|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>RS/6000 and PowerPC Options (Using the GNU Compiler Collection (GCC))</title>
-
- <meta name="description" content="RS/6000 and PowerPC Options (Using the GNU Compiler Collection (GCC))">
- <meta name="keywords" content="RS/6000 and PowerPC Options (Using the GNU Compiler Collection (GCC))">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Submodel-Options.html#Submodel-Options" rel="up" title="Submodel Options">
- <link href="RX-Options.html#RX-Options" rel="next" title="RX Options">
- <link href="RL78-Options.html#RL78-Options" rel="prev" title="RL78 Options">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="RS_002f6000-and-PowerPC-Options"></a>
- <div class="header">
- <p>
- Next: <a href="RX-Options.html#RX-Options" accesskey="n" rel="next">RX Options</a>, Previous: <a href="RL78-Options.html#RL78-Options" accesskey="p" rel="prev">RL78 Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="IBM-RS_002f6000-and-PowerPC-Options"></a>
- <h4 class="subsection">3.19.44 IBM RS/6000 and PowerPC Options</h4>
- <a name="index-RS_002f6000-and-PowerPC-Options"></a>
- <a name="index-IBM-RS_002f6000-and-PowerPC-Options"></a>
-
- <p>These ‘<samp>-m</samp>’ options are defined for the IBM RS/6000 and PowerPC:
- </p><dl compact="compact">
- <dt><code>-mpowerpc-gpopt</code></dt>
- <dt><code>-mno-powerpc-gpopt</code></dt>
- <dt><code>-mpowerpc-gfxopt</code></dt>
- <dt><code>-mno-powerpc-gfxopt</code></dt>
- <dt><code>-mpowerpc64</code></dt>
- <dt><code>-mno-powerpc64</code></dt>
- <dt><code>-mmfcrf</code></dt>
- <dt><code>-mno-mfcrf</code></dt>
- <dt><code>-mpopcntb</code></dt>
- <dt><code>-mno-popcntb</code></dt>
- <dt><code>-mpopcntd</code></dt>
- <dt><code>-mno-popcntd</code></dt>
- <dt><code>-mfprnd</code></dt>
- <dt><code>-mno-fprnd</code></dt>
- <dt><code>-mcmpb</code></dt>
- <dt><code>-mno-cmpb</code></dt>
- <dt><code>-mhard-dfp</code></dt>
- <dt><code>-mno-hard-dfp</code></dt>
- <dd><a name="index-mpowerpc_002dgpopt"></a>
- <a name="index-mno_002dpowerpc_002dgpopt"></a>
- <a name="index-mpowerpc_002dgfxopt"></a>
- <a name="index-mno_002dpowerpc_002dgfxopt"></a>
- <a name="index-mpowerpc64"></a>
- <a name="index-mno_002dpowerpc64"></a>
- <a name="index-mmfcrf"></a>
- <a name="index-mno_002dmfcrf"></a>
- <a name="index-mpopcntb"></a>
- <a name="index-mno_002dpopcntb"></a>
- <a name="index-mpopcntd"></a>
- <a name="index-mno_002dpopcntd"></a>
- <a name="index-mfprnd"></a>
- <a name="index-mno_002dfprnd"></a>
- <a name="index-mcmpb"></a>
- <a name="index-mno_002dcmpb"></a>
- <a name="index-mhard_002ddfp"></a>
- <a name="index-mno_002dhard_002ddfp"></a>
- <p>You use these options to specify which instructions are available on the
- processor you are using. The default value of these options is
- determined when configuring GCC. Specifying the
- <samp>-mcpu=<var>cpu_type</var></samp> overrides the specification of these
- options. We recommend you use the <samp>-mcpu=<var>cpu_type</var></samp> option
- rather than the options listed above.
- </p>
- <p>Specifying <samp>-mpowerpc-gpopt</samp> allows
- GCC to use the optional PowerPC architecture instructions in the
- General Purpose group, including floating-point square root. Specifying
- <samp>-mpowerpc-gfxopt</samp> allows GCC to
- use the optional PowerPC architecture instructions in the Graphics
- group, including floating-point select.
- </p>
- <p>The <samp>-mmfcrf</samp> option allows GCC to generate the move from
- condition register field instruction implemented on the POWER4
- processor and other processors that support the PowerPC V2.01
- architecture.
- The <samp>-mpopcntb</samp> option allows GCC to generate the popcount and
- double-precision FP reciprocal estimate instruction implemented on the
- POWER5 processor and other processors that support the PowerPC V2.02
- architecture.
- The <samp>-mpopcntd</samp> option allows GCC to generate the popcount
- instruction implemented on the POWER7 processor and other processors
- that support the PowerPC V2.06 architecture.
- The <samp>-mfprnd</samp> option allows GCC to generate the FP round to
- integer instructions implemented on the POWER5+ processor and other
- processors that support the PowerPC V2.03 architecture.
- The <samp>-mcmpb</samp> option allows GCC to generate the compare bytes
- instruction implemented on the POWER6 processor and other processors
- that support the PowerPC V2.05 architecture.
- The <samp>-mhard-dfp</samp> option allows GCC to generate the decimal
- floating-point instructions implemented on some POWER processors.
- </p>
- <p>The <samp>-mpowerpc64</samp> option allows GCC to generate the additional
- 64-bit instructions that are found in the full PowerPC64 architecture
- and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
- <samp>-mno-powerpc64</samp>.
- </p>
- </dd>
- <dt><code>-mcpu=<var>cpu_type</var></code></dt>
- <dd><a name="index-mcpu-9"></a>
- <p>Set architecture type, register usage, and
- instruction scheduling parameters for machine type <var>cpu_type</var>.
- Supported values for <var>cpu_type</var> are ‘<samp>401</samp>’, ‘<samp>403</samp>’,
- ‘<samp>405</samp>’, ‘<samp>405fp</samp>’, ‘<samp>440</samp>’, ‘<samp>440fp</samp>’, ‘<samp>464</samp>’, ‘<samp>464fp</samp>’,
- ‘<samp>476</samp>’, ‘<samp>476fp</samp>’, ‘<samp>505</samp>’, ‘<samp>601</samp>’, ‘<samp>602</samp>’, ‘<samp>603</samp>’,
- ‘<samp>603e</samp>’, ‘<samp>604</samp>’, ‘<samp>604e</samp>’, ‘<samp>620</samp>’, ‘<samp>630</samp>’, ‘<samp>740</samp>’,
- ‘<samp>7400</samp>’, ‘<samp>7450</samp>’, ‘<samp>750</samp>’, ‘<samp>801</samp>’, ‘<samp>821</samp>’, ‘<samp>823</samp>’,
- ‘<samp>860</samp>’, ‘<samp>970</samp>’, ‘<samp>8540</samp>’, ‘<samp>a2</samp>’, ‘<samp>e300c2</samp>’,
- ‘<samp>e300c3</samp>’, ‘<samp>e500mc</samp>’, ‘<samp>e500mc64</samp>’, ‘<samp>e5500</samp>’,
- ‘<samp>e6500</samp>’, ‘<samp>ec603e</samp>’, ‘<samp>G3</samp>’, ‘<samp>G4</samp>’, ‘<samp>G5</samp>’,
- ‘<samp>titan</samp>’, ‘<samp>power3</samp>’, ‘<samp>power4</samp>’, ‘<samp>power5</samp>’, ‘<samp>power5+</samp>’,
- ‘<samp>power6</samp>’, ‘<samp>power6x</samp>’, ‘<samp>power7</samp>’, ‘<samp>power8</samp>’,
- ‘<samp>power9</samp>’, ‘<samp>future</samp>’, ‘<samp>powerpc</samp>’, ‘<samp>powerpc64</samp>’,
- ‘<samp>powerpc64le</samp>’, ‘<samp>rs64</samp>’, and ‘<samp>native</samp>’.
- </p>
- <p><samp>-mcpu=powerpc</samp>, <samp>-mcpu=powerpc64</samp>, and
- <samp>-mcpu=powerpc64le</samp> specify pure 32-bit PowerPC (either
- endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
- architecture machine types, with an appropriate, generic processor
- model assumed for scheduling purposes.
