-
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
- {
- /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
- so as not to confuse gengtype. */
- typedef generic_wide_int < fixed_wide_int_storage
- <int_traits <T1>::precision> > result_type;
- typedef result_type operator_result;
- typedef bool predicate_result;
- typedef result_type signed_shift_result_type;
- typedef bool signed_predicate_result;
- };
-
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
- {
- STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
- /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
- so as not to confuse gengtype. */
- typedef generic_wide_int < fixed_wide_int_storage
- <int_traits <T1>::precision> > result_type;
- typedef result_type operator_result;
- typedef bool predicate_result;
- typedef result_type signed_shift_result_type;
- typedef bool signed_predicate_result;
- };
-
- template <typename T1, typename T2>
- struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
- {
- typedef wide_int result_type;
- typedef result_type operator_result;
- typedef bool predicate_result;
- };
- }
-
- /* Public functions for querying and operating on integers. */
- namespace wi
- {
- template <typename T>
- unsigned int get_precision (const T &);
-
- template <typename T1, typename T2>
- unsigned int get_binary_precision (const T1 &, const T2 &);
-
- template <typename T1, typename T2>
- void copy (T1 &, const T2 &);
-
- #define UNARY_PREDICATE \
- template <typename T> bool
- #define UNARY_FUNCTION \
- template <typename T> WI_UNARY_RESULT (T)
- #define BINARY_PREDICATE \
- template <typename T1, typename T2> bool
- #define BINARY_FUNCTION \
- template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
- #define SHIFT_FUNCTION \
- template <typename T1, typename T2> WI_UNARY_RESULT (T1)
-
- UNARY_PREDICATE fits_shwi_p (const T &);
- UNARY_PREDICATE fits_uhwi_p (const T &);
- UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
-
- template <typename T>
- HOST_WIDE_INT sign_mask (const T &);
-
- BINARY_PREDICATE eq_p (const T1 &, const T2 &);
- BINARY_PREDICATE ne_p (const T1 &, const T2 &);
- BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
- BINARY_PREDICATE lts_p (const T1 &, const T2 &);
- BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
- BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
- BINARY_PREDICATE les_p (const T1 &, const T2 &);
- BINARY_PREDICATE leu_p (const T1 &, const T2 &);
- BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
- BINARY_PREDICATE gts_p (const T1 &, const T2 &);
- BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
- BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
- BINARY_PREDICATE ges_p (const T1 &, const T2 &);
- BINARY_PREDICATE geu_p (const T1 &, const T2 &);
-
- template <typename T1, typename T2>
- int cmp (const T1 &, const T2 &, signop);
-
- template <typename T1, typename T2>
- int cmps (const T1 &, const T2 &);
-
- template <typename T1, typename T2>
- int cmpu (const T1 &, const T2 &);
-
- UNARY_FUNCTION bit_not (const T &);
- UNARY_FUNCTION neg (const T &);
- UNARY_FUNCTION neg (const T &, overflow_type *);
- UNARY_FUNCTION abs (const T &);
- UNARY_FUNCTION ext (const T &, unsigned int, signop);
- UNARY_FUNCTION sext (const T &, unsigned int);
- UNARY_FUNCTION zext (const T &, unsigned int);
- UNARY_FUNCTION set_bit (const T &, unsigned int);
-
- BINARY_FUNCTION min (const T1 &, const T2 &, signop);
- BINARY_FUNCTION smin (const T1 &, const T2 &);
- BINARY_FUNCTION umin (const T1 &, const T2 &);
- BINARY_FUNCTION max (const T1 &, const T2 &, signop);
- BINARY_FUNCTION smax (const T1 &, const T2 &);
- BINARY_FUNCTION umax (const T1 &, const T2 &);
-
- BINARY_FUNCTION bit_and (const T1 &, const T2 &);
- BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
- BINARY_FUNCTION bit_or (const T1 &, const T2 &);
- BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
- BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
- BINARY_FUNCTION add (const T1 &, const T2 &);
- BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *);
- BINARY_FUNCTION sub (const T1 &, const T2 &);
- BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *);
- BINARY_FUNCTION mul (const T1 &, const T2 &);
- BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *);
- BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *);
- BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *);
- BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
- BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
- BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
- BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
- BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
- BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &);
- BINARY_FUNCTION div_round (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
- WI_BINARY_RESULT (T1, T2) *);
- BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
- BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
- BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
- BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
- BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop,
- overflow_type * = 0);
- BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop,
- overflow_type * = 0);
-
- template <typename T1, typename T2>
- bool multiple_of_p (const T1 &, const T2 &, signop);
-
- template <typename T1, typename T2>
- bool multiple_of_p (const T1 &, const T2 &, signop,
- WI_BINARY_RESULT (T1, T2) *);
-
- SHIFT_FUNCTION lshift (const T1 &, const T2 &);
- SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
- SHIFT_FUNCTION arshift (const T1 &, const T2 &);
- SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
- SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
- SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
-
- #undef SHIFT_FUNCTION
- #undef BINARY_PREDICATE
- #undef BINARY_FUNCTION
- #undef UNARY_PREDICATE
- #undef UNARY_FUNCTION
-
- bool only_sign_bit_p (const wide_int_ref &, unsigned int);
- bool only_sign_bit_p (const wide_int_ref &);
- int clz (const wide_int_ref &);
- int clrsb (const wide_int_ref &);
- int ctz (const wide_int_ref &);
- int exact_log2 (const wide_int_ref &);
- int floor_log2 (const wide_int_ref &);
- int ffs (const wide_int_ref &);
- int popcount (const wide_int_ref &);
- int parity (const wide_int_ref &);
-
- template <typename T>
- unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
-
- template <typename T>
- unsigned int min_precision (const T &, signop);
-
- static inline void accumulate_overflow (overflow_type &, overflow_type);
- }
-
- namespace wi
- {
- /* Contains the components of a decomposed integer for easy, direct
- access. */
- class storage_ref
- {
- public:
- storage_ref () {}
- storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
-
- const HOST_WIDE_INT *val;
- unsigned int len;
- unsigned int precision;
-
- /* Provide enough trappings for this class to act as storage for
- generic_wide_int. */
- unsigned int get_len () const;
- unsigned int get_precision () const;
- const HOST_WIDE_INT *get_val () const;
- };
- }
-
- inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
- unsigned int len_in,
- unsigned int precision_in)
- : val (val_in), len (len_in), precision (precision_in)
- {
- }
-
- inline unsigned int
- wi::storage_ref::get_len () const
- {
- return len;
- }
-
- inline unsigned int
- wi::storage_ref::get_precision () const
- {
- return precision;
- }
-
- inline const HOST_WIDE_INT *
- wi::storage_ref::get_val () const
- {
- return val;
- }
-
- /* This class defines an integer type using the storage provided by the
- template argument. The storage class must provide the following
- functions:
-
- unsigned int get_precision () const
- Return the number of bits in the integer.
-
- HOST_WIDE_INT *get_val () const
- Return a pointer to the array of blocks that encodes the integer.
-
- unsigned int get_len () const
- Return the number of blocks in get_val (). If this is smaller
- than the number of blocks implied by get_precision (), the
- remaining blocks are sign extensions of block get_len () - 1.
-
- Although not required by generic_wide_int itself, writable storage
- classes can also provide the following functions:
-
- HOST_WIDE_INT *write_val ()
- Get a modifiable version of get_val ()
-
- unsigned int set_len (unsigned int len)
- Set the value returned by get_len () to LEN. */
- template <typename storage>
- class GTY(()) generic_wide_int : public storage
- {
- public:
- generic_wide_int ();
-
- template <typename T>
- generic_wide_int (const T &);
-
- template <typename T>
- generic_wide_int (const T &, unsigned int);
-
- /* Conversions. */
- HOST_WIDE_INT to_shwi (unsigned int) const;
- HOST_WIDE_INT to_shwi () const;
- unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
- unsigned HOST_WIDE_INT to_uhwi () const;
- HOST_WIDE_INT to_short_addr () const;
-
- /* Public accessors for the interior of a wide int. */
- HOST_WIDE_INT sign_mask () const;
- HOST_WIDE_INT elt (unsigned int) const;
- HOST_WIDE_INT sext_elt (unsigned int) const;
- unsigned HOST_WIDE_INT ulow () const;
- unsigned HOST_WIDE_INT uhigh () const;
- HOST_WIDE_INT slow () const;
- HOST_WIDE_INT shigh () const;
-
- template <typename T>
- generic_wide_int &operator = (const T &);
-
- #define ASSIGNMENT_OPERATOR(OP, F) \
- template <typename T> \
- generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
-
- /* Restrict these to cases where the shift operator is defined. */
- #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
- template <typename T> \
- generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
-
- #define INCDEC_OPERATOR(OP, DELTA) \
- generic_wide_int &OP () { *this += DELTA; return *this; }
-
- ASSIGNMENT_OPERATOR (operator &=, bit_and)
- ASSIGNMENT_OPERATOR (operator |=, bit_or)
- ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
- ASSIGNMENT_OPERATOR (operator +=, add)
- ASSIGNMENT_OPERATOR (operator -=, sub)
- ASSIGNMENT_OPERATOR (operator *=, mul)
- ASSIGNMENT_OPERATOR (operator <<=, lshift)
- SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
- INCDEC_OPERATOR (operator ++, 1)
- INCDEC_OPERATOR (operator --, -1)
-
- #undef SHIFT_ASSIGNMENT_OPERATOR
- #undef ASSIGNMENT_OPERATOR
- #undef INCDEC_OPERATOR
-
- /* Debugging functions. */
- void dump () const;
-
- static const bool is_sign_extended
- = wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
- };
-
- template <typename storage>
- inline generic_wide_int <storage>::generic_wide_int () {}
-
- template <typename storage>
- template <typename T>
- inline generic_wide_int <storage>::generic_wide_int (const T &x)
- : storage (x)
- {
- }
-
- template <typename storage>
- template <typename T>
- inline generic_wide_int <storage>::generic_wide_int (const T &x,
- unsigned int precision)
- : storage (x, precision)
- {
- }
-
- /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
- If THIS does not fit in PRECISION, the information is lost. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::to_shwi (unsigned int precision) const
- {
- if (precision < HOST_BITS_PER_WIDE_INT)
- return sext_hwi (this->get_val ()[0], precision);
- else
- return this->get_val ()[0];
- }
-
- /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::to_shwi () const
- {
- if (is_sign_extended)
- return this->get_val ()[0];
- else
- return to_shwi (this->get_precision ());
- }
-
- /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
- PRECISION. If THIS does not fit in PRECISION, the information
- is lost. */
- template <typename storage>
- inline unsigned HOST_WIDE_INT
- generic_wide_int <storage>::to_uhwi (unsigned int precision) const
- {
- if (precision < HOST_BITS_PER_WIDE_INT)
- return zext_hwi (this->get_val ()[0], precision);
- else
- return this->get_val ()[0];
- }
-
- /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
- template <typename storage>
- inline unsigned HOST_WIDE_INT
- generic_wide_int <storage>::to_uhwi () const
- {
- return to_uhwi (this->get_precision ());
- }
-
- /* TODO: The compiler is half converted from using HOST_WIDE_INT to
- represent addresses to using offset_int to represent addresses.
