|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Common Variable Attributes (Using the GNU Compiler Collection (GCC))</title>
-
- <meta name="description" content="Common Variable Attributes (Using the GNU Compiler Collection (GCC))">
- <meta name="keywords" content="Common Variable Attributes (Using the GNU Compiler Collection (GCC))">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Variable-Attributes.html#Variable-Attributes" rel="up" title="Variable Attributes">
- <link href="ARC-Variable-Attributes.html#ARC-Variable-Attributes" rel="next" title="ARC Variable Attributes">
- <link href="Variable-Attributes.html#Variable-Attributes" rel="prev" title="Variable Attributes">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="Common-Variable-Attributes"></a>
- <div class="header">
- <p>
- Next: <a href="ARC-Variable-Attributes.html#ARC-Variable-Attributes" accesskey="n" rel="next">ARC Variable Attributes</a>, Up: <a href="Variable-Attributes.html#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="Common-Variable-Attributes-1"></a>
- <h4 class="subsection">6.34.1 Common Variable Attributes</h4>
-
- <p>The following attributes are supported on most targets.
- </p>
- <dl compact="compact">
- <dt><code>alias ("<var>target</var>")</code></dt>
- <dd><a name="index-alias-variable-attribute"></a>
- <p>The <code>alias</code> variable attribute causes the declaration to be emitted
- as an alias for another symbol known as an <em>alias target</em>. Except
- for top-level qualifiers the alias target must have the same type as
- the alias. For instance, the following
- </p>
- <div class="smallexample">
- <pre class="smallexample">int var_target;
- extern int __attribute__ ((alias ("var_target"))) var_alias;
- </pre></div>
-
- <p>defines <code>var_alias</code> to be an alias for the <code>var_target</code> variable.
- </p>
- <p>It is an error if the alias target is not defined in the same translation
- unit as the alias.
- </p>
- <p>Note that in the absence of the attribute GCC assumes that distinct
- declarations with external linkage denote distinct objects. Using both
- the alias and the alias target to access the same object is undefined
- in a translation unit without a declaration of the alias with the attribute.
- </p>
- <p>This attribute requires assembler and object file support, and may not be
- available on all targets.
- </p>
- <a name="index-aligned-variable-attribute"></a>
- </dd>
- <dt><code>aligned</code></dt>
- <dt><code>aligned (<var>alignment</var>)</code></dt>
- <dd><p>The <code>aligned</code> attribute specifies a minimum alignment for the variable
- or structure field, measured in bytes. When specified, <var>alignment</var> must
- be an integer constant power of 2. Specifying no <var>alignment</var> argument
- implies the maximum alignment for the target, which is often, but by no
- means always, 8 or 16 bytes.
- </p>
- <p>For example, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">int x __attribute__ ((aligned (16))) = 0;
- </pre></div>
-
- <p>causes the compiler to allocate the global variable <code>x</code> on a
- 16-byte boundary. On a 68040, this could be used in conjunction with
- an <code>asm</code> expression to access the <code>move16</code> instruction which
- requires 16-byte aligned operands.
- </p>
- <p>You can also specify the alignment of structure fields. For example, to
- create a double-word aligned <code>int</code> pair, you could write:
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct foo { int x[2] __attribute__ ((aligned (8))); };
- </pre></div>
-
- <p>This is an alternative to creating a union with a <code>double</code> member,
- which forces the union to be double-word aligned.
- </p>
- <p>As in the preceding examples, you can explicitly specify the alignment
- (in bytes) that you wish the compiler to use for a given variable or
- structure field. Alternatively, you can leave out the alignment factor
- and just ask the compiler to align a variable or field to the
- default alignment for the target architecture you are compiling for.
- The default alignment is sufficient for all scalar types, but may not be
- enough for all vector types on a target that supports vector operations.
- The default alignment is fixed for a particular target ABI.
- </p>
- <p>GCC also provides a target specific macro <code>__BIGGEST_ALIGNMENT__</code>,
- which is the largest alignment ever used for any data type on the
- target machine you are compiling for. For example, you could write:
- </p>
- <div class="smallexample">
- <pre class="smallexample">short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
- </pre></div>
-
- <p>The compiler automatically sets the alignment for the declared
- variable or field to <code>__BIGGEST_ALIGNMENT__</code>. Doing this can
- often make copy operations more efficient, because the compiler can
- use whatever instructions copy the biggest chunks of memory when
- performing copies to or from the variables or fields that you have
- aligned this way. Note that the value of <code>__BIGGEST_ALIGNMENT__</code>
- may change depending on command-line options.
