@@ -1,4 +1,4 @@ | |||
/* Audio Library Guitar and Bass Tuner | |||
/* Audio Library Note Frequency Detection & Guitar/Bass Tuner | |||
* Copyright (c) 2015, Colin Duffy | |||
* | |||
* Permission is hereby granted, free of charge, to any person obtaining a copy | |||
@@ -20,27 +20,12 @@ | |||
* THE SOFTWARE. | |||
*/ | |||
#include "AudioTuner.h" | |||
#include "analyze_notefreq_fast.h" | |||
#include "utility/dspinst.h" | |||
#include "arm_math.h" | |||
#include "Arduino.h" | |||
#define HALF_BLOCKS AUDIO_BLOCKS * 64 | |||
#define LOOP1(a) a | |||
#define LOOP2(a) a LOOP1(a) | |||
#define LOOP3(a) a LOOP2(a) | |||
#define LOOP4(a) a LOOP3(a) | |||
#define LOOP8(a) a LOOP3(a) a LOOP3(a) | |||
#define LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP3(a) | |||
#define LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP1(a) a LOOP3(a) | |||
#define LOOP64(a) a LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP1(a) | |||
#define UNROLL(n,a) LOOP##n(a) | |||
static void copy_buffer(void *destination, const void *source) { | |||
const uint16_t *src = (const uint16_t *)source; | |||
uint16_t *dst = (uint16_t *)destination; | |||
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) *dst++ = *src++; | |||
} | |||
#define NUM_SAMPLES ( AUDIO_GUITARTUNER_BLOCKS << 7 ) | |||
void AudioTuner::update( void ) { | |||
@@ -54,119 +39,122 @@ void AudioTuner::update( void ) { | |||
return; | |||
} | |||
digitalWriteFast(2, HIGH); | |||
if ( next_buffer ) { | |||
blocklist1[state++] = block; | |||
if ( !first_run && process_buffer ) process( ); | |||
} else { | |||
blocklist2[state++] = block; | |||
if ( !first_run && process_buffer ) process( ); | |||
} | |||
/** | |||
* "factor" is the new block size calculatedby | |||
* the decimated shift to incremnt the buffer | |||
* address. | |||
*/ | |||
const uint8_t factor = AUDIO_BLOCK_SAMPLES >> decimation_shift; | |||
if ( state >= AUDIO_BLOCKS ) { | |||
if ( next_buffer ) { | |||
if ( !first_run && process_buffer ) process( ); | |||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist1[i]->data ); | |||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release(blocklist1[i] ); | |||
} else { | |||
if ( !first_run && process_buffer ) process( ); | |||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist2[i]->data ); | |||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release( blocklist2[i] ); | |||
} | |||
process_buffer = true; | |||
first_run = false; | |||
state = 0; | |||
//digitalWriteFast(LED_BUILTIN, !digitalReadFast(LED_BUILTIN)); | |||
// filter and decimate block by block the incoming signal and store in a buffer. | |||
arm_fir_decimate_fast_q15( &firDecimateInst, block->data, AudioBuffer + ( state * factor ), AUDIO_BLOCK_SAMPLES ); | |||
/** | |||
* when half the blocks + 1 of the total | |||
* blocks have been stored in the buffer | |||
* start processing the data. | |||
*/ | |||
if ( state++ >= AUDIO_GUITARTUNER_BLOCKS >> 1 ) { | |||
if ( process_buffer ) process( AudioBuffer ); | |||
if ( state == 0 ) process_buffer = true; | |||
} | |||
release( block ); | |||
} | |||
FASTRUN void AudioTuner::process( void ) { | |||
//digitalWriteFast(0, HIGH); | |||
const int16_t *p; | |||
p = AudioBuffer; | |||
/** | |||
* Start the Yin algorithm | |||
* | |||
* TODO: Significant speed up would be to use spectral domain to find fundamental frequency. | |||
* This paper explains: https://aubio.org/phd/thesis/brossier06thesis.pdf -> Section 3.2.4 | |||