- </p>
- <p>Specifying ‘<samp>native</samp>’ as cpu type detects and selects the
- architecture option that corresponds to the host processor of the
- system performing the compilation.
- <samp>-mcpu=native</samp> has no effect if GCC does not recognize the
- processor.
- </p>
- <p>The other options specify a specific processor. Code generated under
- those options runs best on that processor, and may not run at all on
- others.
- </p>
- <p>The <samp>-mcpu</samp> options automatically enable or disable the
- following options:
- </p>
- <div class="smallexample">
- <pre class="smallexample">-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
- -mpopcntb -mpopcntd -mpowerpc64
- -mpowerpc-gpopt -mpowerpc-gfxopt
- -mmulhw -mdlmzb -mmfpgpr -mvsx
- -mcrypto -mhtm -mpower8-fusion -mpower8-vector
- -mquad-memory -mquad-memory-atomic -mfloat128
- -mfloat128-hardware -mprefixed -mpcrel -mmma
- </pre></div>
-
- <p>The particular options set for any particular CPU varies between
- compiler versions, depending on what setting seems to produce optimal
- code for that CPU; it doesn’t necessarily reflect the actual hardware’s
- capabilities. If you wish to set an individual option to a particular
- value, you may specify it after the <samp>-mcpu</samp> option, like
- <samp>-mcpu=970 -mno-altivec</samp>.
- </p>
- <p>On AIX, the <samp>-maltivec</samp> and <samp>-mpowerpc64</samp> options are
- not enabled or disabled by the <samp>-mcpu</samp> option at present because
- AIX does not have full support for these options. You may still
- enable or disable them individually if you’re sure it’ll work in your
- environment.
- </p>
- </dd>
- <dt><code>-mtune=<var>cpu_type</var></code></dt>
- <dd><a name="index-mtune-12"></a>
- <p>Set the instruction scheduling parameters for machine type
- <var>cpu_type</var>, but do not set the architecture type or register usage,
- as <samp>-mcpu=<var>cpu_type</var></samp> does. The same
- values for <var>cpu_type</var> are used for <samp>-mtune</samp> as for
- <samp>-mcpu</samp>. If both are specified, the code generated uses the
- architecture and registers set by <samp>-mcpu</samp>, but the
- scheduling parameters set by <samp>-mtune</samp>.
- </p>
- </dd>
- <dt><code>-mcmodel=small</code></dt>
- <dd><a name="index-mcmodel_003dsmall-1"></a>
- <p>Generate PowerPC64 code for the small model: The TOC is limited to
- 64k.
- </p>
- </dd>
- <dt><code>-mcmodel=medium</code></dt>
- <dd><a name="index-mcmodel_003dmedium"></a>
- <p>Generate PowerPC64 code for the medium model: The TOC and other static
- data may be up to a total of 4G in size. This is the default for 64-bit
- Linux.
- </p>
- </dd>
- <dt><code>-mcmodel=large</code></dt>
- <dd><a name="index-mcmodel_003dlarge-1"></a>
- <p>Generate PowerPC64 code for the large model: The TOC may be up to 4G
- in size. Other data and code is only limited by the 64-bit address
- space.
- </p>
- </dd>
- <dt><code>-maltivec</code></dt>
- <dt><code>-mno-altivec</code></dt>
- <dd><a name="index-maltivec"></a>
- <a name="index-mno_002daltivec"></a>
- <p>Generate code that uses (does not use) AltiVec instructions, and also
- enable the use of built-in functions that allow more direct access to
- the AltiVec instruction set. You may also need to set
- <samp>-mabi=altivec</samp> to adjust the current ABI with AltiVec ABI
- enhancements.
- </p>
- <p>When <samp>-maltivec</samp> is used, the element order for AltiVec intrinsics
- such as <code>vec_splat</code>, <code>vec_extract</code>, and <code>vec_insert</code>
- match array element order corresponding to the endianness of the
- target. That is, element zero identifies the leftmost element in a
- vector register when targeting a big-endian platform, and identifies
- the rightmost element in a vector register when targeting a
- little-endian platform.
- </p>
- </dd>
- <dt><code>-mvrsave</code></dt>
- <dt><code>-mno-vrsave</code></dt>
- <dd><a name="index-mvrsave"></a>
- <a name="index-mno_002dvrsave"></a>
- <p>Generate VRSAVE instructions when generating AltiVec code.
- </p>
- </dd>
- <dt><code>-msecure-plt</code></dt>
- <dd><a name="index-msecure_002dplt"></a>
- <p>Generate code that allows <code>ld</code> and <code>ld.so</code>
- to build executables and shared
- libraries with non-executable <code>.plt</code> and <code>.got</code> sections.
- This is a PowerPC
- 32-bit SYSV ABI option.
- </p>
- </dd>
- <dt><code>-mbss-plt</code></dt>
- <dd><a name="index-mbss_002dplt"></a>
- <p>Generate code that uses a BSS <code>.plt</code> section that <code>ld.so</code>
- fills in, and
- requires <code>.plt</code> and <code>.got</code>
- sections that are both writable and executable.
- This is a PowerPC 32-bit SYSV ABI option.
- </p>
- </dd>
- <dt><code>-misel</code></dt>
- <dt><code>-mno-isel</code></dt>
- <dd><a name="index-misel"></a>
- <a name="index-mno_002disel"></a>
- <p>This switch enables or disables the generation of ISEL instructions.
- </p>
- </dd>
- <dt><code>-mvsx</code></dt>
- <dt><code>-mno-vsx</code></dt>
- <dd><a name="index-mvsx"></a>
- <a name="index-mno_002dvsx"></a>
- <p>Generate code that uses (does not use) vector/scalar (VSX)
- instructions, and also enable the use of built-in functions that allow
- more direct access to the VSX instruction set.
- </p>
- </dd>
- <dt><code>-mcrypto</code></dt>
- <dt><code>-mno-crypto</code></dt>
- <dd><a name="index-mcrypto"></a>
- <a name="index-mno_002dcrypto"></a>
- <p>Enable the use (disable) of the built-in functions that allow direct
- access to the cryptographic instructions that were added in version
- 2.07 of the PowerPC ISA.
- </p>
- </dd>
- <dt><code>-mhtm</code></dt>
- <dt><code>-mno-htm</code></dt>
- <dd><a name="index-mhtm"></a>
- <a name="index-mno_002dhtm"></a>
- <p>Enable (disable) the use of the built-in functions that allow direct
- access to the Hardware Transactional Memory (HTM) instructions that
- were added in version 2.07 of the PowerPC ISA.
- </p>
- </dd>
- <dt><code>-mpower8-fusion</code></dt>
- <dt><code>-mno-power8-fusion</code></dt>
- <dd><a name="index-mpower8_002dfusion"></a>
- <a name="index-mno_002dpower8_002dfusion"></a>
- <p>Generate code that keeps (does not keeps) some integer operations
- adjacent so that the instructions can be fused together on power8 and
- later processors.
- </p>
- </dd>
- <dt><code>-mpower8-vector</code></dt>
- <dt><code>-mno-power8-vector</code></dt>
- <dd><a name="index-mpower8_002dvector"></a>
- <a name="index-mno_002dpower8_002dvector"></a>
- <p>Generate code that uses (does not use) the vector and scalar
- instructions that were added in version 2.07 of the PowerPC ISA. Also
- enable the use of built-in functions that allow more direct access to
- the vector instructions.
- </p>
- </dd>
- <dt><code>-mquad-memory</code></dt>
- <dt><code>-mno-quad-memory</code></dt>
- <dd><a name="index-mquad_002dmemory"></a>
- <a name="index-mno_002dquad_002dmemory"></a>
- <p>Generate code that uses (does not use) the non-atomic quad word memory
- instructions. The <samp>-mquad-memory</samp> option requires use of
- 64-bit mode.