- We use to_short_addr at the interface from new code to old,
- unconverted code. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::to_short_addr () const
- {
- return this->get_val ()[0];
- }
-
- /* Return the implicit value of blocks above get_len (). */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::sign_mask () const
- {
- unsigned int len = this->get_len ();
- gcc_assert (len > 0);
-
- unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
- if (!is_sign_extended)
- {
- unsigned int precision = this->get_precision ();
- int excess = len * HOST_BITS_PER_WIDE_INT - precision;
- if (excess > 0)
- high <<= excess;
- }
- return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
- }
-
- /* Return the signed value of the least-significant explicitly-encoded
- block. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::slow () const
- {
- return this->get_val ()[0];
- }
-
- /* Return the signed value of the most-significant explicitly-encoded
- block. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::shigh () const
- {
- return this->get_val ()[this->get_len () - 1];
- }
-
- /* Return the unsigned value of the least-significant
- explicitly-encoded block. */
- template <typename storage>
- inline unsigned HOST_WIDE_INT
- generic_wide_int <storage>::ulow () const
- {
- return this->get_val ()[0];
- }
-
- /* Return the unsigned value of the most-significant
- explicitly-encoded block. */
- template <typename storage>
- inline unsigned HOST_WIDE_INT
- generic_wide_int <storage>::uhigh () const
- {
- return this->get_val ()[this->get_len () - 1];
- }
-
- /* Return block I, which might be implicitly or explicit encoded. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::elt (unsigned int i) const
- {
- if (i >= this->get_len ())
- return sign_mask ();
- else
- return this->get_val ()[i];
- }
-
- /* Like elt, but sign-extend beyond the upper bit, instead of returning
- the raw encoding. */
- template <typename storage>
- inline HOST_WIDE_INT
- generic_wide_int <storage>::sext_elt (unsigned int i) const
- {
- HOST_WIDE_INT elt_i = elt (i);
- if (!is_sign_extended)
- {
- unsigned int precision = this->get_precision ();
- unsigned int lsb = i * HOST_BITS_PER_WIDE_INT;
- if (precision - lsb < HOST_BITS_PER_WIDE_INT)
- elt_i = sext_hwi (elt_i, precision - lsb);
- }
- return elt_i;
- }
-
- template <typename storage>
- template <typename T>
- inline generic_wide_int <storage> &
- generic_wide_int <storage>::operator = (const T &x)
- {
- storage::operator = (x);
- return *this;
- }
-
- /* Dump the contents of the integer to stderr, for debugging. */
- template <typename storage>
- void
- generic_wide_int <storage>::dump () const
- {
- unsigned int len = this->get_len ();
- const HOST_WIDE_INT *val = this->get_val ();
- unsigned int precision = this->get_precision ();
- fprintf (stderr, "[");
- if (len * HOST_BITS_PER_WIDE_INT < precision)
- fprintf (stderr, "...,");
- for (unsigned int i = 0; i < len - 1; ++i)
- fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
- fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
- val[0], precision);
- }
-
- namespace wi
- {
- template <typename storage>
- struct int_traits < generic_wide_int <storage> >
- : public wi::int_traits <storage>
- {
- static unsigned int get_precision (const generic_wide_int <storage> &);
- static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
- const generic_wide_int <storage> &);
- };
- }
-
- template <typename storage>
- inline unsigned int
- wi::int_traits < generic_wide_int <storage> >::
- get_precision (const generic_wide_int <storage> &x)
- {
- return x.get_precision ();
- }
-
- template <typename storage>
- inline wi::storage_ref
- wi::int_traits < generic_wide_int <storage> >::
- decompose (HOST_WIDE_INT *, unsigned int precision,
- const generic_wide_int <storage> &x)
- {
- gcc_checking_assert (precision == x.get_precision ());
- return wi::storage_ref (x.get_val (), x.get_len (), precision);
- }
-
- /* Provide the storage for a wide_int_ref. This acts like a read-only
- wide_int, with the optimization that VAL is normally a pointer to
- another integer's storage, so that no array copy is needed. */
- template <bool SE, bool HDP>
- class wide_int_ref_storage : public wi::storage_ref
- {
- private:
- /* Scratch space that can be used when decomposing the original integer.
- It must live as long as this object. */
- HOST_WIDE_INT scratch[2];
-
- public:
- wide_int_ref_storage () {}
-
- wide_int_ref_storage (const wi::storage_ref &);
-
- template <typename T>
- wide_int_ref_storage (const T &);
-
- template <typename T>
- wide_int_ref_storage (const T &, unsigned int);
- };
-
- /* Create a reference from an existing reference. */
- template <bool SE, bool HDP>
- inline wide_int_ref_storage <SE, HDP>::
- wide_int_ref_storage (const wi::storage_ref &x)
- : storage_ref (x)
- {}
-
- /* Create a reference to integer X in its natural precision. Note
- that the natural precision is host-dependent for primitive
- types. */
- template <bool SE, bool HDP>
- template <typename T>
- inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x)
- : storage_ref (wi::int_traits <T>::decompose (scratch,
- wi::get_precision (x), x))
- {
- }
-
- /* Create a reference to integer X in precision PRECISION. */
- template <bool SE, bool HDP>
- template <typename T>
- inline wide_int_ref_storage <SE, HDP>::
- wide_int_ref_storage (const T &x, unsigned int precision)
- : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
- {
- }
-
- namespace wi
- {
- template <bool SE, bool HDP>
- struct int_traits <wide_int_ref_storage <SE, HDP> >
- {
- static const enum precision_type precision_type = VAR_PRECISION;
- static const bool host_dependent_precision = HDP;
- static const bool is_sign_extended = SE;
- };
- }
-
- namespace wi
- {
- unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, unsigned int,
- signop sgn);
- unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, bool = true);
- }
-
- /* The storage used by wide_int. */
- class GTY(()) wide_int_storage
- {
- private:
- HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
- unsigned int len;
- unsigned int precision;
-
- public:
- wide_int_storage ();
- template <typename T>
- wide_int_storage (const T &);
-
- /* The standard generic_wide_int storage methods. */
- unsigned int get_precision () const;
- const HOST_WIDE_INT *get_val () const;
- unsigned int get_len () const;
- HOST_WIDE_INT *write_val ();
- void set_len (unsigned int, bool = false);
-
- template <typename T>
- wide_int_storage &operator = (const T &);
-
- static wide_int from (const wide_int_ref &, unsigned int, signop);
- static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
- unsigned int, bool = true);
- static wide_int create (unsigned int);
-
- /* FIXME: target-dependent, so should disappear. */
- wide_int bswap () const;
- };
-
- namespace wi
- {
- template <>
- struct int_traits <wide_int_storage>
- {
- static const enum precision_type precision_type = VAR_PRECISION;
- /* Guaranteed by a static assert in the wide_int_storage constructor. */
- static const bool host_dependent_precision = false;
- static const bool is_sign_extended = true;
- template <typename T1, typename T2>
- static wide_int get_binary_result (const T1 &, const T2 &);
- };
- }
-
- inline wide_int_storage::wide_int_storage () {}
-
- /* Initialize the storage from integer X, in its natural precision.