- </p>
- <p>When used on a struct, or struct member, the <code>aligned</code> attribute can
- only increase the alignment; in order to decrease it, the <code>packed</code>
- attribute must be specified as well. When used as part of a typedef, the
- <code>aligned</code> attribute can both increase and decrease alignment, and
- specifying the <code>packed</code> attribute generates a warning.
- </p>
- <p>Note that the effectiveness of <code>aligned</code> attributes for static
- variables may be limited by inherent limitations in the system linker
- and/or object file format. On some systems, the linker is
- only able to arrange for variables to be aligned up to a certain maximum
- alignment. (For some linkers, the maximum supported alignment may
- be very very small.) If your linker is only able to align variables
- up to a maximum of 8-byte alignment, then specifying <code>aligned(16)</code>
- in an <code>__attribute__</code> still only provides you with 8-byte
- alignment. See your linker documentation for further information.
- </p>
- <p>Stack variables are not affected by linker restrictions; GCC can properly
- align them on any target.
- </p>
- <p>The <code>aligned</code> attribute can also be used for functions
- (see <a href="Common-Function-Attributes.html#Common-Function-Attributes">Common Function Attributes</a>.)
- </p>
- <a name="index-warn_005fif_005fnot_005faligned-variable-attribute"></a>
- </dd>
- <dt><code>warn_if_not_aligned (<var>alignment</var>)</code></dt>
- <dd><p>This attribute specifies a threshold for the structure field, measured
- in bytes. If the structure field is aligned below the threshold, a
- warning will be issued. For example, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct foo
- {
- int i1;
- int i2;
- unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
- };
- </pre></div>
-
- <p>causes the compiler to issue an warning on <code>struct foo</code>, like
- ‘<samp>warning: alignment 8 of 'struct foo' is less than 16</samp>’.
- The compiler also issues a warning, like ‘<samp>warning: 'x' offset
- 8 in 'struct foo' isn't aligned to 16</samp>’, when the structure field has
- the misaligned offset:
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct __attribute__ ((aligned (16))) foo
- {
- int i1;
- int i2;
- unsigned long long x __attribute__ ((warn_if_not_aligned (16)));
- };
- </pre></div>
-
- <p>This warning can be disabled by <samp>-Wno-if-not-aligned</samp>.
- The <code>warn_if_not_aligned</code> attribute can also be used for types
- (see <a href="Common-Type-Attributes.html#Common-Type-Attributes">Common Type Attributes</a>.)
- </p>
- </dd>
- <dt><code>alloc_size (<var>position</var>)</code></dt>
- <dt><code>alloc_size (<var>position-1</var>, <var>position-2</var>)</code></dt>
- <dd><a name="index-alloc_005fsize-variable-attribute"></a>
- <p>The <code>alloc_size</code> variable attribute may be applied to the declaration
- of a pointer to a function that returns a pointer and takes at least one
- argument of an integer type. It indicates that the returned pointer points
- to an object whose size is given by the function argument at <var>position-1</var>,
- or by the product of the arguments at <var>position-1</var> and <var>position-2</var>.
- Meaningful sizes are positive values less than <code>PTRDIFF_MAX</code>. Other
- sizes are disagnosed when detected. GCC uses this information to improve
- the results of <code>__builtin_object_size</code>.
- </p>
- <p>For instance, the following declarations
- </p>
- <div class="smallexample">
- <pre class="smallexample">typedef __attribute__ ((alloc_size (1, 2))) void*
- (*calloc_ptr) (size_t, size_t);
- typedef __attribute__ ((alloc_size (1))) void*
- (*malloc_ptr) (size_t);
- </pre></div>
-
- <p>specify that <code>calloc_ptr</code> is a pointer of a function that, like
- the standard C function <code>calloc</code>, returns an object whose size
- is given by the product of arguments 1 and 2, and similarly, that
- <code>malloc_ptr</code>, like the standard C function <code>malloc</code>,
- returns an object whose size is given by argument 1 to the function.
- </p>
- </dd>
- <dt><code>cleanup (<var>cleanup_function</var>)</code></dt>
- <dd><a name="index-cleanup-variable-attribute"></a>
- <p>The <code>cleanup</code> attribute runs a function when the variable goes
- out of scope. This attribute can only be applied to auto function
- scope variables; it may not be applied to parameters or variables
- with static storage duration. The function must take one parameter,
- a pointer to a type compatible with the variable. The return value
- of the function (if any) is ignored.