- </p>
- </dd>
- <dt><code>-mquad-memory-atomic</code></dt>
- <dt><code>-mno-quad-memory-atomic</code></dt>
- <dd><a name="index-mquad_002dmemory_002datomic"></a>
- <a name="index-mno_002dquad_002dmemory_002datomic"></a>
- <p>Generate code that uses (does not use) the atomic quad word memory
- instructions. The <samp>-mquad-memory-atomic</samp> option requires use of
- 64-bit mode.
- </p>
- </dd>
- <dt><code>-mfloat128</code></dt>
- <dt><code>-mno-float128</code></dt>
- <dd><a name="index-mfloat128"></a>
- <a name="index-mno_002dfloat128"></a>
- <p>Enable/disable the <var>__float128</var> keyword for IEEE 128-bit floating point
- and use either software emulation for IEEE 128-bit floating point or
- hardware instructions.
- </p>
- <p>The VSX instruction set (<samp>-mvsx</samp>, <samp>-mcpu=power7</samp>,
- <samp>-mcpu=power8</samp>), or <samp>-mcpu=power9</samp> must be enabled to
- use the IEEE 128-bit floating point support. The IEEE 128-bit
- floating point support only works on PowerPC Linux systems.
- </p>
- <p>The default for <samp>-mfloat128</samp> is enabled on PowerPC Linux
- systems using the VSX instruction set, and disabled on other systems.
- </p>
- <p>If you use the ISA 3.0 instruction set (<samp>-mpower9-vector</samp> or
- <samp>-mcpu=power9</samp>) on a 64-bit system, the IEEE 128-bit floating
- point support will also enable the generation of ISA 3.0 IEEE 128-bit
- floating point instructions. Otherwise, if you do not specify to
- generate ISA 3.0 instructions or you are targeting a 32-bit big endian
- system, IEEE 128-bit floating point will be done with software
- emulation.
- </p>
- </dd>
- <dt><code>-mfloat128-hardware</code></dt>
- <dt><code>-mno-float128-hardware</code></dt>
- <dd><a name="index-mfloat128_002dhardware"></a>
- <a name="index-mno_002dfloat128_002dhardware"></a>
- <p>Enable/disable using ISA 3.0 hardware instructions to support the
- <var>__float128</var> data type.
- </p>
- <p>The default for <samp>-mfloat128-hardware</samp> is enabled on PowerPC
- Linux systems using the ISA 3.0 instruction set, and disabled on other
- systems.
- </p>
- </dd>
- <dt><code>-m32</code></dt>
- <dt><code>-m64</code></dt>
- <dd><a name="index-m32-1"></a>
- <a name="index-m64-1"></a>
- <p>Generate code for 32-bit or 64-bit environments of Darwin and SVR4
- targets (including GNU/Linux). The 32-bit environment sets int, long
- and pointer to 32 bits and generates code that runs on any PowerPC
- variant. The 64-bit environment sets int to 32 bits and long and
- pointer to 64 bits, and generates code for PowerPC64, as for
- <samp>-mpowerpc64</samp>.
- </p>
- </dd>
- <dt><code>-mfull-toc</code></dt>
- <dt><code>-mno-fp-in-toc</code></dt>
- <dt><code>-mno-sum-in-toc</code></dt>
- <dt><code>-mminimal-toc</code></dt>
- <dd><a name="index-mfull_002dtoc"></a>
- <a name="index-mno_002dfp_002din_002dtoc"></a>
- <a name="index-mno_002dsum_002din_002dtoc"></a>
- <a name="index-mminimal_002dtoc"></a>
- <p>Modify generation of the TOC (Table Of Contents), which is created for
- every executable file. The <samp>-mfull-toc</samp> option is selected by
- default. In that case, GCC allocates at least one TOC entry for
- each unique non-automatic variable reference in your program. GCC
- also places floating-point constants in the TOC. However, only
- 16,384 entries are available in the TOC.
- </p>
- <p>If you receive a linker error message that saying you have overflowed
- the available TOC space, you can reduce the amount of TOC space used
- with the <samp>-mno-fp-in-toc</samp> and <samp>-mno-sum-in-toc</samp> options.
- <samp>-mno-fp-in-toc</samp> prevents GCC from putting floating-point
- constants in the TOC and <samp>-mno-sum-in-toc</samp> forces GCC to
- generate code to calculate the sum of an address and a constant at
- run time instead of putting that sum into the TOC. You may specify one
- or both of these options. Each causes GCC to produce very slightly
- slower and larger code at the expense of conserving TOC space.
- </p>
- <p>If you still run out of space in the TOC even when you specify both of
- these options, specify <samp>-mminimal-toc</samp> instead. This option causes
- GCC to make only one TOC entry for every file. When you specify this
- option, GCC produces code that is slower and larger but which
- uses extremely little TOC space. You may wish to use this option
- only on files that contain less frequently-executed code.
- </p>
- </dd>
- <dt><code>-maix64</code></dt>
- <dt><code>-maix32</code></dt>
- <dd><a name="index-maix64"></a>
- <a name="index-maix32"></a>
- <p>Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
- <code>long</code> type, and the infrastructure needed to support them.
- Specifying <samp>-maix64</samp> implies <samp>-mpowerpc64</samp>,
- while <samp>-maix32</samp> disables the 64-bit ABI and
- implies <samp>-mno-powerpc64</samp>. GCC defaults to <samp>-maix32</samp>.
- </p>
- </dd>
- <dt><code>-mxl-compat</code></dt>
- <dt><code>-mno-xl-compat</code></dt>
- <dd><a name="index-mxl_002dcompat"></a>
- <a name="index-mno_002dxl_002dcompat"></a>
- <p>Produce code that conforms more closely to IBM XL compiler semantics
- when using AIX-compatible ABI. Pass floating-point arguments to
- prototyped functions beyond the register save area (RSA) on the stack
- in addition to argument FPRs. Do not assume that most significant
- double in 128-bit long double value is properly rounded when comparing
- values and converting to double. Use XL symbol names for long double
- support routines.
- </p>
- <p>The AIX calling convention was extended but not initially documented to
- handle an obscure K&R C case of calling a function that takes the
- address of its arguments with fewer arguments than declared. IBM XL
- compilers access floating-point arguments that do not fit in the
- RSA from the stack when a subroutine is compiled without
- optimization. Because always storing floating-point arguments on the
- stack is inefficient and rarely needed, this option is not enabled by
- default and only is necessary when calling subroutines compiled by IBM
- XL compilers without optimization.
- </p>
- </dd>
- <dt><code>-mpe</code></dt>
- <dd><a name="index-mpe"></a>
- <p>Support <em>IBM RS/6000 SP</em> <em>Parallel Environment</em> (PE). Link an
- application written to use message passing with special startup code to
- enable the application to run. The system must have PE installed in the
- standard location (<samp>/usr/lpp/ppe.poe/</samp>), or the <samp>specs</samp> file
- must be overridden with the <samp>-specs=</samp> option to specify the
- appropriate directory location. The Parallel Environment does not
- support threads, so the <samp>-mpe</samp> option and the <samp>-pthread</samp>
- option are incompatible.
- </p>
- </dd>
- <dt><code>-malign-natural</code></dt>
- <dt><code>-malign-power</code></dt>
- <dd><a name="index-malign_002dnatural"></a>
- <a name="index-malign_002dpower"></a>
- <p>On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
- <samp>-malign-natural</samp> overrides the ABI-defined alignment of larger
- types, such as floating-point doubles, on their natural size-based boundary.
- The option <samp>-malign-power</samp> instructs GCC to follow the ABI-specified
- alignment rules. GCC defaults to the standard alignment defined in the ABI.
- </p>
- <p>On 64-bit Darwin, natural alignment is the default, and <samp>-malign-power</samp>
- is not supported.
- </p>
- </dd>
- <dt><code>-msoft-float</code></dt>
- <dt><code>-mhard-float</code></dt>
- <dd><a name="index-msoft_002dfloat-10"></a>
- <a name="index-mhard_002dfloat-6"></a>
- <p>Generate code that does not use (uses) the floating-point register set.