- Note that we do not allow integers with host-dependent precision
- to become wide_ints; wide_ints must always be logically independent
- of the host. */
- template <typename T>
- inline wide_int_storage::wide_int_storage (const T &x)
- {
- { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
- { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
- WIDE_INT_REF_FOR (T) xi (x);
- precision = xi.precision;
- wi::copy (*this, xi);
- }
-
- template <typename T>
- inline wide_int_storage&
- wide_int_storage::operator = (const T &x)
- {
- { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
- { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
- WIDE_INT_REF_FOR (T) xi (x);
- precision = xi.precision;
- wi::copy (*this, xi);
- return *this;
- }
-
- inline unsigned int
- wide_int_storage::get_precision () const
- {
- return precision;
- }
-
- inline const HOST_WIDE_INT *
- wide_int_storage::get_val () const
- {
- return val;
- }
-
- inline unsigned int
- wide_int_storage::get_len () const
- {
- return len;
- }
-
- inline HOST_WIDE_INT *
- wide_int_storage::write_val ()
- {
- return val;
- }
-
- inline void
- wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
- {
- len = l;
- if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
- val[len - 1] = sext_hwi (val[len - 1],
- precision % HOST_BITS_PER_WIDE_INT);
- }
-
- /* Treat X as having signedness SGN and convert it to a PRECISION-bit
- number. */
- inline wide_int
- wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
- signop sgn)
- {
- wide_int result = wide_int::create (precision);
- result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
- x.precision, precision, sgn));
- return result;
- }
-
- /* Create a wide_int from the explicit block encoding given by VAL and
- LEN. PRECISION is the precision of the integer. NEED_CANON_P is
- true if the encoding may have redundant trailing blocks. */
- inline wide_int
- wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
- unsigned int precision, bool need_canon_p)
- {
- wide_int result = wide_int::create (precision);
- result.set_len (wi::from_array (result.write_val (), val, len, precision,
- need_canon_p));
- return result;
- }
-
- /* Return an uninitialized wide_int with precision PRECISION. */
- inline wide_int
- wide_int_storage::create (unsigned int precision)
- {
- wide_int x;
- x.precision = precision;
- return x;
- }
-
- template <typename T1, typename T2>
- inline wide_int
- wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
- {
- /* This shouldn't be used for two flexible-precision inputs. */
- STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
- || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
- if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
- return wide_int::create (wi::get_precision (y));
- else
- return wide_int::create (wi::get_precision (x));
- }
-
- /* The storage used by FIXED_WIDE_INT (N). */
- template <int N>
- class GTY(()) fixed_wide_int_storage
- {
- private:
- HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
- unsigned int len;
-
- public:
- fixed_wide_int_storage ();
- template <typename T>
- fixed_wide_int_storage (const T &);
-
- /* The standard generic_wide_int storage methods. */
- unsigned int get_precision () const;
- const HOST_WIDE_INT *get_val () const;
- unsigned int get_len () const;
- HOST_WIDE_INT *write_val ();
- void set_len (unsigned int, bool = false);
-
- static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
- static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
- bool = true);
- };
-
- namespace wi
- {
- template <int N>
- struct int_traits < fixed_wide_int_storage <N> >
- {
- static const enum precision_type precision_type = CONST_PRECISION;
- static const bool host_dependent_precision = false;
- static const bool is_sign_extended = true;
- static const unsigned int precision = N;
- template <typename T1, typename T2>
- static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
- };
- }
-
- template <int N>
- inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
-
- /* Initialize the storage from integer X, in precision N. */
- template <int N>
- template <typename T>
- inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
- {
- /* Check for type compatibility. We don't want to initialize a
- fixed-width integer from something like a wide_int. */
- WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
- wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
- }
-
- template <int N>
- inline unsigned int
- fixed_wide_int_storage <N>::get_precision () const
- {
- return N;
- }
-
- template <int N>
- inline const HOST_WIDE_INT *
- fixed_wide_int_storage <N>::get_val () const
- {
- return val;
- }
-
- template <int N>
- inline unsigned int
- fixed_wide_int_storage <N>::get_len () const
- {
- return len;
- }
-
- template <int N>
- inline HOST_WIDE_INT *
- fixed_wide_int_storage <N>::write_val ()
- {
- return val;
- }
-
- template <int N>
- inline void
- fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
- {
- len = l;
- /* There are no excess bits in val[len - 1]. */
- STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
- }
-
- /* Treat X as having signedness SGN and convert it to an N-bit number. */
- template <int N>
- inline FIXED_WIDE_INT (N)
- fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
- {
- FIXED_WIDE_INT (N) result;
- result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
- x.precision, N, sgn));
- return result;
- }
-
- /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
- VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
- trailing blocks. */
- template <int N>
- inline FIXED_WIDE_INT (N)
- fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
- unsigned int len,
- bool need_canon_p)
- {
- FIXED_WIDE_INT (N) result;
- result.set_len (wi::from_array (result.write_val (), val, len,
- N, need_canon_p));
- return result;
- }
-
- template <int N>
- template <typename T1, typename T2>
- inline FIXED_WIDE_INT (N)
- wi::int_traits < fixed_wide_int_storage <N> >::
- get_binary_result (const T1 &, const T2 &)
- {
- return FIXED_WIDE_INT (N) ();
- }
-
- /* A reference to one element of a trailing_wide_ints structure. */
- class trailing_wide_int_storage
- {
- private:
- /* The precision of the integer, which is a fixed property of the
- parent trailing_wide_ints. */
- unsigned int m_precision;
-
- /* A pointer to the length field. */
- unsigned char *m_len;
-
- /* A pointer to the HWI array. There are enough elements to hold all
- values of precision M_PRECISION. */
- HOST_WIDE_INT *m_val;
-
- public:
- trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
-
- /* The standard generic_wide_int storage methods. */
- unsigned int get_len () const;
- unsigned int get_precision () const;
- const HOST_WIDE_INT *get_val () const;
- HOST_WIDE_INT *write_val ();
- void set_len (unsigned int, bool = false);
-
- template <typename T>
- trailing_wide_int_storage &operator = (const T &);
- };
-
- typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
-
- /* trailing_wide_int behaves like a wide_int. */
- namespace wi
- {
- template <>
- struct int_traits <trailing_wide_int_storage>
- : public int_traits <wide_int_storage> {};
- }
-
- /* An array of N wide_int-like objects that can be put at the end of
- a variable-sized structure. Use extra_size to calculate how many
- bytes beyond the sizeof need to be allocated. Use set_precision
- to initialize the structure. */
- template <int N>
- struct GTY((user)) trailing_wide_ints
- {
- private:
- /* The shared precision of each number. */
- unsigned short m_precision;
-
- /* The shared maximum length of each number. */
- unsigned char m_max_len;
-
- /* The current length of each number. */
- unsigned char m_len[N];
-
- /* The variable-length part of the structure, which always contains
- at least one HWI. Element I starts at index I * M_MAX_LEN. */
- HOST_WIDE_INT m_val[1];
-
- public:
- typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
-
- void set_precision (unsigned int);
- unsigned int get_precision () const { return m_precision; }
- trailing_wide_int operator [] (unsigned int);
- const_reference operator [] (unsigned int) const;
- static size_t extra_size (unsigned int);
- size_t extra_size () const { return extra_size (m_precision); }
- };
-
- inline trailing_wide_int_storage::
- trailing_wide_int_storage (unsigned int precision, unsigned char *len,
- HOST_WIDE_INT *val)
- : m_precision (precision), m_len (len), m_val (val)
- {
- }
-
- inline unsigned int
- trailing_wide_int_storage::get_len () const
- {
- return *m_len;
- }
-
- inline unsigned int
- trailing_wide_int_storage::get_precision () const
- {
- return m_precision;
- }
-
- inline const HOST_WIDE_INT *
- trailing_wide_int_storage::get_val () const
- {
- return m_val;
- }
-
- inline HOST_WIDE_INT *
- trailing_wide_int_storage::write_val ()
- {
- return m_val;
- }
-
- inline void
- trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
- {
- *m_len = len;
- if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
- m_val[len - 1] = sext_hwi (m_val[len - 1],
- m_precision % HOST_BITS_PER_WIDE_INT);
- }
-
- template <typename T>
- inline trailing_wide_int_storage &
- trailing_wide_int_storage::operator = (const T &x)
- {
- WIDE_INT_REF_FOR (T) xi (x, m_precision);
- wi::copy (*this, xi);
- return *this;
- }
-
- /* Initialize the structure and record that all elements have precision
- PRECISION. */
- template <int N>
- inline void
- trailing_wide_ints <N>::set_precision (unsigned int precision)
- {
- m_precision = precision;
- m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
- / HOST_BITS_PER_WIDE_INT);
- }
-
- /* Return a reference to element INDEX. */
- template <int N>
- inline trailing_wide_int
- trailing_wide_ints <N>::operator [] (unsigned int index)
- {
- return trailing_wide_int_storage (m_precision, &m_len[index],
- &m_val[index * m_max_len]);
- }
-
- template <int N>
- inline typename trailing_wide_ints <N>::const_reference
- trailing_wide_ints <N>::operator [] (unsigned int index) const
- {
- return wi::storage_ref (&m_val[index * m_max_len],
- m_len[index], m_precision);
- }
-
- /* Return how many extra bytes need to be added to the end of the structure