* page 79. Might have to downsample for low fundmental frequencies because of fft buffer | |||
* size limit. | |||
*/ | |||
void AudioTuner::process( int16_t *p ) { | |||
uint16_t cycles = 64;; | |||
const uint16_t inner_cycles = ( NUM_SAMPLES >> decimation_shift ) >> 1; | |||
uint16_t outer_cycles = inner_cycles / AUDIO_GUITARTUNER_BLOCKS; | |||
uint16_t tau = tau_global; | |||
do { | |||
uint16_t x = 0; | |||
int64_t sum = 0; | |||
//uint32_t res; | |||
do { | |||
/*int16_t current1, lag1, current2, lag2; | |||
int32_t val1, val2; | |||
lag1 = *( ( uint32_t * )p + ( x + tau ) ); | |||
current1 = *( ( uint32_t * )p + x ); | |||
x += 32; | |||
lag2 = *( ( uint32_t * )p + ( x + tau ) ); | |||
current2 = *( ( uint32_t * )p + x ); | |||
val1 = __PKHBT(current1, current2, 0x10); | |||
val2 = __PKHBT(lag1, lag2, 0x10); | |||
res = __SSUB16( val1, val2 ); | |||
sum = __SMLALD(res, res, sum); | |||
//sum = __SMLSLD(delta1, delta2, sum);*/ | |||
int16_t current, lag, delta; | |||
//UNROLL(16, | |||
lag = *( ( int16_t * )p + ( x+tau ) ); | |||
current = *( ( int16_t * )p+x ); | |||
delta = ( current-lag ); | |||
sum += delta * delta; | |||
#if F_CPU == 144000000 | |||
x += 8; | |||
#elif F_CPU == 120000000 | |||
x += 12; | |||
#elif F_CPU == 96000000 | |||
x += 16; | |||
#elif F_CPU < 96000000 | |||
x += 32; | |||
#endif | |||
//); | |||
} while ( x <= HALF_BLOCKS ); | |||
running_sum += sum; | |||
uint64_t sum = 0; | |||
int32_t a1, a2, b1, b2, c1, c2, d1, d2; | |||
int32_t out1, out2, out3, out4; | |||
uint16_t blkCnt; | |||
int16_t * cur = p; | |||
int16_t * lag = p + tau; | |||
// unrolling the inner loop by 8 | |||
blkCnt = inner_cycles >> 3; | |||
do | |||
{ | |||
// a(n), b(n), c(n), d(n) each hold two samples | |||
a1 = *__SIMD32( cur )++; | |||
a2 = *__SIMD32( cur )++; | |||
b1 = *__SIMD32( lag )++; | |||
b2 = *__SIMD32( lag )++; | |||
c1 = *__SIMD32( cur )++; | |||
c2 = *__SIMD32( cur )++; | |||
d1 = *__SIMD32( lag )++; | |||
d2 = *__SIMD32( lag )++; | |||
// subract two samples at a time | |||
out1 = __QSUB16( a1, b1 ); | |||
out2 = __QSUB16( a2, b2 ); | |||
out3 = __QSUB16( c1, d1 ); | |||
out4 = __QSUB16( c2, d2 ); | |||
// square the difference | |||
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out1, out1 ); | |||
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out2, out2 ); | |||
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out3, out3 ); | |||
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out4, out4 ); | |||
} while( --blkCnt ); | |||
uint64_t rs = running_sum; | |||
rs += sum; | |||
yin_buffer[yin_idx] = sum*tau; | |||
rs_buffer[yin_idx] = running_sum; | |||
rs_buffer[yin_idx] = rs; | |||
running_sum = rs; | |||
yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx; | |||
tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | |||
if ( tau == 0 ) { | |||
process_buffer = false; | |||
new_output = true; | |||
yin_idx = 1; | |||
running_sum = 0; | |||
tau_global = 1; | |||
//digitalWriteFast(2, LOW); | |||
//digitalWriteFast(0, LOW); | |||
state = 0; | |||
return; | |||
} | |||
} while ( --cycles ); | |||
} while ( --outer_cycles ); | |||
if ( tau >= HALF_BLOCKS ) { | |||
process_buffer = false; | |||
if ( tau >= inner_cycles ) { | |||
process_buffer = true; | |||
new_output = false; | |||
yin_idx = 1; | |||
running_sum = 0; | |||
tau_global = 1; | |||
//digitalWriteFast(0, LOW); | |||
state = 0; | |||
return; | |||
} | |||
tau_global = tau; | |||
//digitalWriteFast(0, LOW); | |||
} | |||
/** | |||
* check the sampled data for fundmental frequency | |||