- Software floating-point emulation is provided if you use the
- <samp>-msoft-float</samp> option, and pass the option to GCC when linking.
- </p>
- </dd>
- <dt><code>-mmultiple</code></dt>
- <dt><code>-mno-multiple</code></dt>
- <dd><a name="index-mmultiple"></a>
- <a name="index-mno_002dmultiple"></a>
- <p>Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions. These
- instructions are generated by default on POWER systems, and not
- generated on PowerPC systems. Do not use <samp>-mmultiple</samp> on little-endian
- PowerPC systems, since those instructions do not work when the
- processor is in little-endian mode. The exceptions are PPC740 and
- PPC750 which permit these instructions in little-endian mode.
- </p>
- </dd>
- <dt><code>-mupdate</code></dt>
- <dt><code>-mno-update</code></dt>
- <dd><a name="index-mupdate"></a>
- <a name="index-mno_002dupdate"></a>
- <p>Generate code that uses (does not use) the load or store instructions
- that update the base register to the address of the calculated memory
- location. These instructions are generated by default. If you use
- <samp>-mno-update</samp>, there is a small window between the time that the
- stack pointer is updated and the address of the previous frame is
- stored, which means code that walks the stack frame across interrupts or
- signals may get corrupted data.
- </p>
- </dd>
- <dt><code>-mavoid-indexed-addresses</code></dt>
- <dt><code>-mno-avoid-indexed-addresses</code></dt>
- <dd><a name="index-mavoid_002dindexed_002daddresses"></a>
- <a name="index-mno_002davoid_002dindexed_002daddresses"></a>
- <p>Generate code that tries to avoid (not avoid) the use of indexed load
- or store instructions. These instructions can incur a performance
- penalty on Power6 processors in certain situations, such as when
- stepping through large arrays that cross a 16M boundary. This option
- is enabled by default when targeting Power6 and disabled otherwise.
- </p>
- </dd>
- <dt><code>-mfused-madd</code></dt>
- <dt><code>-mno-fused-madd</code></dt>
- <dd><a name="index-mfused_002dmadd-2"></a>
- <a name="index-mno_002dfused_002dmadd-2"></a>
- <p>Generate code that uses (does not use) the floating-point multiply and
- accumulate instructions. These instructions are generated by default
- if hardware floating point is used. The machine-dependent
- <samp>-mfused-madd</samp> option is now mapped to the machine-independent
- <samp>-ffp-contract=fast</samp> option, and <samp>-mno-fused-madd</samp> is
- mapped to <samp>-ffp-contract=off</samp>.
- </p>
- </dd>
- <dt><code>-mmulhw</code></dt>
- <dt><code>-mno-mulhw</code></dt>
- <dd><a name="index-mmulhw"></a>
- <a name="index-mno_002dmulhw"></a>
- <p>Generate code that uses (does not use) the half-word multiply and
- multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
- These instructions are generated by default when targeting those
- processors.
- </p>
- </dd>
- <dt><code>-mdlmzb</code></dt>
- <dt><code>-mno-dlmzb</code></dt>
- <dd><a name="index-mdlmzb"></a>
- <a name="index-mno_002ddlmzb"></a>
- <p>Generate code that uses (does not use) the string-search ‘<samp>dlmzb</samp>’
- instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
- generated by default when targeting those processors.
- </p>
- </dd>
- <dt><code>-mno-bit-align</code></dt>
- <dt><code>-mbit-align</code></dt>
- <dd><a name="index-mno_002dbit_002dalign"></a>
- <a name="index-mbit_002dalign"></a>
- <p>On System V.4 and embedded PowerPC systems do not (do) force structures
- and unions that contain bit-fields to be aligned to the base type of the
- bit-field.
- </p>
- <p>For example, by default a structure containing nothing but 8
- <code>unsigned</code> bit-fields of length 1 is aligned to a 4-byte
- boundary and has a size of 4 bytes. By using <samp>-mno-bit-align</samp>,
- the structure is aligned to a 1-byte boundary and is 1 byte in
- size.
- </p>
- </dd>
- <dt><code>-mno-strict-align</code></dt>
- <dt><code>-mstrict-align</code></dt>
- <dd><a name="index-mno_002dstrict_002dalign-2"></a>
- <a name="index-mstrict_002dalign-3"></a>
- <p>On System V.4 and embedded PowerPC systems do not (do) assume that
- unaligned memory references are handled by the system.
- </p>
- </dd>
- <dt><code>-mrelocatable</code></dt>
- <dt><code>-mno-relocatable</code></dt>
- <dd><a name="index-mrelocatable"></a>
- <a name="index-mno_002drelocatable"></a>
- <p>Generate code that allows (does not allow) a static executable to be
- relocated to a different address at run time. A simple embedded
- PowerPC system loader should relocate the entire contents of
- <code>.got2</code> and 4-byte locations listed in the <code>.fixup</code> section,
- a table of 32-bit addresses generated by this option. For this to
- work, all objects linked together must be compiled with
- <samp>-mrelocatable</samp> or <samp>-mrelocatable-lib</samp>.
- <samp>-mrelocatable</samp> code aligns the stack to an 8-byte boundary.
- </p>
- </dd>
- <dt><code>-mrelocatable-lib</code></dt>
- <dt><code>-mno-relocatable-lib</code></dt>
- <dd><a name="index-mrelocatable_002dlib"></a>
- <a name="index-mno_002drelocatable_002dlib"></a>
- <p>Like <samp>-mrelocatable</samp>, <samp>-mrelocatable-lib</samp> generates a
- <code>.fixup</code> section to allow static executables to be relocated at
- run time, but <samp>-mrelocatable-lib</samp> does not use the smaller stack
- alignment of <samp>-mrelocatable</samp>. Objects compiled with
- <samp>-mrelocatable-lib</samp> may be linked with objects compiled with
- any combination of the <samp>-mrelocatable</samp> options.
- </p>
- </dd>
- <dt><code>-mno-toc</code></dt>
- <dt><code>-mtoc</code></dt>
- <dd><a name="index-mno_002dtoc"></a>
- <a name="index-mtoc"></a>
- <p>On System V.4 and embedded PowerPC systems do not (do) assume that
- register 2 contains a pointer to a global area pointing to the addresses
- used in the program.
- </p>
- </dd>
- <dt><code>-mlittle</code></dt>
- <dt><code>-mlittle-endian</code></dt>
- <dd><a name="index-mlittle"></a>
- <a name="index-mlittle_002dendian-10"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the
- processor in little-endian mode. The <samp>-mlittle-endian</samp> option is
- the same as <samp>-mlittle</samp>.
- </p>
- </dd>
- <dt><code>-mbig</code></dt>
- <dt><code>-mbig-endian</code></dt>
- <dd><a name="index-mbig"></a>
- <a name="index-mbig_002dendian-10"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the
- processor in big-endian mode. The <samp>-mbig-endian</samp> option is
- the same as <samp>-mbig</samp>.
- </p>
- </dd>
- <dt><code>-mdynamic-no-pic</code></dt>
- <dd><a name="index-mdynamic_002dno_002dpic"></a>
- <p>On Darwin and Mac OS X systems, compile code so that it is not
- relocatable, but that its external references are relocatable. The
- resulting code is suitable for applications, but not shared
- libraries.
- </p>
- </dd>
- <dt><code>-msingle-pic-base</code></dt>
- <dd><a name="index-msingle_002dpic_002dbase-1"></a>
- <p>Treat the register used for PIC addressing as read-only, rather than
- loading it in the prologue for each function. The runtime system is
- responsible for initializing this register with an appropriate value
- before execution begins.
- </p>
- </dd>
- <dt><code>-mprioritize-restricted-insns=<var>priority</var></code></dt>
- <dd><a name="index-mprioritize_002drestricted_002dinsns"></a>
- <p>This option controls the priority that is assigned to
- dispatch-slot restricted instructions during the second scheduling
- pass. The argument <var>priority</var> takes the value ‘<samp>0</samp>’, ‘<samp>1</samp>’,
- or ‘<samp>2</samp>’ to assign no, highest, or second-highest (respectively)
- priority to dispatch-slot restricted
- instructions.