- in order to handle N wide_ints of precision PRECISION. */
- template <int N>
- inline size_t
- trailing_wide_ints <N>::extra_size (unsigned int precision)
- {
- unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
- / HOST_BITS_PER_WIDE_INT);
- return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
- }
-
- /* This macro is used in structures that end with a trailing_wide_ints field
- called FIELD. It declares get_NAME() and set_NAME() methods to access
- element I of FIELD. */
- #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
- trailing_wide_int get_##NAME () { return FIELD[I]; } \
- template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
-
- namespace wi
- {
- /* Implementation of int_traits for primitive integer types like "int". */
- template <typename T, bool signed_p>
- struct primitive_int_traits
- {
- static const enum precision_type precision_type = FLEXIBLE_PRECISION;
- static const bool host_dependent_precision = true;
- static const bool is_sign_extended = true;
- static unsigned int get_precision (T);
- static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
- };
- }
-
- template <typename T, bool signed_p>
- inline unsigned int
- wi::primitive_int_traits <T, signed_p>::get_precision (T)
- {
- return sizeof (T) * CHAR_BIT;
- }
-
- template <typename T, bool signed_p>
- inline wi::storage_ref
- wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
- unsigned int precision, T x)
- {
- scratch[0] = x;
- if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
- return wi::storage_ref (scratch, 1, precision);
- scratch[1] = 0;
- return wi::storage_ref (scratch, 2, precision);
- }
-
- /* Allow primitive C types to be used in wi:: routines. */
- namespace wi
- {
- template <>
- struct int_traits <unsigned char>
- : public primitive_int_traits <unsigned char, false> {};
-
- template <>
- struct int_traits <unsigned short>
- : public primitive_int_traits <unsigned short, false> {};
-
- template <>
- struct int_traits <int>
- : public primitive_int_traits <int, true> {};
-
- template <>
- struct int_traits <unsigned int>
- : public primitive_int_traits <unsigned int, false> {};
-
- template <>
- struct int_traits <long>
- : public primitive_int_traits <long, true> {};
-
- template <>
- struct int_traits <unsigned long>
- : public primitive_int_traits <unsigned long, false> {};
-
- #if defined HAVE_LONG_LONG
- template <>
- struct int_traits <long long>
- : public primitive_int_traits <long long, true> {};
-
- template <>
- struct int_traits <unsigned long long>
- : public primitive_int_traits <unsigned long long, false> {};
- #endif
- }
-
- namespace wi
- {
- /* Stores HWI-sized integer VAL, treating it as having signedness SGN
- and precision PRECISION. */
- class hwi_with_prec
- {
- public:
- hwi_with_prec () {}
- hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
- HOST_WIDE_INT val;
- unsigned int precision;
- signop sgn;
- };
-
- hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
- hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
-
- hwi_with_prec minus_one (unsigned int);
- hwi_with_prec zero (unsigned int);
- hwi_with_prec one (unsigned int);
- hwi_with_prec two (unsigned int);
- }
-
- inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
- signop s)
- : precision (p), sgn (s)
- {
- if (precision < HOST_BITS_PER_WIDE_INT)
- val = sext_hwi (v, precision);
- else
- val = v;
- }
-
- /* Return a signed integer that has value VAL and precision PRECISION. */
- inline wi::hwi_with_prec
- wi::shwi (HOST_WIDE_INT val, unsigned int precision)
- {
- return hwi_with_prec (val, precision, SIGNED);
- }
-
- /* Return an unsigned integer that has value VAL and precision PRECISION. */
- inline wi::hwi_with_prec
- wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
- {
- return hwi_with_prec (val, precision, UNSIGNED);
- }
-
- /* Return a wide int of -1 with precision PRECISION. */
- inline wi::hwi_with_prec
- wi::minus_one (unsigned int precision)
- {
- return wi::shwi (-1, precision);
- }
-
- /* Return a wide int of 0 with precision PRECISION. */
- inline wi::hwi_with_prec
- wi::zero (unsigned int precision)
- {
- return wi::shwi (0, precision);
- }
-
- /* Return a wide int of 1 with precision PRECISION. */
- inline wi::hwi_with_prec
- wi::one (unsigned int precision)
- {
- return wi::shwi (1, precision);
- }
-
- /* Return a wide int of 2 with precision PRECISION. */
- inline wi::hwi_with_prec
- wi::two (unsigned int precision)
- {
- return wi::shwi (2, precision);
- }
-
- namespace wi
- {
- /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T,
- gives that T the same precision as X. */
- template<typename T, precision_type = int_traits<T>::precision_type>
- struct ints_for
- {
- static int zero (const T &) { return 0; }
- };
-
- template<typename T>
- struct ints_for<T, VAR_PRECISION>
- {
- static hwi_with_prec zero (const T &);
- };
- }
-
- template<typename T>
- inline wi::hwi_with_prec
- wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x)
- {
- return wi::zero (wi::get_precision (x));
- }
-
- namespace wi
- {
- template <>
- struct int_traits <wi::hwi_with_prec>
- {
- static const enum precision_type precision_type = VAR_PRECISION;
- /* hwi_with_prec has an explicitly-given precision, rather than the
- precision of HOST_WIDE_INT. */
- static const bool host_dependent_precision = false;
- static const bool is_sign_extended = true;
- static unsigned int get_precision (const wi::hwi_with_prec &);
- static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
- const wi::hwi_with_prec &);
- };
- }
-
- inline unsigned int
- wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
- {
- return x.precision;
- }
-
- inline wi::storage_ref
- wi::int_traits <wi::hwi_with_prec>::
- decompose (HOST_WIDE_INT *scratch, unsigned int precision,
- const wi::hwi_with_prec &x)
- {
- gcc_checking_assert (precision == x.precision);
- scratch[0] = x.val;
- if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
- return wi::storage_ref (scratch, 1, precision);
- scratch[1] = 0;
- return wi::storage_ref (scratch, 2, precision);
- }
-
- /* Private functions for handling large cases out of line. They take
- individual length and array parameters because that is cheaper for
- the inline caller than constructing an object on the stack and
- passing a reference to it. (Although many callers use wide_int_refs,
- we generally want those to be removed by SRA.) */
- namespace wi
- {
- bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
- const HOST_WIDE_INT *, unsigned int, unsigned int);
- bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
- const HOST_WIDE_INT *, unsigned int);
- bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
- const HOST_WIDE_INT *, unsigned int);
- int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
- const HOST_WIDE_INT *, unsigned int);
- int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
- const HOST_WIDE_INT *, unsigned int);
- unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int,
- unsigned int, unsigned int);
- unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int,
- unsigned int, unsigned int);
- unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, unsigned int);
- unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, unsigned int);
- unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, unsigned int,
- unsigned int);
- unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, unsigned int,
- unsigned int);
- unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
- const HOST_WIDE_INT *, unsigned int, unsigned int);
- unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, const HOST_WIDE_INT *,
- unsigned int, unsigned int);
- unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
- const HOST_WIDE_INT *, unsigned int, unsigned int);
- unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, const HOST_WIDE_INT *,
- unsigned int, unsigned int);
- unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
- const HOST_WIDE_INT *, unsigned int, unsigned int);
- unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
- const HOST_WIDE_INT *, unsigned int, unsigned int,
- signop, overflow_type *);
- unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
- const HOST_WIDE_INT *, unsigned int, unsigned int,
- signop, overflow_type *);
- unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, const HOST_WIDE_INT *,
- unsigned int, unsigned int, signop,
- overflow_type *, bool);
- unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
- HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int,
- const HOST_WIDE_INT *,
- unsigned int, unsigned int,
- signop, overflow_type *);
- }
-
- /* Return the number of bits that integer X can hold. */
- template <typename T>
- inline unsigned int
- wi::get_precision (const T &x)
- {
- return wi::int_traits <T>::get_precision (x);
- }
-
- /* Return the number of bits that the result of a binary operation can
- hold when the input operands are X and Y. */
- template <typename T1, typename T2>
- inline unsigned int
- wi::get_binary_precision (const T1 &x, const T2 &y)
- {
- return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
- get_binary_result (x, y));
- }
-
- /* Copy the contents of Y to X, but keeping X's current precision. */
- template <typename T1, typename T2>
- inline void
- wi::copy (T1 &x, const T2 &y)
- {
- HOST_WIDE_INT *xval = x.write_val ();
- const HOST_WIDE_INT *yval = y.get_val ();
- unsigned int len = y.get_len ();
- unsigned int i = 0;
- do
- xval[i] = yval[i];
- while (++i < len);
- x.set_len (len, y.is_sign_extended);
- }
-
- /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
- template <typename T>
- inline bool
- wi::fits_shwi_p (const T &x)
- {
- WIDE_INT_REF_FOR (T) xi (x);
- return xi.len == 1;
- }
-
- /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
- precision. */
- template <typename T>
- inline bool
- wi::fits_uhwi_p (const T &x)
- {
- WIDE_INT_REF_FOR (T) xi (x);
- if (xi.precision <= HOST_BITS_PER_WIDE_INT)
- return true;
- if (xi.len == 1)
- return xi.slow () >= 0;
- return xi.len == 2 && xi.uhigh () == 0;
- }
-
- /* Return true if X is negative based on the interpretation of SGN.