* check the sampled data for fundamental frequency | |||
* | |||
* @param yin buffer to hold sum*tau value | |||
* @param rs buffer to hold running sum for sampled window | |||
* @param head buffer index | |||
* @param tau lag we are currently working on this gets incremented | |||
* @param tau lag we are curly working on gets incremented | |||
* | |||
* @return tau | |||
*/ | |||
uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ) { | |||
const int64_t *y = ( int64_t * )yin; | |||
const int64_t *r = ( int64_t * )rs; | |||
uint16_t AudioTuner::estimate( uint64_t *yin, uint64_t *rs, uint16_t head, uint16_t tau ) { | |||
const uint64_t *y = ( uint64_t * )yin; | |||
const uint64_t *r = ( uint64_t * )rs; | |||
uint16_t _tau, _head; | |||
const float thresh = yin_threshold; | |||
_tau = tau; | |||
@@ -178,13 +166,14 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ | |||
idx0 = _head; | |||
idx1 = _head + 1; | |||
idx1 = ( idx1 >= 5 ) ? 0 : idx1; | |||
idx2 = head + 2; | |||
idx2 = ( idx2 >= 5 ) ? 0 : idx2; | |||
idx2 = _head + 2; | |||
idx2 = ( idx2 >= 5 ) ? idx2 - 5 : idx2; | |||
// maybe fixed point would be better here? But how? | |||
float s0, s1, s2; | |||
s0 = ( ( float )*( y+idx0 ) / *( r+idx0 ) ); | |||
s1 = ( ( float )*( y+idx1 ) / *( r+idx1 ) ); | |||
s2 = ( ( float )*( y+idx2 ) / *( r+idx2 ) ); | |||
s0 = ( ( float )*( y+idx0 ) / ( float )*( r+idx0 ) ); | |||
s1 = ( ( float )*( y+idx1 ) / ( float )*( r+idx1 ) ); | |||
s2 = ( ( float )*( y+idx2 ) / ( float )*( r+idx2 ) ); | |||
if ( s1 < thresh && s1 < s2 ) { | |||
uint16_t period = _tau - 3; | |||
@@ -200,21 +189,23 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ | |||
* Initialise | |||
* | |||
* @param threshold Allowed uncertainty | |||
* @param cpu_max How much cpu usage before throttling | |||
*/ | |||
void AudioTuner::initialize( float threshold ) { | |||
void AudioTuner::begin( float threshold, int16_t *coeff, uint8_t taps, uint8_t factor ) { | |||
__disable_irq( ); | |||
process_buffer = false; | |||
yin_threshold = threshold; | |||
periodicity = 0.0f; | |||
next_buffer = true; | |||
running_sum = 0; | |||
tau_global = 1; | |||
first_run = true; | |||
yin_idx = 1; | |||
enabled = true; | |||
state = 0; | |||
data = 0.0f; | |||
process_buffer = true; | |||
yin_threshold = threshold; | |||
periodicity = 0.0f; | |||
running_sum = 0; | |||
tau_global = 1; | |||
yin_idx = 1; | |||
enabled = true; | |||
state = 0; | |||
data = 0.0f; | |||
decimation_factor = factor; | |||
decimation_shift = log( factor ) / log( 2 ); | |||
coeff_size = taps; | |||
coeff_p = coeff; | |||
arm_fir_decimate_init_q15( &firDecimateInst, coeff_size, decimation_factor, coeff_p, &coeff_state[0], AUDIO_BLOCK_SAMPLES ); | |||
__enable_irq( ); | |||
} | |||
@@ -240,11 +231,11 @@ float AudioTuner::read( void ) { | |||
__disable_irq( ); | |||
float d = data; | |||
__enable_irq( ); | |||
return AUDIO_SAMPLE_RATE_EXACT / d; | |||
return ( AUDIO_SAMPLE_RATE_EXACT / decimation_factor ) / d; | |||
} | |||
/** | |||
* Periodicity of the sampled signal from Yin algorithm from read function. | |||
* Periodicity of the sampled signal. | |||
* | |||
* @return periodicity | |||
*/ | |||
@@ -255,6 +246,17 @@ float AudioTuner::probability( void ) { | |||
return p; | |||
} | |||
/** | |||
* Initialise parameters. | |||
* | |||
* @param thresh Allowed uncertainty | |||
*/ | |||
void AudioTuner::coeff( int16_t *p, int n ) { | |||
//coeff_size = n; | |||
//coeff_p = p; | |||