- </p>
- <p>If <samp>-fexceptions</samp> is enabled, then <var>cleanup_function</var>
- is run during the stack unwinding that happens during the
- processing of the exception. Note that the <code>cleanup</code> attribute
- does not allow the exception to be caught, only to perform an action.
- It is undefined what happens if <var>cleanup_function</var> does not
- return normally.
- </p>
- </dd>
- <dt><code>common</code></dt>
- <dt><code>nocommon</code></dt>
- <dd><a name="index-common-variable-attribute"></a>
- <a name="index-nocommon-variable-attribute"></a>
- <a name="index-fcommon-1"></a>
- <a name="index-fno_002dcommon-1"></a>
- <p>The <code>common</code> attribute requests GCC to place a variable in
- “common” storage. The <code>nocommon</code> attribute requests the
- opposite—to allocate space for it directly.
- </p>
- <p>These attributes override the default chosen by the
- <samp>-fno-common</samp> and <samp>-fcommon</samp> flags respectively.
- </p>
- </dd>
- <dt><code>copy</code></dt>
- <dt><code>copy (<var>variable</var>)</code></dt>
- <dd><a name="index-copy-variable-attribute"></a>
- <p>The <code>copy</code> attribute applies the set of attributes with which
- <var>variable</var> has been declared to the declaration of the variable
- to which the attribute is applied. The attribute is designed for
- libraries that define aliases that are expected to specify the same
- set of attributes as the aliased symbols. The <code>copy</code> attribute
- can be used with variables, functions or types. However, the kind
- of symbol to which the attribute is applied (either varible or
- function) must match the kind of symbol to which the argument refers.
- The <code>copy</code> attribute copies only syntactic and semantic attributes
- but not attributes that affect a symbol’s linkage or visibility such as
- <code>alias</code>, <code>visibility</code>, or <code>weak</code>. The <code>deprecated</code>
- attribute is also not copied. See <a href="Common-Function-Attributes.html#Common-Function-Attributes">Common Function Attributes</a>.
- See <a href="Common-Type-Attributes.html#Common-Type-Attributes">Common Type Attributes</a>.
- </p>
- </dd>
- <dt><code>deprecated</code></dt>
- <dt><code>deprecated (<var>msg</var>)</code></dt>
- <dd><a name="index-deprecated-variable-attribute"></a>
- <p>The <code>deprecated</code> attribute results in a warning if the variable
- is used anywhere in the source file. This is useful when identifying
- variables that are expected to be removed in a future version of a
- program. The warning also includes the location of the declaration
- of the deprecated variable, to enable users to easily find further
- information about why the variable is deprecated, or what they should
- do instead. Note that the warning only occurs for uses:
- </p>
- <div class="smallexample">
- <pre class="smallexample">extern int old_var __attribute__ ((deprecated));
- extern int old_var;
- int new_fn () { return old_var; }
- </pre></div>
-
- <p>results in a warning on line 3 but not line 2. The optional <var>msg</var>
- argument, which must be a string, is printed in the warning if
- present.
- </p>
- <p>The <code>deprecated</code> attribute can also be used for functions and
- types (see <a href="Common-Function-Attributes.html#Common-Function-Attributes">Common Function Attributes</a>,
- see <a href="Common-Type-Attributes.html#Common-Type-Attributes">Common Type Attributes</a>).
- </p>
- <p>The message attached to the attribute is affected by the setting of
- the <samp>-fmessage-length</samp> option.
- </p>
- </dd>
- <dt><code>mode (<var>mode</var>)</code></dt>
- <dd><a name="index-mode-variable-attribute"></a>
- <p>This attribute specifies the data type for the declaration—whichever
- type corresponds to the mode <var>mode</var>. This in effect lets you
- request an integer or floating-point type according to its width.
- </p>
- <p>See <a href="http://gcc.gnu.org/onlinedocs/gccint/Machine-Modes.html#Machine-Modes">Machine Modes</a> in <cite>GNU Compiler Collection (GCC) Internals</cite>,
- for a list of the possible keywords for <var>mode</var>.
- You may also specify a mode of <code>byte</code> or <code>__byte__</code> to
- indicate the mode corresponding to a one-byte integer, <code>word</code> or
- <code>__word__</code> for the mode of a one-word integer, and <code>pointer</code>
- or <code>__pointer__</code> for the mode used to represent pointers.