- </p>
- </dd>
- <dt><code>-msched-costly-dep=<var>dependence_type</var></code></dt>
- <dd><a name="index-msched_002dcostly_002ddep"></a>
- <p>This option controls which dependences are considered costly
- by the target during instruction scheduling. The argument
- <var>dependence_type</var> takes one of the following values:
- </p>
- <dl compact="compact">
- <dt>‘<samp>no</samp>’</dt>
- <dd><p>No dependence is costly.
- </p>
- </dd>
- <dt>‘<samp>all</samp>’</dt>
- <dd><p>All dependences are costly.
- </p>
- </dd>
- <dt>‘<samp>true_store_to_load</samp>’</dt>
- <dd><p>A true dependence from store to load is costly.
- </p>
- </dd>
- <dt>‘<samp>store_to_load</samp>’</dt>
- <dd><p>Any dependence from store to load is costly.
- </p>
- </dd>
- <dt><var>number</var></dt>
- <dd><p>Any dependence for which the latency is greater than or equal to
- <var>number</var> is costly.
- </p></dd>
- </dl>
-
- </dd>
- <dt><code>-minsert-sched-nops=<var>scheme</var></code></dt>
- <dd><a name="index-minsert_002dsched_002dnops"></a>
- <p>This option controls which NOP insertion scheme is used during
- the second scheduling pass. The argument <var>scheme</var> takes one of the
- following values:
- </p>
- <dl compact="compact">
- <dt>‘<samp>no</samp>’</dt>
- <dd><p>Don’t insert NOPs.
- </p>
- </dd>
- <dt>‘<samp>pad</samp>’</dt>
- <dd><p>Pad with NOPs any dispatch group that has vacant issue slots,
- according to the scheduler’s grouping.
- </p>
- </dd>
- <dt>‘<samp>regroup_exact</samp>’</dt>
- <dd><p>Insert NOPs to force costly dependent insns into
- separate groups. Insert exactly as many NOPs as needed to force an insn
- to a new group, according to the estimated processor grouping.
- </p>
- </dd>
- <dt><var>number</var></dt>
- <dd><p>Insert NOPs to force costly dependent insns into
- separate groups. Insert <var>number</var> NOPs to force an insn to a new group.
- </p></dd>
- </dl>
-
- </dd>
- <dt><code>-mcall-sysv</code></dt>
- <dd><a name="index-mcall_002dsysv"></a>
- <p>On System V.4 and embedded PowerPC systems compile code using calling
- conventions that adhere to the March 1995 draft of the System V
- Application Binary Interface, PowerPC processor supplement. This is the
- default unless you configured GCC using ‘<samp>powerpc-*-eabiaix</samp>’.
- </p>
- </dd>
- <dt><code>-mcall-sysv-eabi</code></dt>
- <dt><code>-mcall-eabi</code></dt>
- <dd><a name="index-mcall_002dsysv_002deabi"></a>
- <a name="index-mcall_002deabi"></a>
- <p>Specify both <samp>-mcall-sysv</samp> and <samp>-meabi</samp> options.
- </p>
- </dd>
- <dt><code>-mcall-sysv-noeabi</code></dt>
- <dd><a name="index-mcall_002dsysv_002dnoeabi"></a>
- <p>Specify both <samp>-mcall-sysv</samp> and <samp>-mno-eabi</samp> options.
- </p>
- </dd>
- <dt><code>-mcall-aixdesc</code></dt>
- <dd><a name="index-m"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the AIX
- operating system.
- </p>
- </dd>
- <dt><code>-mcall-linux</code></dt>
- <dd><a name="index-mcall_002dlinux"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the
- Linux-based GNU system.
- </p>
- </dd>
- <dt><code>-mcall-freebsd</code></dt>
- <dd><a name="index-mcall_002dfreebsd"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the
- FreeBSD operating system.
- </p>
- </dd>
- <dt><code>-mcall-netbsd</code></dt>
- <dd><a name="index-mcall_002dnetbsd"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the
- NetBSD operating system.
- </p>
- </dd>
- <dt><code>-mcall-openbsd</code></dt>
- <dd><a name="index-mcall_002dnetbsd-1"></a>
- <p>On System V.4 and embedded PowerPC systems compile code for the
- OpenBSD operating system.
- </p>
- </dd>
- <dt><code>-mtraceback=<var>traceback_type</var></code></dt>
- <dd><a name="index-mtraceback"></a>
- <p>Select the type of traceback table. Valid values for <var>traceback_type</var>
- are ‘<samp>full</samp>’, ‘<samp>part</samp>’, and ‘<samp>no</samp>’.
- </p>
- </dd>
- <dt><code>-maix-struct-return</code></dt>
- <dd><a name="index-maix_002dstruct_002dreturn"></a>
- <p>Return all structures in memory (as specified by the AIX ABI).
- </p>
- </dd>
- <dt><code>-msvr4-struct-return</code></dt>
- <dd><a name="index-msvr4_002dstruct_002dreturn"></a>
- <p>Return structures smaller than 8 bytes in registers (as specified by the
- SVR4 ABI).
- </p>
- </dd>
- <dt><code>-mabi=<var>abi-type</var></code></dt>
- <dd><a name="index-mabi-4"></a>
- <p>Extend the current ABI with a particular extension, or remove such extension.
- Valid values are ‘<samp>altivec</samp>’, ‘<samp>no-altivec</samp>’,
- ‘<samp>ibmlongdouble</samp>’, ‘<samp>ieeelongdouble</samp>’,
- ‘<samp>elfv1</samp>’, ‘<samp>elfv2</samp>’.
- </p>
- </dd>
- <dt><code>-mabi=ibmlongdouble</code></dt>
- <dd><a name="index-mabi_003dibmlongdouble"></a>
- <p>Change the current ABI to use IBM extended-precision long double.
- This is not likely to work if your system defaults to using IEEE
- extended-precision long double. If you change the long double type
- from IEEE extended-precision, the compiler will issue a warning unless
- you use the <samp>-Wno-psabi</samp> option. Requires <samp>-mlong-double-128</samp>
- to be enabled.
- </p>
- </dd>
- <dt><code>-mabi=ieeelongdouble</code></dt>
- <dd><a name="index-mabi_003dieeelongdouble"></a>
- <p>Change the current ABI to use IEEE extended-precision long double.
- This is not likely to work if your system defaults to using IBM
- extended-precision long double. If you change the long double type
- from IBM extended-precision, the compiler will issue a warning unless
- you use the <samp>-Wno-psabi</samp> option. Requires <samp>-mlong-double-128</samp>
- to be enabled.
- </p>
- </dd>
- <dt><code>-mabi=elfv1</code></dt>
- <dd><a name="index-mabi_003delfv1"></a>
- <p>Change the current ABI to use the ELFv1 ABI.
- This is the default ABI for big-endian PowerPC 64-bit Linux.
- Overriding the default ABI requires special system support and is
- likely to fail in spectacular ways.
- </p>
- </dd>
- <dt><code>-mabi=elfv2</code></dt>
- <dd><a name="index-mabi_003delfv2"></a>
- <p>Change the current ABI to use the ELFv2 ABI.
- This is the default ABI for little-endian PowerPC 64-bit Linux.
- Overriding the default ABI requires special system support and is
- likely to fail in spectacular ways.
- </p>
- </dd>
- <dt><code>-mgnu-attribute</code></dt>
- <dt><code>-mno-gnu-attribute</code></dt>
- <dd><a name="index-mgnu_002dattribute"></a>
- <a name="index-mno_002dgnu_002dattribute"></a>
- <p>Emit .gnu_attribute assembly directives to set tag/value pairs in a
- .gnu.attributes section that specify ABI variations in function
- parameters or return values.