- For UNSIGNED, this is always false. */
- template <typename T>
- inline bool
- wi::neg_p (const T &x, signop sgn)
- {
- WIDE_INT_REF_FOR (T) xi (x);
- if (sgn == UNSIGNED)
- return false;
- return xi.sign_mask () < 0;
- }
-
- /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
- template <typename T>
- inline HOST_WIDE_INT
- wi::sign_mask (const T &x)
- {
- WIDE_INT_REF_FOR (T) xi (x);
- return xi.sign_mask ();
- }
-
- /* Return true if X == Y. X and Y must be binary-compatible. */
- template <typename T1, typename T2>
- inline bool
- wi::eq_p (const T1 &x, const T2 &y)
- {
- unsigned int precision = get_binary_precision (x, y);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (xi.is_sign_extended && yi.is_sign_extended)
- {
- /* This case reduces to array equality. */
- if (xi.len != yi.len)
- return false;
- unsigned int i = 0;
- do
- if (xi.val[i] != yi.val[i])
- return false;
- while (++i != xi.len);
- return true;
- }
- if (__builtin_expect (yi.len == 1, true))
- {
- /* XI is only equal to YI if it too has a single HWI. */
- if (xi.len != 1)
- return false;
- /* Excess bits in xi.val[0] will be signs or zeros, so comparisons
- with 0 are simple. */
- if (STATIC_CONSTANT_P (yi.val[0] == 0))
- return xi.val[0] == 0;
- /* Otherwise flush out any excess bits first. */
- unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
- int excess = HOST_BITS_PER_WIDE_INT - precision;
- if (excess > 0)
- diff <<= excess;
- return diff == 0;
- }
- return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
- }
-
- /* Return true if X != Y. X and Y must be binary-compatible. */
- template <typename T1, typename T2>
- inline bool
- wi::ne_p (const T1 &x, const T2 &y)
- {
- return !eq_p (x, y);
- }
-
- /* Return true if X < Y when both are treated as signed values. */
- template <typename T1, typename T2>
- inline bool
- wi::lts_p (const T1 &x, const T2 &y)
- {
- unsigned int precision = get_binary_precision (x, y);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- /* We optimize x < y, where y is 64 or fewer bits. */
- if (wi::fits_shwi_p (yi))
- {
- /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
- if (STATIC_CONSTANT_P (yi.val[0] == 0))
- return neg_p (xi);
- /* If x fits directly into a shwi, we can compare directly. */
- if (wi::fits_shwi_p (xi))
- return xi.to_shwi () < yi.to_shwi ();
- /* If x doesn't fit and is negative, then it must be more
- negative than any value in y, and hence smaller than y. */
- if (neg_p (xi))
- return true;
- /* If x is positive, then it must be larger than any value in y,
- and hence greater than y. */
- return false;
- }
- /* Optimize the opposite case, if it can be detected at compile time. */
- if (STATIC_CONSTANT_P (xi.len == 1))
- /* If YI is negative it is lower than the least HWI.
- If YI is positive it is greater than the greatest HWI. */
- return !neg_p (yi);
- return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
- }
-
- /* Return true if X < Y when both are treated as unsigned values. */
- template <typename T1, typename T2>
- inline bool
- wi::ltu_p (const T1 &x, const T2 &y)
- {
- unsigned int precision = get_binary_precision (x, y);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- /* Optimize comparisons with constants. */
- if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
- return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
- if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
- return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
- /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
- for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
- values does not change the result. */
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
- unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
- return xl < yl;
- }
- return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
- }
-
- /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
- template <typename T1, typename T2>
- inline bool
- wi::lt_p (const T1 &x, const T2 &y, signop sgn)
- {
- if (sgn == SIGNED)
- return lts_p (x, y);
- else
- return ltu_p (x, y);
- }
-
- /* Return true if X <= Y when both are treated as signed values. */
- template <typename T1, typename T2>
- inline bool
- wi::les_p (const T1 &x, const T2 &y)
- {
- return !lts_p (y, x);
- }
-
- /* Return true if X <= Y when both are treated as unsigned values. */
- template <typename T1, typename T2>
- inline bool
- wi::leu_p (const T1 &x, const T2 &y)
- {
- return !ltu_p (y, x);
- }
-
- /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
- template <typename T1, typename T2>
- inline bool
- wi::le_p (const T1 &x, const T2 &y, signop sgn)
- {
- if (sgn == SIGNED)
- return les_p (x, y);
- else
- return leu_p (x, y);
- }
-
- /* Return true if X > Y when both are treated as signed values. */
- template <typename T1, typename T2>
- inline bool
- wi::gts_p (const T1 &x, const T2 &y)
- {
- return lts_p (y, x);
- }
-
- /* Return true if X > Y when both are treated as unsigned values. */
- template <typename T1, typename T2>
- inline bool
- wi::gtu_p (const T1 &x, const T2 &y)
- {
- return ltu_p (y, x);
- }
-
- /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
- template <typename T1, typename T2>
- inline bool
- wi::gt_p (const T1 &x, const T2 &y, signop sgn)
- {
- if (sgn == SIGNED)
- return gts_p (x, y);
- else
- return gtu_p (x, y);
- }
-
- /* Return true if X >= Y when both are treated as signed values. */
- template <typename T1, typename T2>
- inline bool
- wi::ges_p (const T1 &x, const T2 &y)
- {
- return !lts_p (x, y);
- }
-
- /* Return true if X >= Y when both are treated as unsigned values. */
- template <typename T1, typename T2>
- inline bool
- wi::geu_p (const T1 &x, const T2 &y)
- {
- return !ltu_p (x, y);
- }
-
- /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
- template <typename T1, typename T2>
- inline bool
- wi::ge_p (const T1 &x, const T2 &y, signop sgn)
- {
- if (sgn == SIGNED)
- return ges_p (x, y);
- else
- return geu_p (x, y);
- }
-
- /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
- as signed values. */
- template <typename T1, typename T2>
- inline int
- wi::cmps (const T1 &x, const T2 &y)
- {
- unsigned int precision = get_binary_precision (x, y);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (wi::fits_shwi_p (yi))
- {
- /* Special case for comparisons with 0. */
- if (STATIC_CONSTANT_P (yi.val[0] == 0))
- return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
- /* If x fits into a signed HWI, we can compare directly. */
- if (wi::fits_shwi_p (xi))
- {
- HOST_WIDE_INT xl = xi.to_shwi ();
- HOST_WIDE_INT yl = yi.to_shwi ();
- return xl < yl ? -1 : xl > yl;
- }
- /* If x doesn't fit and is negative, then it must be more
- negative than any signed HWI, and hence smaller than y. */
- if (neg_p (xi))
- return -1;
- /* If x is positive, then it must be larger than any signed HWI,
- and hence greater than y. */
- return 1;
- }
- /* Optimize the opposite case, if it can be detected at compile time. */
- if (STATIC_CONSTANT_P (xi.len == 1))
- /* If YI is negative it is lower than the least HWI.
- If YI is positive it is greater than the greatest HWI. */
- return neg_p (yi) ? 1 : -1;
- return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
- }
-
- /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
- as unsigned values. */
- template <typename T1, typename T2>
- inline int
- wi::cmpu (const T1 &x, const T2 &y)
- {
- unsigned int precision = get_binary_precision (x, y);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- /* Optimize comparisons with constants. */
- if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
- {
- /* If XI doesn't fit in a HWI then it must be larger than YI. */
- if (xi.len != 1)
- return 1;
- /* Otherwise compare directly. */
- unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
- unsigned HOST_WIDE_INT yl = yi.val[0];
- return xl < yl ? -1 : xl > yl;
- }
- if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
- {
- /* If YI doesn't fit in a HWI then it must be larger than XI. */
- if (yi.len != 1)
- return -1;
- /* Otherwise compare directly. */
- unsigned HOST_WIDE_INT xl = xi.val[0];
- unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
- return xl < yl ? -1 : xl > yl;
- }
- /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
- for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
- values does not change the result. */
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
- unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
- return xl < yl ? -1 : xl > yl;
- }
- return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
- }
-
- /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
- X and Y indicated by SGN. */
- template <typename T1, typename T2>
- inline int
- wi::cmp (const T1 &x, const T2 &y, signop sgn)
- {
- if (sgn == SIGNED)
- return cmps (x, y);
- else
- return cmpu (x, y);
- }
-
- /* Return ~x. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::bit_not (const T &x)
- {
- WI_UNARY_RESULT_VAR (result, val, T, x);
- WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
- for (unsigned int i = 0; i < xi.len; ++i)
- val[i] = ~xi.val[i];
- result.set_len (xi.len);
- return result;
- }
-
- /* Return -x. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::neg (const T &x)
- {
- return sub (0, x);
- }
-
- /* Return -x. Indicate in *OVERFLOW if performing the negation would
- cause an overflow. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::neg (const T &x, overflow_type *overflow)
- {
- *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE;
- return sub (0, x);
- }
-
- /* Return the absolute value of x. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::abs (const T &x)
- {
- return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
- }
-
- /* Return the result of sign-extending the low OFFSET bits of X. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::sext (const T &x, unsigned int offset)
- {
- WI_UNARY_RESULT_VAR (result, val, T, x);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T) xi (x, precision);
-
- if (offset <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = sext_hwi (xi.ulow (), offset);
- result.set_len (1, true);
- }
- else
- result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
- return result;
- }
-
- /* Return the result of zero-extending the low OFFSET bits of X. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::zext (const T &x, unsigned int offset)
- {
- WI_UNARY_RESULT_VAR (result, val, T, x);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T) xi (x, precision);
-
- /* This is not just an optimization, it is actually required to
- maintain canonization. */
- if (offset >= precision)
- {
- wi::copy (result, xi);
- return result;
- }
-
- /* In these cases we know that at least the top bit will be clear,
- so no sign extension is necessary. */
- if (offset < HOST_BITS_PER_WIDE_INT)
- {
- val[0] = zext_hwi (xi.ulow (), offset);
- result.set_len (1, true);
- }
- else
- result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
- return result;
- }
-
- /* Return the result of extending the low OFFSET bits of X according to
- signedness SGN. */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::ext (const T &x, unsigned int offset, signop sgn)
- {
- return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
- }
-
- /* Return an integer that represents X | (1 << bit). */
- template <typename T>
- inline WI_UNARY_RESULT (T)
- wi::set_bit (const T &x, unsigned int bit)
- {