- </p>
- </dd>
- <dt><code>nonstring</code></dt>
- <dd><a name="index-nonstring-variable-attribute"></a>
- <p>The <code>nonstring</code> variable attribute specifies that an object or member
- declaration with type array of <code>char</code>, <code>signed char</code>, or
- <code>unsigned char</code>, or pointer to such a type is intended to store
- character arrays that do not necessarily contain a terminating <code>NUL</code>.
- This is useful in detecting uses of such arrays or pointers with functions
- that expect <code>NUL</code>-terminated strings, and to avoid warnings when such
- an array or pointer is used as an argument to a bounded string manipulation
- function such as <code>strncpy</code>. For example, without the attribute, GCC
- will issue a warning for the <code>strncpy</code> call below because it may
- truncate the copy without appending the terminating <code>NUL</code> character.
- Using the attribute makes it possible to suppress the warning. However,
- when the array is declared with the attribute the call to <code>strlen</code> is
- diagnosed because when the array doesn’t contain a <code>NUL</code>-terminated
- string the call is undefined. To copy, compare, of search non-string
- character arrays use the <code>memcpy</code>, <code>memcmp</code>, <code>memchr</code>,
- and other functions that operate on arrays of bytes. In addition,
- calling <code>strnlen</code> and <code>strndup</code> with such arrays is safe
- provided a suitable bound is specified, and not diagnosed.
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct Data
- {
- char name [32] __attribute__ ((nonstring));
- };
-
- int f (struct Data *pd, const char *s)
- {
- strncpy (pd->name, s, sizeof pd->name);
- …
- return strlen (pd->name); // unsafe, gets a warning
- }
- </pre></div>
-
- </dd>
- <dt><code>packed</code></dt>
- <dd><a name="index-packed-variable-attribute"></a>
- <p>The <code>packed</code> attribute specifies that a structure member should have
- the smallest possible alignment—one bit for a bit-field and one byte
- otherwise, unless a larger value is specified with the <code>aligned</code>
- attribute. The attribute does not apply to non-member objects.
- </p>
- <p>For example in the structure below, the member array <code>x</code> is packed
- so that it immediately follows <code>a</code> with no intervening padding:
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct foo
- {
- char a;
- int x[2] __attribute__ ((packed));
- };
- </pre></div>
-
- <p><em>Note:</em> The 4.1, 4.2 and 4.3 series of GCC ignore the
- <code>packed</code> attribute on bit-fields of type <code>char</code>. This has
- been fixed in GCC 4.4 but the change can lead to differences in the
- structure layout. See the documentation of
- <samp>-Wpacked-bitfield-compat</samp> for more information.
- </p>
- </dd>
- <dt><code>section ("<var>section-name</var>")</code></dt>
- <dd><a name="index-section-variable-attribute"></a>
- <p>Normally, the compiler places the objects it generates in sections like
- <code>data</code> and <code>bss</code>. Sometimes, however, you need additional sections,
- or you need certain particular variables to appear in special sections,
- for example to map to special hardware. The <code>section</code>
- attribute specifies that a variable (or function) lives in a particular
- section. For example, this small program uses several specific section names:
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
- struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
- char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
- int init_data __attribute__ ((section ("INITDATA")));
-
- main()
- {
- /* <span class="roman">Initialize stack pointer</span> */
- init_sp (stack + sizeof (stack));
-
- /* <span class="roman">Initialize initialized data</span> */
- memcpy (&init_data, &data, &edata - &data);
-
- /* <span class="roman">Turn on the serial ports</span> */
- init_duart (&a);
- init_duart (&b);
- }
- </pre></div>
-
- <p>Use the <code>section</code> attribute with
- <em>global</em> variables and not <em>local</em> variables,
- as shown in the example.
- </p>
- <p>You may use the <code>section</code> attribute with initialized or
- uninitialized global variables but the linker requires
- each object be defined once, with the exception that uninitialized
- variables tentatively go in the <code>common</code> (or <code>bss</code>) section
- and can be multiply “defined”. Using the <code>section</code> attribute
- changes what section the variable goes into and may cause the
- linker to issue an error if an uninitialized variable has multiple
- definitions. You can force a variable to be initialized with the
- <samp>-fno-common</samp> flag or the <code>nocommon</code> attribute.