- </p>
- </dd>
- <dt><code>-mprototype</code></dt>
- <dt><code>-mno-prototype</code></dt>
- <dd><a name="index-mprototype"></a>
- <a name="index-mno_002dprototype"></a>
- <p>On System V.4 and embedded PowerPC systems assume that all calls to
- variable argument functions are properly prototyped. Otherwise, the
- compiler must insert an instruction before every non-prototyped call to
- set or clear bit 6 of the condition code register (<code>CR</code>) to
- indicate whether floating-point values are passed in the floating-point
- registers in case the function takes variable arguments. With
- <samp>-mprototype</samp>, only calls to prototyped variable argument functions
- set or clear the bit.
- </p>
- </dd>
- <dt><code>-msim</code></dt>
- <dd><a name="index-msim-8"></a>
- <p>On embedded PowerPC systems, assume that the startup module is called
- <samp>sim-crt0.o</samp> and that the standard C libraries are <samp>libsim.a</samp> and
- <samp>libc.a</samp>. This is the default for ‘<samp>powerpc-*-eabisim</samp>’
- configurations.
- </p>
- </dd>
- <dt><code>-mmvme</code></dt>
- <dd><a name="index-mmvme"></a>
- <p>On embedded PowerPC systems, assume that the startup module is called
- <samp>crt0.o</samp> and the standard C libraries are <samp>libmvme.a</samp> and
- <samp>libc.a</samp>.
- </p>
- </dd>
- <dt><code>-mads</code></dt>
- <dd><a name="index-mads"></a>
- <p>On embedded PowerPC systems, assume that the startup module is called
- <samp>crt0.o</samp> and the standard C libraries are <samp>libads.a</samp> and
- <samp>libc.a</samp>.
- </p>
- </dd>
- <dt><code>-myellowknife</code></dt>
- <dd><a name="index-myellowknife"></a>
- <p>On embedded PowerPC systems, assume that the startup module is called
- <samp>crt0.o</samp> and the standard C libraries are <samp>libyk.a</samp> and
- <samp>libc.a</samp>.
- </p>
- </dd>
- <dt><code>-mvxworks</code></dt>
- <dd><a name="index-mvxworks"></a>
- <p>On System V.4 and embedded PowerPC systems, specify that you are
- compiling for a VxWorks system.
- </p>
- </dd>
- <dt><code>-memb</code></dt>
- <dd><a name="index-memb"></a>
- <p>On embedded PowerPC systems, set the <code>PPC_EMB</code> bit in the ELF flags
- header to indicate that ‘<samp>eabi</samp>’ extended relocations are used.
- </p>
- </dd>
- <dt><code>-meabi</code></dt>
- <dt><code>-mno-eabi</code></dt>
- <dd><a name="index-meabi"></a>
- <a name="index-mno_002deabi"></a>
- <p>On System V.4 and embedded PowerPC systems do (do not) adhere to the
- Embedded Applications Binary Interface (EABI), which is a set of
- modifications to the System V.4 specifications. Selecting <samp>-meabi</samp>
- means that the stack is aligned to an 8-byte boundary, a function
- <code>__eabi</code> is called from <code>main</code> to set up the EABI
- environment, and the <samp>-msdata</samp> option can use both <code>r2</code> and
- <code>r13</code> to point to two separate small data areas. Selecting
- <samp>-mno-eabi</samp> means that the stack is aligned to a 16-byte boundary,
- no EABI initialization function is called from <code>main</code>, and the
- <samp>-msdata</samp> option only uses <code>r13</code> to point to a single
- small data area. The <samp>-meabi</samp> option is on by default if you
- configured GCC using one of the ‘<samp>powerpc*-*-eabi*</samp>’ options.
- </p>
- </dd>
- <dt><code>-msdata=eabi</code></dt>
- <dd><a name="index-msdata_003deabi"></a>
- <p>On System V.4 and embedded PowerPC systems, put small initialized
- <code>const</code> global and static data in the <code>.sdata2</code> section, which
- is pointed to by register <code>r2</code>. Put small initialized
- non-<code>const</code> global and static data in the <code>.sdata</code> section,
- which is pointed to by register <code>r13</code>. Put small uninitialized
- global and static data in the <code>.sbss</code> section, which is adjacent to
- the <code>.sdata</code> section. The <samp>-msdata=eabi</samp> option is
- incompatible with the <samp>-mrelocatable</samp> option. The
- <samp>-msdata=eabi</samp> option also sets the <samp>-memb</samp> option.
- </p>
- </dd>
- <dt><code>-msdata=sysv</code></dt>
- <dd><a name="index-msdata_003dsysv"></a>
- <p>On System V.4 and embedded PowerPC systems, put small global and static
- data in the <code>.sdata</code> section, which is pointed to by register
- <code>r13</code>. Put small uninitialized global and static data in the
- <code>.sbss</code> section, which is adjacent to the <code>.sdata</code> section.
- The <samp>-msdata=sysv</samp> option is incompatible with the
- <samp>-mrelocatable</samp> option.
- </p>
- </dd>
- <dt><code>-msdata=default</code></dt>
- <dt><code>-msdata</code></dt>
- <dd><a name="index-msdata_003ddefault-1"></a>
- <a name="index-msdata-2"></a>
- <p>On System V.4 and embedded PowerPC systems, if <samp>-meabi</samp> is used,
- compile code the same as <samp>-msdata=eabi</samp>, otherwise compile code the
- same as <samp>-msdata=sysv</samp>.
- </p>
- </dd>
- <dt><code>-msdata=data</code></dt>
- <dd><a name="index-msdata_003ddata"></a>
- <p>On System V.4 and embedded PowerPC systems, put small global
- data in the <code>.sdata</code> section. Put small uninitialized global
- data in the <code>.sbss</code> section. Do not use register <code>r13</code>
- to address small data however. This is the default behavior unless
- other <samp>-msdata</samp> options are used.
- </p>
- </dd>
- <dt><code>-msdata=none</code></dt>
- <dt><code>-mno-sdata</code></dt>
- <dd><a name="index-msdata_003dnone-2"></a>
- <a name="index-mno_002dsdata-2"></a>
- <p>On embedded PowerPC systems, put all initialized global and static data
- in the <code>.data</code> section, and all uninitialized data in the
- <code>.bss</code> section.
- </p>
- </dd>
- <dt><code>-mreadonly-in-sdata</code></dt>
- <dd><a name="index-mreadonly_002din_002dsdata"></a>
- <a name="index-mno_002dreadonly_002din_002dsdata"></a>
- <p>Put read-only objects in the <code>.sdata</code> section as well. This is the
- default.
- </p>
- </dd>
- <dt><code>-mblock-move-inline-limit=<var>num</var></code></dt>
- <dd><a name="index-mblock_002dmove_002dinline_002dlimit"></a>
- <p>Inline all block moves (such as calls to <code>memcpy</code> or structure
- copies) less than or equal to <var>num</var> bytes. The minimum value for
- <var>num</var> is 32 bytes on 32-bit targets and 64 bytes on 64-bit
- targets. The default value is target-specific.
- </p>
- </dd>
- <dt><code>-mblock-compare-inline-limit=<var>num</var></code></dt>
- <dd><a name="index-mblock_002dcompare_002dinline_002dlimit"></a>
- <p>Generate non-looping inline code for all block compares (such as calls
- to <code>memcmp</code> or structure compares) less than or equal to <var>num</var>
- bytes. If <var>num</var> is 0, all inline expansion (non-loop and loop) of
- block compare is disabled. The default value is target-specific.
- </p>
- </dd>
- <dt><code>-mblock-compare-inline-loop-limit=<var>num</var></code></dt>
- <dd><a name="index-mblock_002dcompare_002dinline_002dloop_002dlimit"></a>
- <p>Generate an inline expansion using loop code for all block compares that
- are less than or equal to <var>num</var> bytes, but greater than the limit
- for non-loop inline block compare expansion. If the block length is not
- constant, at most <var>num</var> bytes will be compared before <code>memcmp</code>
- is called to compare the remainder of the block. The default value is
- target-specific.