- WI_UNARY_RESULT_VAR (result, val, T, x);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T) xi (x, precision);
- if (precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
- result.set_len (1);
- }
- else
- result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
- return result;
- }
-
- /* Return the mininum of X and Y, treating them both as having
- signedness SGN. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::min (const T1 &x, const T2 &y, signop sgn)
- {
- WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- if (wi::le_p (x, y, sgn))
- wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
- else
- wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
- return result;
- }
-
- /* Return the minimum of X and Y, treating both as signed values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::smin (const T1 &x, const T2 &y)
- {
- return wi::min (x, y, SIGNED);
- }
-
- /* Return the minimum of X and Y, treating both as unsigned values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::umin (const T1 &x, const T2 &y)
- {
- return wi::min (x, y, UNSIGNED);
- }
-
- /* Return the maxinum of X and Y, treating them both as having
- signedness SGN. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::max (const T1 &x, const T2 &y, signop sgn)
- {
- WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- if (wi::ge_p (x, y, sgn))
- wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
- else
- wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
- return result;
- }
-
- /* Return the maximum of X and Y, treating both as signed values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::smax (const T1 &x, const T2 &y)
- {
- return wi::max (x, y, SIGNED);
- }
-
- /* Return the maximum of X and Y, treating both as unsigned values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::umax (const T1 &x, const T2 &y)
- {
- return wi::max (x, y, UNSIGNED);
- }
-
- /* Return X & Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::bit_and (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- val[0] = xi.ulow () & yi.ulow ();
- result.set_len (1, is_sign_extended);
- }
- else
- result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
- precision), is_sign_extended);
- return result;
- }
-
- /* Return X & ~Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::bit_and_not (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- val[0] = xi.ulow () & ~yi.ulow ();
- result.set_len (1, is_sign_extended);
- }
- else
- result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
- precision), is_sign_extended);
- return result;
- }
-
- /* Return X | Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::bit_or (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- val[0] = xi.ulow () | yi.ulow ();
- result.set_len (1, is_sign_extended);
- }
- else
- result.set_len (or_large (val, xi.val, xi.len,
- yi.val, yi.len, precision), is_sign_extended);
- return result;
- }
-
- /* Return X | ~Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::bit_or_not (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- val[0] = xi.ulow () | ~yi.ulow ();
- result.set_len (1, is_sign_extended);
- }
- else
- result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
- precision), is_sign_extended);
- return result;
- }
-
- /* Return X ^ Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::bit_xor (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
- if (__builtin_expect (xi.len + yi.len == 2, true))
- {
- val[0] = xi.ulow () ^ yi.ulow ();
- result.set_len (1, is_sign_extended);
- }
- else
- result.set_len (xor_large (val, xi.val, xi.len,
- yi.val, yi.len, precision), is_sign_extended);
- return result;
- }
-
- /* Return X + Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::add (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = xi.ulow () + yi.ulow ();
- result.set_len (1);
- }
- /* If the precision is known at compile time to be greater than
- HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
- knowing that (a) all bits in those HWIs are significant and
- (b) the result has room for at least two HWIs. This provides
- a fast path for things like offset_int and widest_int.
-
- The STATIC_CONSTANT_P test prevents this path from being
- used for wide_ints. wide_ints with precisions greater than
- HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
- point handling them inline. */
- else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
- && __builtin_expect (xi.len + yi.len == 2, true))
- {
- unsigned HOST_WIDE_INT xl = xi.ulow ();
- unsigned HOST_WIDE_INT yl = yi.ulow ();
- unsigned HOST_WIDE_INT resultl = xl + yl;
- val[0] = resultl;
- val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
- result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
- >> (HOST_BITS_PER_WIDE_INT - 1)));
- }
- else
- result.set_len (add_large (val, xi.val, xi.len,
- yi.val, yi.len, precision,
- UNSIGNED, 0));
- return result;
- }
-
- /* Return X + Y. Treat X and Y as having the signednes given by SGN
- and indicate in *OVERFLOW whether the operation overflowed. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (precision <= HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT xl = xi.ulow ();
- unsigned HOST_WIDE_INT yl = yi.ulow ();
- unsigned HOST_WIDE_INT resultl = xl + yl;
- if (sgn == SIGNED)
- {
- if ((((resultl ^ xl) & (resultl ^ yl))
- >> (precision - 1)) & 1)
- {
- if (xl > resultl)
- *overflow = OVF_UNDERFLOW;
- else if (xl < resultl)
- *overflow = OVF_OVERFLOW;
- else
- *overflow = OVF_NONE;
- }
- else
- *overflow = OVF_NONE;
- }
- else
- *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
- < (xl << (HOST_BITS_PER_WIDE_INT - precision)))
- ? OVF_OVERFLOW : OVF_NONE;
- val[0] = resultl;
- result.set_len (1);
- }
- else
- result.set_len (add_large (val, xi.val, xi.len,
- yi.val, yi.len, precision,
- sgn, overflow));
- return result;
- }
-
- /* Return X - Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::sub (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = xi.ulow () - yi.ulow ();
- result.set_len (1);
- }
- /* If the precision is known at compile time to be greater than
- HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
- knowing that (a) all bits in those HWIs are significant and
- (b) the result has room for at least two HWIs. This provides
- a fast path for things like offset_int and widest_int.
-
- The STATIC_CONSTANT_P test prevents this path from being
- used for wide_ints. wide_ints with precisions greater than
- HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
- point handling them inline. */
- else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
- && __builtin_expect (xi.len + yi.len == 2, true))
- {
- unsigned HOST_WIDE_INT xl = xi.ulow ();
- unsigned HOST_WIDE_INT yl = yi.ulow ();
- unsigned HOST_WIDE_INT resultl = xl - yl;
- val[0] = resultl;
- val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
- result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
- >> (HOST_BITS_PER_WIDE_INT - 1)));
- }
- else
- result.set_len (sub_large (val, xi.val, xi.len,
- yi.val, yi.len, precision,
- UNSIGNED, 0));
- return result;
- }
-
- /* Return X - Y. Treat X and Y as having the signednes given by SGN
- and indicate in *OVERFLOW whether the operation overflowed. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (precision <= HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT xl = xi.ulow ();
- unsigned HOST_WIDE_INT yl = yi.ulow ();
- unsigned HOST_WIDE_INT resultl = xl - yl;
- if (sgn == SIGNED)
- {
- if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1)
- {
- if (xl > yl)
- *overflow = OVF_UNDERFLOW;
- else if (xl < yl)
- *overflow = OVF_OVERFLOW;
- else
- *overflow = OVF_NONE;
- }
- else
- *overflow = OVF_NONE;
- }
- else
- *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
- > (xl << (HOST_BITS_PER_WIDE_INT - precision)))
- ? OVF_UNDERFLOW : OVF_NONE;
- val[0] = resultl;
- result.set_len (1);
- }
- else
- result.set_len (sub_large (val, xi.val, xi.len,
- yi.val, yi.len, precision,
- sgn, overflow));
- return result;
- }
-
- /* Return X * Y. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mul (const T1 &x, const T2 &y)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- if (precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = xi.ulow () * yi.ulow ();
- result.set_len (1);
- }
- else
- result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
- precision, UNSIGNED, 0, false));
- return result;
- }
-
- /* Return X * Y. Treat X and Y as having the signednes given by SGN
- and indicate in *OVERFLOW whether the operation overflowed. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- result.set_len (mul_internal (val, xi.val, xi.len,
- yi.val, yi.len, precision,
- sgn, overflow, false));
- return result;
- }
-
- /* Return X * Y, treating both X and Y as signed values. Indicate in
- *OVERFLOW whether the operation overflowed. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::smul (const T1 &x, const T2 &y, overflow_type *overflow)
- {
- return mul (x, y, SIGNED, overflow);
- }
-
- /* Return X * Y, treating both X and Y as unsigned values. Indicate in
- *OVERFLOW if the result overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::umul (const T1 &x, const T2 &y, overflow_type *overflow)
- {
- return mul (x, y, UNSIGNED, overflow);
- }
-
- /* Perform a widening multiplication of X and Y, extending the values
- according to SGN, and return the high part of the result. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mul_high (const T1 &x, const T2 &y, signop sgn)
- {
- WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y, precision);
- result.set_len (mul_internal (val, xi.val, xi.len,
- yi.val, yi.len, precision,
- sgn, 0, true));
- return result;
- }
-
- /* Return X / Y, rouding towards 0. Treat X and Y as having the
- signedness given by SGN. Indicate in *OVERFLOW if the result
- overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
- precision,
- yi.val, yi.len, yi.precision,
- sgn, overflow));
- return quotient;
- }
-
- /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::sdiv_trunc (const T1 &x, const T2 &y)
- {
- return div_trunc (x, y, SIGNED);
- }
-
- /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::udiv_trunc (const T1 &x, const T2 &y)
- {
- return div_trunc (x, y, UNSIGNED);
- }
-
- /* Return X / Y, rouding towards -inf. Treat X and Y as having the
- signedness given by SGN. Indicate in *OVERFLOW if the result
- overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn,
- overflow));
- remainder.set_len (remainder_len);
- if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
- return quotient - 1;
- return quotient;
- }
-
- /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::sdiv_floor (const T1 &x, const T2 &y)
- {
- return div_floor (x, y, SIGNED);
- }
-
- /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
- /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::udiv_floor (const T1 &x, const T2 &y)
- {
- return div_floor (x, y, UNSIGNED);
- }
-
- /* Return X / Y, rouding towards +inf. Treat X and Y as having the
- signedness given by SGN. Indicate in *OVERFLOW if the result
- overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn,
- overflow));
- remainder.set_len (remainder_len);
- if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
- return quotient + 1;
- return quotient;
- }
-
- /* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::udiv_ceil (const T1 &x, const T2 &y)
- {
- return div_ceil (x, y, UNSIGNED);
- }
-
- /* Return X / Y, rouding towards nearest with ties away from zero.