- </p>
- <p>Some file formats do not support arbitrary sections so the <code>section</code>
- attribute is not available on all platforms.
- If you need to map the entire contents of a module to a particular
- section, consider using the facilities of the linker instead.
- </p>
- </dd>
- <dt><code>tls_model ("<var>tls_model</var>")</code></dt>
- <dd><a name="index-tls_005fmodel-variable-attribute"></a>
- <p>The <code>tls_model</code> attribute sets thread-local storage model
- (see <a href="Thread_002dLocal.html#Thread_002dLocal">Thread-Local</a>) of a particular <code>__thread</code> variable,
- overriding <samp>-ftls-model=</samp> command-line switch on a per-variable
- basis.
- The <var>tls_model</var> argument should be one of <code>global-dynamic</code>,
- <code>local-dynamic</code>, <code>initial-exec</code> or <code>local-exec</code>.
- </p>
- <p>Not all targets support this attribute.
- </p>
- </dd>
- <dt><code>unused</code></dt>
- <dd><a name="index-unused-variable-attribute"></a>
- <p>This attribute, attached to a variable, means that the variable is meant
- to be possibly unused. GCC does not produce a warning for this
- variable.
- </p>
- </dd>
- <dt><code>used</code></dt>
- <dd><a name="index-used-variable-attribute"></a>
- <p>This attribute, attached to a variable with static storage, means that
- the variable must be emitted even if it appears that the variable is not
- referenced.
- </p>
- <p>When applied to a static data member of a C++ class template, the
- attribute also means that the member is instantiated if the
- class itself is instantiated.
- </p>
- </dd>
- <dt><code>vector_size (<var>bytes</var>)</code></dt>
- <dd><a name="index-vector_005fsize-variable-attribute"></a>
- <p>This attribute specifies the vector size for the type of the declared
- variable, measured in bytes. The type to which it applies is known as
- the <em>base type</em>. The <var>bytes</var> argument must be a positive
- power-of-two multiple of the base type size. For example, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">int foo __attribute__ ((vector_size (16)));
- </pre></div>
-
- <p>causes the compiler to set the mode for <code>foo</code>, to be 16 bytes,
- divided into <code>int</code> sized units. Assuming a 32-bit <code>int</code>,
- <code>foo</code>’s type is a vector of four units of four bytes each, and
- the corresponding mode of <code>foo</code> is <code>V4SI</code>.
- See <a href="Vector-Extensions.html#Vector-Extensions">Vector Extensions</a>, for details of manipulating vector variables.
- </p>
- <p>This attribute is only applicable to integral and floating scalars,
- although arrays, pointers, and function return values are allowed in
- conjunction with this construct.
- </p>
- <p>Aggregates with this attribute are invalid, even if they are of the same
- size as a corresponding scalar. For example, the declaration:
- </p>
- <div class="smallexample">
- <pre class="smallexample">struct S { int a; };
- struct S __attribute__ ((vector_size (16))) foo;
- </pre></div>
-
- <p>is invalid even if the size of the structure is the same as the size of
- the <code>int</code>.
- </p>
- </dd>
- <dt><code>visibility ("<var>visibility_type</var>")</code></dt>
- <dd><a name="index-visibility-variable-attribute"></a>
- <p>This attribute affects the linkage of the declaration to which it is attached.
- The <code>visibility</code> attribute is described in
- <a href="Common-Function-Attributes.html#Common-Function-Attributes">Common Function Attributes</a>.
- </p>
- </dd>
- <dt><code>weak</code></dt>
- <dd><a name="index-weak-variable-attribute"></a>
- <p>The <code>weak</code> attribute is described in
- <a href="Common-Function-Attributes.html#Common-Function-Attributes">Common Function Attributes</a>.
- </p>
- </dd>
- <dt><code>noinit</code></dt>
- <dd><a name="index-noinit-variable-attribute"></a>
- <p>Any data with the <code>noinit</code> attribute will not be initialized by
- the C runtime startup code, or the program loader. Not initializing
- data in this way can reduce program startup times. This attribute is
- specific to ELF targets and relies on the linker to place such data in
- the right location
- </p>
- </dd>
- </dl>
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="ARC-Variable-Attributes.html#ARC-Variable-Attributes" accesskey="n" rel="next">ARC Variable Attributes</a>, Up: <a href="Variable-Attributes.html#Variable-Attributes" accesskey="u" rel="up">Variable Attributes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|