- </p>
- </dd>
- <dt><code>-mstring-compare-inline-limit=<var>num</var></code></dt>
- <dd><a name="index-mstring_002dcompare_002dinline_002dlimit"></a>
- <p>Compare at most <var>num</var> string bytes with inline code.
- If the difference or end of string is not found at the
- end of the inline compare a call to <code>strcmp</code> or <code>strncmp</code> will
- take care of the rest of the comparison. The default is 64 bytes.
- </p>
- </dd>
- <dt><code>-G <var>num</var></code></dt>
- <dd><a name="index-G-4"></a>
- <a name="index-smaller-data-references-_0028PowerPC_0029"></a>
- <a name="index-_002esdata_002f_002esdata2-references-_0028PowerPC_0029"></a>
- <p>On embedded PowerPC systems, put global and static items less than or
- equal to <var>num</var> bytes into the small data or BSS sections instead of
- the normal data or BSS section. By default, <var>num</var> is 8. The
- <samp>-G <var>num</var></samp> switch is also passed to the linker.
- All modules should be compiled with the same <samp>-G <var>num</var></samp> value.
- </p>
- </dd>
- <dt><code>-mregnames</code></dt>
- <dt><code>-mno-regnames</code></dt>
- <dd><a name="index-mregnames"></a>
- <a name="index-mno_002dregnames"></a>
- <p>On System V.4 and embedded PowerPC systems do (do not) emit register
- names in the assembly language output using symbolic forms.
- </p>
- </dd>
- <dt><code>-mlongcall</code></dt>
- <dt><code>-mno-longcall</code></dt>
- <dd><a name="index-mlongcall"></a>
- <a name="index-mno_002dlongcall"></a>
- <p>By default assume that all calls are far away so that a longer and more
- expensive calling sequence is required. This is required for calls
- farther than 32 megabytes (33,554,432 bytes) from the current location.
- A short call is generated if the compiler knows
- the call cannot be that far away. This setting can be overridden by
- the <code>shortcall</code> function attribute, or by <code>#pragma
- longcall(0)</code>.
- </p>
- <p>Some linkers are capable of detecting out-of-range calls and generating
- glue code on the fly. On these systems, long calls are unnecessary and
- generate slower code. As of this writing, the AIX linker can do this,
- as can the GNU linker for PowerPC/64. It is planned to add this feature
- to the GNU linker for 32-bit PowerPC systems as well.
- </p>
- <p>On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
- GCC can generate long calls using an inline PLT call sequence (see
- <samp>-mpltseq</samp>). PowerPC with <samp>-mbss-plt</samp> and PowerPC64
- ELFv1 (big-endian) do not support inline PLT calls.
- </p>
- <p>On Darwin/PPC systems, <code>#pragma longcall</code> generates <code>jbsr
- callee, L42</code>, plus a <em>branch island</em> (glue code). The two target
- addresses represent the callee and the branch island. The
- Darwin/PPC linker prefers the first address and generates a <code>bl
- callee</code> if the PPC <code>bl</code> instruction reaches the callee directly;
- otherwise, the linker generates <code>bl L42</code> to call the branch
- island. The branch island is appended to the body of the
- calling function; it computes the full 32-bit address of the callee
- and jumps to it.
- </p>
- <p>On Mach-O (Darwin) systems, this option directs the compiler emit to
- the glue for every direct call, and the Darwin linker decides whether
- to use or discard it.
- </p>
- <p>In the future, GCC may ignore all longcall specifications
- when the linker is known to generate glue.
- </p>
- </dd>
- <dt><code>-mpltseq</code></dt>
- <dt><code>-mno-pltseq</code></dt>
- <dd><a name="index-mpltseq"></a>
- <a name="index-mno_002dpltseq"></a>
- <p>Implement (do not implement) -fno-plt and long calls using an inline
- PLT call sequence that supports lazy linking and long calls to
- functions in dlopen’d shared libraries. Inline PLT calls are only
- supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
- linkers, and are enabled by default if the support is detected when
- configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
- configured with <samp>--enable-secureplt</samp>. <samp>-mpltseq</samp> code
- and <samp>-mbss-plt</samp> 32-bit PowerPC relocatable objects may not be
- linked together.
- </p>
- </dd>
- <dt><code>-mtls-markers</code></dt>
- <dt><code>-mno-tls-markers</code></dt>
- <dd><a name="index-mtls_002dmarkers"></a>
- <a name="index-mno_002dtls_002dmarkers"></a>
- <p>Mark (do not mark) calls to <code>__tls_get_addr</code> with a relocation
- specifying the function argument. The relocation allows the linker to
- reliably associate function call with argument setup instructions for
- TLS optimization, which in turn allows GCC to better schedule the
- sequence.
- </p>
- </dd>
- <dt><code>-mrecip</code></dt>
- <dt><code>-mno-recip</code></dt>
- <dd><a name="index-mrecip"></a>
- <p>This option enables use of the reciprocal estimate and
- reciprocal square root estimate instructions with additional
- Newton-Raphson steps to increase precision instead of doing a divide or
- square root and divide for floating-point arguments. You should use
- the <samp>-ffast-math</samp> option when using <samp>-mrecip</samp> (or at
- least <samp>-funsafe-math-optimizations</samp>,
- <samp>-ffinite-math-only</samp>, <samp>-freciprocal-math</samp> and
- <samp>-fno-trapping-math</samp>). Note that while the throughput of the
- sequence is generally higher than the throughput of the non-reciprocal
- instruction, the precision of the sequence can be decreased by up to 2
- ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
- roots.
- </p>
- </dd>
- <dt><code>-mrecip=<var>opt</var></code></dt>
- <dd><a name="index-mrecip_003dopt"></a>
- <p>This option controls which reciprocal estimate instructions
- may be used. <var>opt</var> is a comma-separated list of options, which may
- be preceded by a <code>!</code> to invert the option:
- </p>
- <dl compact="compact">
- <dt>‘<samp>all</samp>’</dt>
- <dd><p>Enable all estimate instructions.
- </p>
- </dd>
- <dt>‘<samp>default</samp>’</dt>
- <dd><p>Enable the default instructions, equivalent to <samp>-mrecip</samp>.
- </p>
- </dd>
- <dt>‘<samp>none</samp>’</dt>
- <dd><p>Disable all estimate instructions, equivalent to <samp>-mno-recip</samp>.
- </p>
- </dd>
- <dt>‘<samp>div</samp>’</dt>
- <dd><p>Enable the reciprocal approximation instructions for both
- single and double precision.
- </p>
- </dd>
- <dt>‘<samp>divf</samp>’</dt>
- <dd><p>Enable the single-precision reciprocal approximation instructions.
- </p>
- </dd>
- <dt>‘<samp>divd</samp>’</dt>
- <dd><p>Enable the double-precision reciprocal approximation instructions.
- </p>
- </dd>
- <dt>‘<samp>rsqrt</samp>’</dt>
- <dd><p>Enable the reciprocal square root approximation instructions for both
- single and double precision.
- </p>
- </dd>
- <dt>‘<samp>rsqrtf</samp>’</dt>
- <dd><p>Enable the single-precision reciprocal square root approximation instructions.
- </p>
- </dd>
- <dt>‘<samp>rsqrtd</samp>’</dt>
- <dd><p>Enable the double-precision reciprocal square root approximation instructions.
- </p>
- </dd>
- </dl>
-
- <p>So, for example, <samp>-mrecip=all,!rsqrtd</samp> enables
- all of the reciprocal estimate instructions, except for the
- <code>FRSQRTE</code>, <code>XSRSQRTEDP</code>, and <code>XVRSQRTEDP</code> instructions
- which handle the double-precision reciprocal square root calculations.
- </p>
- </dd>
- <dt><code>-mrecip-precision</code></dt>
- <dt><code>-mno-recip-precision</code></dt>
- <dd><a name="index-mrecip_002dprecision"></a>
- <p>Assume (do not assume) that the reciprocal estimate instructions
- provide higher-precision estimates than is mandated by the PowerPC
- ABI. Selecting <samp>-mcpu=power6</samp>, <samp>-mcpu=power7</samp> or
- <samp>-mcpu=power8</samp> automatically selects <samp>-mrecip-precision</samp>.