//arm_fir_decimate_init_q15(&firDecimateInst, coeff_size, 4, coeff_p, coeff_state, 128); | |||
} | |||
/** | |||
* Initialise parameters. | |||
* | |||
@@ -264,4 +266,4 @@ void AudioTuner::threshold( float p ) { | |||
__disable_irq( ); | |||
yin_threshold = p; | |||
__enable_irq( ); | |||
} | |||
} |
@@ -1,4 +1,4 @@ | |||
/* Audio Library Guitar and Bass Tuner | |||
/* Audio Library Note Frequency Detection & Guitar/Bass Tuner | |||
* Copyright (c) 2015, Colin Duffy | |||
* | |||
* Permission is hereby granted, free of charge, to any person obtaining a copy | |||
@@ -24,20 +24,25 @@ | |||
#define AudioTuner_h_ | |||
#include "AudioStream.h" | |||
/**************************************************************** | |||
* Safe to adjust these values below * | |||
* * | |||
* This parameter defines the size of the buffer. * | |||
* * | |||
* 1. AUDIO_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||
* The more AUDIO_BLOCKS the lower the * | |||
* frequency you can detect. The defualt * | |||
* (24) is set to measure down to 29.14 * | |||
* Hz or B(flat)0. * | |||
* * | |||
****************************************************************/ | |||
#define AUDIO_BLOCKS 24 | |||
/****************************************************************/ | |||
#include "arm_math.h" | |||
/*********************************************************************** | |||
* Safe to adjust these values below * | |||
* * | |||
* This parameter defines the size of the buffer. * | |||
* * | |||
* 1. AUDIO_GUITARTUNER_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||
* The more AUDIO_GUITARTUNER_BLOCKS the lower * | |||
* the frequency you can detect. The default * | |||
* (24) is set to measure down to 29.14 Hz * | |||
* or B(flat)0. * | |||
* * | |||
* 2. MAX_COEFF - Maxium number of coefficeints for the FIR filter. * | |||
* * | |||
***********************************************************************/ | |||
#define AUDIO_GUITARTUNER_BLOCKS 24 | |||
#define MAX_COEFF 200 | |||
/***********************************************************************/ | |||
class AudioTuner : public AudioStream { | |||
public: | |||
/** | |||
@@ -45,19 +50,26 @@ public: | |||
* | |||
* @return none | |||
*/ | |||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) { | |||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), | |||
data( 0.0 ), | |||
coeff_p( NULL ), | |||
enabled( false ), | |||
new_output( false ), | |||
coeff_size( 0 ) | |||
{ | |||
} | |||
/** | |||
* initialize variables and start conversion | |||
* initialize variables and start | |||
* | |||
* @param threshold Allowed uncertainty | |||
* @param cpu_max How much cpu usage before throttling | |||
* | |||
* @return none | |||
* @param coeff coefficients for fir filter | |||
* @param taps number of coefficients, even | |||
* @param factor must be power of 2 | |||
*/ | |||
void initialize( float threshold ); | |||
void begin( float threshold, int16_t *coeff, uint8_t taps, uint8_t factor ); | |||
/** | |||
* sets threshold value | |||
@@ -87,13 +99,20 @@ public: | |||
*/ | |||
float probability( void ); | |||
/** | |||
* fir decimation coefficents | |||
* | |||
* @return none | |||
*/ | |||
void coeff( int16_t *p, int n ); | |||
/** | |||
* Audio Library calls this update function ~2.9ms | |||
* | |||
* @return none | |||
*/ | |||
virtual void update( void ); | |||
private: | |||
/** | |||
* check the sampled data for fundamental frequency | |||
@@ -105,28 +124,27 @@ private: | |||
* | |||
* @return tau | |||
*/ | |||
uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | |||
uint16_t estimate( uint64_t *yin, uint64_t *rs, uint16_t head, uint16_t tau ); | |||
/** | |||
* process audio data | |||
* | |||
* @return none | |||
*/ | |||
void process( void ); | |||
void process( int16_t *p ); | |||
/** | |||
* Variables | |||
*/ | |||
uint64_t running_sum; | |||
float periodicity, yin_threshold, data; | |||
uint64_t running_sum, yin_buffer[5], rs_buffer[5]; | |||
uint16_t tau_global; | |||
int64_t rs_buffer[5], yin_buffer[5]; | |||
int16_t AudioBuffer[AUDIO_BLOCKS*128] __attribute__ ( ( aligned ( 4 ) ) ); | |||
uint8_t yin_idx, state; | |||
float periodicity, yin_threshold, cpu_usage_max, data; | |||
bool enabled, next_buffer, first_run; | |||
volatile bool new_output, process_buffer; | |||
audio_block_t *blocklist1[AUDIO_BLOCKS]; | |||
audio_block_t *blocklist2[AUDIO_BLOCKS]; | |||
int16_t AudioBuffer[AUDIO_GUITARTUNER_BLOCKS*AUDIO_BLOCK_SAMPLES] __attribute__ ( ( aligned ( 4 ) ) ); | |||
int16_t coeff_state[AUDIO_BLOCK_SAMPLES + MAX_COEFF]; | |||
int16_t *coeff_p; | |||
uint8_t yin_idx, state, coeff_size, decimation_factor, decimation_shift; | |||
volatile bool new_output, process_buffer, enabled; | |||
audio_block_t *inputQueueArray[1]; | |||
arm_fir_decimate_instance_q15 firDecimateInst; | |||
}; | |||
#endif | |||
#endif |
@@ -1,5 +1,5 @@ | |||
<p align="center"> | |||
<b>Guitar and Bass Tuner Library v2.3</b><br> | |||
<b>Guitar and Bass Tuner Library v3.0</b><br> | |||
<b>Teensy 3.1/2</b><br> | |||
</p> | |||
@@ -49,20 +49,23 @@ | |||
<h4>AudioTuner.h</h4> | |||
``` | |||
/**************************************************************** | |||
* Safe to adjust these values below * | |||
* * | |||
* This parameter defines the size of the buffer. * | |||
* * | |||
* 1. AUDIO_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||
* The more AUDIO_BLOCKS the lower the * | |||
* frequency you can detect. The default * | |||
* (24) is set to measure down to 29.14 * | |||
* Hz or B(flat)0. * | |||
* * | |||
****************************************************************/ | |||
#define AUDIO_BLOCKS 24 | |||
/****************************************************************/ | |||
/*********************************************************************** | |||
* Safe to adjust these values below * | |||
* * | |||
* This parameter defines the size of the buffer. * | |||
* * | |||
* 1. AUDIO_GUITARTUNER_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||
* The more AUDIO_GUITARTUNER_BLOCKS the lower * | |||
* the frequency you can detect. The default * | |||
* (24) is set to measure down to 29.14 Hz * | |||
* or B(flat)0. * | |||
* * | |||
* 2. MAX_COEFF - Maxium number of coefficeints for the FIR filter. * | |||
* * | |||
***********************************************************************/ | |||
#define AUDIO_GUITARTUNER_BLOCKS 24 | |||
#define MAX_COEFF 200 | |||
/***********************************************************************/ | |||
``` | |||
<div> | |||
@@ -77,4 +80,4 @@ | |||
</div> | |||
[YIN]:http://recherche.ircam.fr/equipes/pcm/cheveign/pss/2002_JASA_YIN.pdf | |||
[Teensy Audio Library]:http://www.pjrc.com/teensy/td_libs_Audio.html | |||
[Teensy Audio Library]:http://www.pjrc.com/teensy/td_libs_Audio.html |
@@ -25,6 +25,8 @@ | |||
#include <Wire.h> | |||
#include <SPI.h> | |||
#include <SD.h> | |||
#include "coeff.h" | |||
//--------------------------------------------------------------------------------------- | |||
#include "e2_note.h" | |||
#include "a2_note.h" | |||