- Treat X and Y as having the signedness given by SGN. Indicate
- in *OVERFLOW if the result overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn,
- overflow));
- remainder.set_len (remainder_len);
-
- if (remainder != 0)
- {
- if (sgn == SIGNED)
- {
- WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
- if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
- {
- if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
- return quotient - 1;
- else
- return quotient + 1;
- }
- }
- else
- {
- if (wi::geu_p (remainder, wi::sub (y, remainder)))
- return quotient + 1;
- }
- }
- return quotient;
- }
-
- /* Return X / Y, rouding towards 0. Treat X and Y as having the
- signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
- WI_BINARY_RESULT (T1, T2) *remainder_ptr)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn, 0));
- remainder.set_len (remainder_len);
-
- *remainder_ptr = remainder;
- return quotient;
- }
-
- /* Compute the greatest common divisor of two numbers A and B using
- Euclid's algorithm. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::gcd (const T1 &a, const T2 &b, signop sgn)
- {
- T1 x, y, z;
-
- x = wi::abs (a);
- y = wi::abs (b);
-
- while (gt_p (x, 0, sgn))
- {
- z = mod_trunc (y, x, sgn);
- y = x;
- x = z;
- }
-
- return y;
- }
-
- /* Compute X / Y, rouding towards 0, and return the remainder.
- Treat X and Y as having the signedness given by SGN. Indicate
- in *OVERFLOW if the division overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (remainder);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- divmod_internal (0, &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn, overflow);
- remainder.set_len (remainder_len);
-
- return remainder;
- }
-
- /* Compute X / Y, rouding towards 0, and return the remainder.
- Treat X and Y as signed values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::smod_trunc (const T1 &x, const T2 &y)
- {
- return mod_trunc (x, y, SIGNED);
- }
-
- /* Compute X / Y, rouding towards 0, and return the remainder.
- Treat X and Y as unsigned values. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::umod_trunc (const T1 &x, const T2 &y)
- {
- return mod_trunc (x, y, UNSIGNED);
- }
-
- /* Compute X / Y, rouding towards -inf, and return the remainder.
- Treat X and Y as having the signedness given by SGN. Indicate
- in *OVERFLOW if the division overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn,
- overflow));
- remainder.set_len (remainder_len);
-
- if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
- return remainder + y;
- return remainder;
- }
-
- /* Compute X / Y, rouding towards -inf, and return the remainder.
- Treat X and Y as unsigned values. */
- /* ??? Why do we have both this and umod_trunc. Aren't they the same? */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::umod_floor (const T1 &x, const T2 &y)
- {
- return mod_floor (x, y, UNSIGNED);
- }
-
- /* Compute X / Y, rouding towards +inf, and return the remainder.
- Treat X and Y as having the signedness given by SGN. Indicate
- in *OVERFLOW if the division overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn,
- overflow));
- remainder.set_len (remainder_len);
-
- if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
- return remainder - y;
- return remainder;
- }
-
- /* Compute X / Y, rouding towards nearest with ties away from zero,
- and return the remainder. Treat X and Y as having the signedness
- given by SGN. Indicate in *OVERFLOW if the division overflows. */
- template <typename T1, typename T2>
- inline WI_BINARY_RESULT (T1, T2)
- wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
- {
- WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
- WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
- unsigned int precision = get_precision (quotient);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
-
- unsigned int remainder_len;
- quotient.set_len (divmod_internal (quotient_val,
- &remainder_len, remainder_val,
- xi.val, xi.len, precision,
- yi.val, yi.len, yi.precision, sgn,
- overflow));
- remainder.set_len (remainder_len);
-
- if (remainder != 0)
- {
- if (sgn == SIGNED)
- {
- WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
- if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
- {
- if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
- return remainder + y;
- else
- return remainder - y;
- }
- }
- else
- {
- if (wi::geu_p (remainder, wi::sub (y, remainder)))
- return remainder - y;
- }
- }
- return remainder;
- }
-
- /* Return true if X is a multiple of Y. Treat X and Y as having the
- signedness given by SGN. */
- template <typename T1, typename T2>
- inline bool
- wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
- {
- return wi::mod_trunc (x, y, sgn) == 0;
- }
-
- /* Return true if X is a multiple of Y, storing X / Y in *RES if so.
- Treat X and Y as having the signedness given by SGN. */
- template <typename T1, typename T2>
- inline bool
- wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
- WI_BINARY_RESULT (T1, T2) *res)
- {
- WI_BINARY_RESULT (T1, T2) remainder;
- WI_BINARY_RESULT (T1, T2) quotient
- = divmod_trunc (x, y, sgn, &remainder);
- if (remainder == 0)
- {
- *res = quotient;
- return true;
- }
- return false;
- }
-
- /* Return X << Y. Return 0 if Y is greater than or equal to
- the precision of X. */
- template <typename T1, typename T2>
- inline WI_UNARY_RESULT (T1)
- wi::lshift (const T1 &x, const T2 &y)
- {
- WI_UNARY_RESULT_VAR (result, val, T1, x);
- unsigned int precision = get_precision (result);
- WIDE_INT_REF_FOR (T1) xi (x, precision);
- WIDE_INT_REF_FOR (T2) yi (y);
- /* Handle the simple cases quickly. */
- if (geu_p (yi, precision))
- {
- val[0] = 0;
- result.set_len (1);
- }
- else
- {
- unsigned int shift = yi.to_uhwi ();
- /* For fixed-precision integers like offset_int and widest_int,
- handle the case where the shift value is constant and the
- result is a single nonnegative HWI (meaning that we don't
- need to worry about val[1]). This is particularly common
- for converting a byte count to a bit count.
-
- For variable-precision integers like wide_int, handle HWI
- and sub-HWI integers inline. */
- if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
- ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
- && xi.len == 1
- && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift))
- : precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = xi.ulow () << shift;
- result.set_len (1);
- }
- else
- result.set_len (lshift_large (val, xi.val, xi.len,
- precision, shift));
- }
- return result;
- }
-
- /* Return X >> Y, using a logical shift. Return 0 if Y is greater than
- or equal to the precision of X. */
- template <typename T1, typename T2>
- inline WI_UNARY_RESULT (T1)
- wi::lrshift (const T1 &x, const T2 &y)
- {
- WI_UNARY_RESULT_VAR (result, val, T1, x);
- /* Do things in the precision of the input rather than the output,
- since the result can be no larger than that. */
- WIDE_INT_REF_FOR (T1) xi (x);
- WIDE_INT_REF_FOR (T2) yi (y);
- /* Handle the simple cases quickly. */
- if (geu_p (yi, xi.precision))
- {
- val[0] = 0;
- result.set_len (1);
- }
- else
- {
- unsigned int shift = yi.to_uhwi ();
- /* For fixed-precision integers like offset_int and widest_int,
- handle the case where the shift value is constant and the
- shifted value is a single nonnegative HWI (meaning that all
- bits above the HWI are zero). This is particularly common
- for converting a bit count to a byte count.