- The double-precision square root estimate instructions are not generated by
- default on low-precision machines, since they do not provide an
- estimate that converges after three steps.
- </p>
- </dd>
- <dt><code>-mveclibabi=<var>type</var></code></dt>
- <dd><a name="index-mveclibabi"></a>
- <p>Specifies the ABI type to use for vectorizing intrinsics using an
- external library. The only type supported at present is ‘<samp>mass</samp>’,
- which specifies to use IBM’s Mathematical Acceleration Subsystem
- (MASS) libraries for vectorizing intrinsics using external libraries.
- GCC currently emits calls to <code>acosd2</code>, <code>acosf4</code>,
- <code>acoshd2</code>, <code>acoshf4</code>, <code>asind2</code>, <code>asinf4</code>,
- <code>asinhd2</code>, <code>asinhf4</code>, <code>atan2d2</code>, <code>atan2f4</code>,
- <code>atand2</code>, <code>atanf4</code>, <code>atanhd2</code>, <code>atanhf4</code>,
- <code>cbrtd2</code>, <code>cbrtf4</code>, <code>cosd2</code>, <code>cosf4</code>,
- <code>coshd2</code>, <code>coshf4</code>, <code>erfcd2</code>, <code>erfcf4</code>,
- <code>erfd2</code>, <code>erff4</code>, <code>exp2d2</code>, <code>exp2f4</code>,
- <code>expd2</code>, <code>expf4</code>, <code>expm1d2</code>, <code>expm1f4</code>,
- <code>hypotd2</code>, <code>hypotf4</code>, <code>lgammad2</code>, <code>lgammaf4</code>,
- <code>log10d2</code>, <code>log10f4</code>, <code>log1pd2</code>, <code>log1pf4</code>,
- <code>log2d2</code>, <code>log2f4</code>, <code>logd2</code>, <code>logf4</code>,
- <code>powd2</code>, <code>powf4</code>, <code>sind2</code>, <code>sinf4</code>, <code>sinhd2</code>,
- <code>sinhf4</code>, <code>sqrtd2</code>, <code>sqrtf4</code>, <code>tand2</code>,
- <code>tanf4</code>, <code>tanhd2</code>, and <code>tanhf4</code> when generating code
- for power7. Both <samp>-ftree-vectorize</samp> and
- <samp>-funsafe-math-optimizations</samp> must also be enabled. The MASS
- libraries must be specified at link time.
- </p>
- </dd>
- <dt><code>-mfriz</code></dt>
- <dt><code>-mno-friz</code></dt>
- <dd><a name="index-mfriz"></a>
- <p>Generate (do not generate) the <code>friz</code> instruction when the
- <samp>-funsafe-math-optimizations</samp> option is used to optimize
- rounding of floating-point values to 64-bit integer and back to floating
- point. The <code>friz</code> instruction does not return the same value if
- the floating-point number is too large to fit in an integer.
- </p>
- </dd>
- <dt><code>-mpointers-to-nested-functions</code></dt>
- <dt><code>-mno-pointers-to-nested-functions</code></dt>
- <dd><a name="index-mpointers_002dto_002dnested_002dfunctions"></a>
- <p>Generate (do not generate) code to load up the static chain register
- (<code>r11</code>) when calling through a pointer on AIX and 64-bit Linux
- systems where a function pointer points to a 3-word descriptor giving
- the function address, TOC value to be loaded in register <code>r2</code>, and
- static chain value to be loaded in register <code>r11</code>. The
- <samp>-mpointers-to-nested-functions</samp> is on by default. You cannot
- call through pointers to nested functions or pointers
- to functions compiled in other languages that use the static chain if
- you use <samp>-mno-pointers-to-nested-functions</samp>.
- </p>
- </dd>
- <dt><code>-msave-toc-indirect</code></dt>
- <dt><code>-mno-save-toc-indirect</code></dt>
- <dd><a name="index-msave_002dtoc_002dindirect"></a>
- <p>Generate (do not generate) code to save the TOC value in the reserved
- stack location in the function prologue if the function calls through
- a pointer on AIX and 64-bit Linux systems. If the TOC value is not
- saved in the prologue, it is saved just before the call through the
- pointer. The <samp>-mno-save-toc-indirect</samp> option is the default.
- </p>
- </dd>
- <dt><code>-mcompat-align-parm</code></dt>
- <dt><code>-mno-compat-align-parm</code></dt>
- <dd><a name="index-mcompat_002dalign_002dparm"></a>
- <p>Generate (do not generate) code to pass structure parameters with a
- maximum alignment of 64 bits, for compatibility with older versions
- of GCC.
- </p>
- <p>Older versions of GCC (prior to 4.9.0) incorrectly did not align a
- structure parameter on a 128-bit boundary when that structure contained
- a member requiring 128-bit alignment. This is corrected in more
- recent versions of GCC. This option may be used to generate code
- that is compatible with functions compiled with older versions of
- GCC.
- </p>
- <p>The <samp>-mno-compat-align-parm</samp> option is the default.
- </p>
- </dd>
- <dt><code>-mstack-protector-guard=<var>guard</var></code></dt>
- <dt><code>-mstack-protector-guard-reg=<var>reg</var></code></dt>
- <dt><code>-mstack-protector-guard-offset=<var>offset</var></code></dt>
- <dt><code>-mstack-protector-guard-symbol=<var>symbol</var></code></dt>
- <dd><a name="index-mstack_002dprotector_002dguard-2"></a>
- <a name="index-mstack_002dprotector_002dguard_002dreg-2"></a>
- <a name="index-mstack_002dprotector_002dguard_002doffset-2"></a>
- <a name="index-mstack_002dprotector_002dguard_002dsymbol"></a>
- <p>Generate stack protection code using canary at <var>guard</var>. Supported
- locations are ‘<samp>global</samp>’ for global canary or ‘<samp>tls</samp>’ for per-thread
- canary in the TLS block (the default with GNU libc version 2.4 or later).
- </p>
- <p>With the latter choice the options
- <samp>-mstack-protector-guard-reg=<var>reg</var></samp> and
- <samp>-mstack-protector-guard-offset=<var>offset</var></samp> furthermore specify
- which register to use as base register for reading the canary, and from what
- offset from that base register. The default for those is as specified in the
- relevant ABI. <samp>-mstack-protector-guard-symbol=<var>symbol</var></samp> overrides
- the offset with a symbol reference to a canary in the TLS block.
- </p>
- </dd>
- <dt><code>-mpcrel</code></dt>
- <dt><code>-mno-pcrel</code></dt>
- <dd><a name="index-mpcrel-1"></a>
- <a name="index-mno_002dpcrel"></a>
- <p>Generate (do not generate) pc-relative addressing when the option
- <samp>-mcpu=future</samp> is used. The <samp>-mpcrel</samp> option requires
- that the medium code model (<samp>-mcmodel=medium</samp>) and prefixed
- addressing (<samp>-mprefixed</samp>) options are enabled.
- </p>
- </dd>
- <dt><code>-mprefixed</code></dt>
- <dt><code>-mno-prefixed</code></dt>
- <dd><a name="index-mprefixed"></a>
- <a name="index-mno_002dprefixed"></a>
- <p>Generate (do not generate) addressing modes using prefixed load and
- store instructions when the option <samp>-mcpu=future</samp> is used.
- </p>
- </dd>
- <dt><code>-mmma</code></dt>
- <dt><code>-mno-mma</code></dt>
- <dd><a name="index-mmma"></a>
- <a name="index-mno_002dmma"></a>
- <p>Generate (do not generate) the MMA instructions when the option
- <samp>-mcpu=future</samp> is used.
- </p></dd>
- </dl>
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="RX-Options.html#RX-Options" accesskey="n" rel="next">RX Options</a>, Previous: <a href="RL78-Options.html#RL78-Options" accesskey="p" rel="prev">RL78 Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|