@@ -62,7 +64,7 @@ void setup() { | |||
* Initialize the yin algorithm's absolute | |||
* threshold, this is good number. | |||
*/ | |||
tuner.initialize(.15); | |||
tuner.begin(.15, fir_22059_HZ_coefficients, sizeof(fir_22059_HZ_coefficients), 2); | |||
pinMode(LED_BUILTIN, OUTPUT); | |||
playNoteTimer.begin(playNote, 1000); | |||
} | |||
@@ -74,4 +76,4 @@ void loop() { | |||
float prob = tuner.probability(); | |||
Serial.printf("Note: %3.2f | Probability: %.2f\n", note, prob); | |||
} | |||
} | |||
} |
@@ -0,0 +1,31 @@ | |||
int16_t fir_44117_HZ_coefficients[22] = | |||
{ | |||
0, 3, 6, -11, -71, 21, | |||
352, -15, -1202, -6, 5011, 8209, | |||
5011, -6, -1202, -15, 352, 21, | |||
-71, -11, 6, 3 | |||
}; | |||
int16_t fir_22059_HZ_coefficients[20] = | |||
{ | |||
0, 1, -6, -54, 18, 326, | |||
-14, -1178, -6, 5001, 8209, 5001, | |||
-6, -1178, -14, 326, 18, -54, | |||
-6, 1 | |||
}; | |||
int16_t fir_11029_HZ_coefficients[22] = | |||
{ | |||
0, 3, 6, -11, -71, 21, | |||
352, -15, -1202, -6, 5011, 8209, | |||
5011, -6, -1202, -15, 352, 21, | |||
-71, -11, 6, 3 | |||
}; | |||
int16_t fir_5515_HZ_coefficients[20] = | |||
{ | |||
0, 6, 4, -94, -2, 409, | |||
-11, -1267, 23, 5040, 8164, 5040, | |||
23, -1267, -11, 409, -2, -94, | |||
4, 6 | |||
}; |
@@ -27,6 +27,8 @@ | |||
#include <SPI.h> | |||
#include <SD.h> | |||
#include "coeff.h" | |||
AudioTuner tuner; | |||
AudioSynthWaveformSine sine; | |||
AudioOutputAnalog dac; | |||
@@ -45,7 +47,7 @@ void setup() { | |||
* Initialize the yin algorithm's absolute | |||
* threshold, this is good number. | |||
*/ | |||
tuner.initialize(.15); | |||
tuner.begin(.15, fir_22059_HZ_coefficients, sizeof(fir_22059_HZ_coefficients), 2); | |||
sine.frequency(30.87); | |||
sine.amplitude(1); |
@@ -0,0 +1,31 @@ | |||
int16_t fir_44117_HZ_coefficients[22] = | |||
{ | |||
0, 3, 6, -11, -71, 21, | |||
352, -15, -1202, -6, 5011, 8209, | |||
5011, -6, -1202, -15, 352, 21, | |||
-71, -11, 6, 3 | |||
}; | |||
int16_t fir_22059_HZ_coefficients[20] = | |||
{ | |||
0, 1, -6, -54, 18, 326, | |||
-14, -1178, -6, 5001, 8209, 5001, | |||
-6, -1178, -14, 326, 18, -54, | |||
-6, 1 | |||
}; | |||
int16_t fir_11029_HZ_coefficients[22] = | |||
{ | |||
0, 3, 6, -11, -71, 21, | |||
352, -15, -1202, -6, 5011, 8209, | |||
5011, -6, -1202, -15, 352, 21, | |||
-71, -11, 6, 3 | |||
}; | |||
int16_t fir_5515_HZ_coefficients[20] = | |||
{ | |||
0, 6, 4, -94, -2, 409, | |||
-11, -1267, 23, 5040, 8164, 5040, | |||
23, -1267, -11, 409, -2, -94, | |||
4, 6 | |||
}; |
@@ -1,5 +1,5 @@ | |||
name=AudioTuner | |||
version=2.3 | |||
version=3.0 | |||
author=Colin Duffy | |||
maintainer=Colin Duffy | |||
sentence=Yin algorithm | |||
@@ -7,4 +7,3 @@ paragraph=Yin algorithm to detect the fundmental frequency. | |||
category=Signal Input/Output | |||
url=http://github.com/duff2013/AudioTuner | |||
architectures=* | |||
@@ -1,3 +1,7 @@ | |||
><b>Updated (02/17/17 v3.0)</b><br> | |||
* Now we decimate the signal before analysis, significant speed up.<br> | |||
* More robust algorithm to determine the fundamental frequency.<br> | |||
><b>Updated (11/23/15 v2.3)</b><br> | |||
* Totally new method to gather and process data, data is available after 24 Blocks of data have been collected (~69.6ms) for all frequencies.<br> | |||
* Double buffer to collect Audio data, while one collects the other buffer is processed.<br> | |||
@@ -12,4 +16,4 @@ | |||
* Improved user interface.<br> | |||
><b>Updated (7/10/15 v2.0)</b><br> | |||
* First commit | |||
* First commit |