-
- For variable-precision integers like wide_int, handle HWI
- and sub-HWI integers inline. */
- if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
- ? (shift < HOST_BITS_PER_WIDE_INT
- && xi.len == 1
- && xi.val[0] >= 0)
- : xi.precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = xi.to_uhwi () >> shift;
- result.set_len (1);
- }
- else
- result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
- get_precision (result), shift));
- }
- return result;
- }
-
- /* Return X >> Y, using an arithmetic shift. Return a sign mask if
- Y is greater than or equal to the precision of X. */
- template <typename T1, typename T2>
- inline WI_UNARY_RESULT (T1)
- wi::arshift (const T1 &x, const T2 &y)
- {
- WI_UNARY_RESULT_VAR (result, val, T1, x);
- /* Do things in the precision of the input rather than the output,
- since the result can be no larger than that. */
- WIDE_INT_REF_FOR (T1) xi (x);
- WIDE_INT_REF_FOR (T2) yi (y);
- /* Handle the simple cases quickly. */
- if (geu_p (yi, xi.precision))
- {
- val[0] = sign_mask (x);
- result.set_len (1);
- }
- else
- {
- unsigned int shift = yi.to_uhwi ();
- if (xi.precision <= HOST_BITS_PER_WIDE_INT)
- {
- val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
- result.set_len (1, true);
- }
- else
- result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
- get_precision (result), shift));
- }
- return result;
- }
-
- /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
- logical shift otherwise. */
- template <typename T1, typename T2>
- inline WI_UNARY_RESULT (T1)
- wi::rshift (const T1 &x, const T2 &y, signop sgn)
- {
- if (sgn == UNSIGNED)
- return lrshift (x, y);
- else
- return arshift (x, y);
- }
-
- /* Return the result of rotating the low WIDTH bits of X left by Y
- bits and zero-extending the result. Use a full-width rotate if
- WIDTH is zero. */
- template <typename T1, typename T2>
- WI_UNARY_RESULT (T1)
- wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
- {
- unsigned int precision = get_binary_precision (x, x);
- if (width == 0)
- width = precision;
- WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
- WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
- WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
- if (width != precision)
- return wi::zext (left, width) | wi::zext (right, width);
- return left | right;
- }
-
- /* Return the result of rotating the low WIDTH bits of X right by Y
- bits and zero-extending the result. Use a full-width rotate if
- WIDTH is zero. */
- template <typename T1, typename T2>
- WI_UNARY_RESULT (T1)
- wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
- {
- unsigned int precision = get_binary_precision (x, x);
- if (width == 0)
- width = precision;
- WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
- WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
- WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
- if (width != precision)
- return wi::zext (left, width) | wi::zext (right, width);
- return left | right;
- }
-
- /* Return 0 if the number of 1s in X is even and 1 if the number of 1s
- is odd. */
- inline int
- wi::parity (const wide_int_ref &x)
- {
- return popcount (x) & 1;
- }
-
- /* Extract WIDTH bits from X, starting at BITPOS. */
- template <typename T>
- inline unsigned HOST_WIDE_INT
- wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
- {
- unsigned precision = get_precision (x);
- if (precision < bitpos + width)
- precision = bitpos + width;
- WIDE_INT_REF_FOR (T) xi (x, precision);
-
- /* Handle this rare case after the above, so that we assert about
- bogus BITPOS values. */
- if (width == 0)
- return 0;
-
- unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
- unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
- unsigned HOST_WIDE_INT res = xi.elt (start);
- res >>= shift;
- if (shift + width > HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
- res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
- }
- return zext_hwi (res, width);
- }
-
- /* Return the minimum precision needed to store X with sign SGN. */
- template <typename T>
- inline unsigned int
- wi::min_precision (const T &x, signop sgn)
- {
- if (sgn == SIGNED)
- return get_precision (x) - clrsb (x);
- else
- return get_precision (x) - clz (x);
- }
-
- #define SIGNED_BINARY_PREDICATE(OP, F) \
- template <typename T1, typename T2> \
- inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
- OP (const T1 &x, const T2 &y) \
- { \
- return wi::F (x, y); \
- }
-
- SIGNED_BINARY_PREDICATE (operator <, lts_p)
- SIGNED_BINARY_PREDICATE (operator <=, les_p)
- SIGNED_BINARY_PREDICATE (operator >, gts_p)
- SIGNED_BINARY_PREDICATE (operator >=, ges_p)
-
- #undef SIGNED_BINARY_PREDICATE
-
- #define UNARY_OPERATOR(OP, F) \
- template<typename T> \
- WI_UNARY_RESULT (generic_wide_int<T>) \
- OP (const generic_wide_int<T> &x) \
- { \
- return wi::F (x); \
- }
-
- #define BINARY_PREDICATE(OP, F) \
- template<typename T1, typename T2> \
- WI_BINARY_PREDICATE_RESULT (T1, T2) \
- OP (const T1 &x, const T2 &y) \
- { \
- return wi::F (x, y); \
- }
-
- #define BINARY_OPERATOR(OP, F) \
- template<typename T1, typename T2> \
- WI_BINARY_OPERATOR_RESULT (T1, T2) \
- OP (const T1 &x, const T2 &y) \
- { \
- return wi::F (x, y); \
- }
-
- #define SHIFT_OPERATOR(OP, F) \
- template<typename T1, typename T2> \
- WI_BINARY_OPERATOR_RESULT (T1, T1) \
- OP (const T1 &x, const T2 &y) \
- { \
- return wi::F (x, y); \
- }
-
- UNARY_OPERATOR (operator ~, bit_not)
- UNARY_OPERATOR (operator -, neg)
- BINARY_PREDICATE (operator ==, eq_p)
- BINARY_PREDICATE (operator !=, ne_p)
- BINARY_OPERATOR (operator &, bit_and)
- BINARY_OPERATOR (operator |, bit_or)
- BINARY_OPERATOR (operator ^, bit_xor)
- BINARY_OPERATOR (operator +, add)
- BINARY_OPERATOR (operator -, sub)
- BINARY_OPERATOR (operator *, mul)
- SHIFT_OPERATOR (operator <<, lshift)
-
- #undef UNARY_OPERATOR
- #undef BINARY_PREDICATE
- #undef BINARY_OPERATOR
- #undef SHIFT_OPERATOR
-
- template <typename T1, typename T2>
- inline WI_SIGNED_SHIFT_RESULT (T1, T2)
- operator >> (const T1 &x, const T2 &y)
- {
- return wi::arshift (x, y);
- }
-
- template <typename T1, typename T2>
- inline WI_SIGNED_SHIFT_RESULT (T1, T2)
- operator / (const T1 &x, const T2 &y)
- {
- return wi::sdiv_trunc (x, y);
- }
-
- template <typename T1, typename T2>
- inline WI_SIGNED_SHIFT_RESULT (T1, T2)
- operator % (const T1 &x, const T2 &y)
- {
- return wi::smod_trunc (x, y);
- }
-
- template<typename T>
- void
- gt_ggc_mx (generic_wide_int <T> *)
- {
- }
-
- template<typename T>
- void
- gt_pch_nx (generic_wide_int <T> *)
- {
- }
-
- template<typename T>
- void
- gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *)
- {
- }
-
- template<int N>
- void
- gt_ggc_mx (trailing_wide_ints <N> *)
- {
- }
-
- template<int N>
- void
- gt_pch_nx (trailing_wide_ints <N> *)
- {
- }
-
- template<int N>
- void
- gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *)
- {
- }
-
- namespace wi
- {
- /* Used for overloaded functions in which the only other acceptable
- scalar type is a pointer. It stops a plain 0 from being treated
- as a null pointer. */
- struct never_used1 {};
- struct never_used2 {};
-
- wide_int min_value (unsigned int, signop);
- wide_int min_value (never_used1 *);
- wide_int min_value (never_used2 *);
- wide_int max_value (unsigned int, signop);
- wide_int max_value (never_used1 *);
- wide_int max_value (never_used2 *);
-
- /* FIXME: this is target dependent, so should be elsewhere.
- It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
- wide_int from_buffer (const unsigned char *, unsigned int);
-
- #ifndef GENERATOR_FILE
- void to_mpz (const wide_int_ref &, mpz_t, signop);
- #endif
-
- wide_int mask (unsigned int, bool, unsigned int);
- wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
- wide_int set_bit_in_zero (unsigned int, unsigned int);
- wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
- unsigned int);
- wide_int round_down_for_mask (const wide_int &, const wide_int &);
- wide_int round_up_for_mask (const wide_int &, const wide_int &);
-
- template <typename T>
- T mask (unsigned int, bool);
-
- template <typename T>
- T shifted_mask (unsigned int, unsigned int, bool);
-
- template <typename T>
- T set_bit_in_zero (unsigned int);
-
- unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
- unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
- bool, unsigned int);
- unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
- unsigned int, unsigned int, bool);
- }
-
- /* Return a PRECISION-bit integer in which the low WIDTH bits are set
- and the other bits are clear, or the inverse if NEGATE_P. */
- inline wide_int
- wi::mask (unsigned int width, bool negate_p, unsigned int precision)
- {
- wide_int result = wide_int::create (precision);
- result.set_len (mask (result.write_val (), width, negate_p, precision));
- return result;
- }
-
- /* Return a PRECISION-bit integer in which the low START bits are clear,
- the next WIDTH bits are set, and the other bits are clear,
- or the inverse if NEGATE_P. */
- inline wide_int
- wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
- unsigned int precision)
- {
- wide_int result = wide_int::create (precision);
- result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
- precision));
- return result;
- }
-
- /* Return a PRECISION-bit integer in which bit BIT is set and all the
- others are clear. */
- inline wide_int
- wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
- {
- return shifted_mask (bit, 1, false, precision);
- }
-
- /* Return an integer of type T in which the low WIDTH bits are set
- and the other bits are clear, or the inverse if NEGATE_P. */
- template <typename T>
- inline T
- wi::mask (unsigned int width, bool negate_p)
- {
- STATIC_ASSERT (wi::int_traits<T>::precision);
- T result;
- result.set_len (mask (result.write_val (), width, negate_p,
- wi::int_traits <T>::precision));
- return result;
- }
-
- /* Return an integer of type T in which the low START bits are clear,
- the next WIDTH bits are set, and the other bits are clear, or the
- inverse if NEGATE_P. */
- template <typename T>
- inline T
- wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
- {
- STATIC_ASSERT (wi::int_traits<T>::precision);
- T result;
- result.set_len (shifted_mask (result.write_val (), start, width,
- negate_p,
- wi::int_traits <T>::precision));
- return result;
- }
-
- /* Return an integer of type T in which bit BIT is set and all the
- others are clear. */
- template <typename T>
- inline T
- wi::set_bit_in_zero (unsigned int bit)
- {
- return shifted_mask <T> (bit, 1, false);
- }
-
- /* Accumulate a set of overflows into OVERFLOW. */
-
- static inline void
- wi::accumulate_overflow (wi::overflow_type &overflow,
- wi::overflow_type suboverflow)
- {
- if (!suboverflow)
- return;
- if (!overflow)
- overflow = suboverflow;
- else if (overflow != suboverflow)
- overflow = wi::OVF_UNKNOWN;
- }
-
- #endif /* WIDE_INT_H */
|