|
|
|
@@ -1616,738 +1616,6 @@ AudioAnalyzeToneDetect::operator bool() |
|
|
|
|
|
|
|
/******************************************************************/ |
|
|
|
|
|
|
|
#include "Wire.h" |
|
|
|
|
|
|
|
#define WM8731_I2C_ADDR 0x1A |
|
|
|
//#define WM8731_I2C_ADDR 0x1B |
|
|
|
|
|
|
|
#define WM8731_REG_LLINEIN 0 |
|
|
|
#define WM8731_REG_RLINEIN 1 |
|
|
|
#define WM8731_REG_LHEADOUT 2 |
|
|
|
#define WM8731_REG_RHEADOUT 3 |
|
|
|
#define WM8731_REG_ANALOG 4 |
|
|
|
#define WM8731_REG_DIGITAL 5 |
|
|
|
#define WM8731_REG_POWERDOWN 6 |
|
|
|
#define WM8731_REG_INTERFACE 7 |
|
|
|
#define WM8731_REG_SAMPLING 8 |
|
|
|
#define WM8731_REG_ACTIVE 9 |
|
|
|
#define WM8731_REG_RESET 15 |
|
|
|
|
|
|
|
bool AudioControlWM8731::enable(void) |
|
|
|
{ |
|
|
|
Wire.begin(); |
|
|
|
delay(5); |
|
|
|
//write(WM8731_REG_RESET, 0); |
|
|
|
|
|
|
|
write(WM8731_REG_INTERFACE, 0x02); // I2S, 16 bit, MCLK slave |
|
|
|
write(WM8731_REG_SAMPLING, 0x20); // 256*Fs, 44.1 kHz, MCLK/1 |
|
|
|
|
|
|
|
// In order to prevent pops, the DAC should first be soft-muted (DACMU), |
|
|
|
// the output should then be de-selected from the line and headphone output |
|
|
|
// (DACSEL), then the DAC powered down (DACPD). |
|
|
|
|
|
|
|
write(WM8731_REG_DIGITAL, 0x08); // DAC soft mute |
|
|
|
write(WM8731_REG_ANALOG, 0x00); // disable all |
|
|
|
|
|
|
|
write(WM8731_REG_POWERDOWN, 0x00); // codec powerdown |
|
|
|
|
|
|
|
write(WM8731_REG_LHEADOUT, 0x80); // volume off |
|
|
|
write(WM8731_REG_RHEADOUT, 0x80); |
|
|
|
|
|
|
|
delay(100); // how long to power up? |
|
|
|
|
|
|
|
write(WM8731_REG_ACTIVE, 1); |
|
|
|
delay(5); |
|
|
|
write(WM8731_REG_DIGITAL, 0x00); // DAC unmuted |
|
|
|
write(WM8731_REG_ANALOG, 0x10); // DAC selected |
|
|
|
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
bool AudioControlWM8731::write(unsigned int reg, unsigned int val) |
|
|
|
{ |
|
|
|
Wire.beginTransmission(WM8731_I2C_ADDR); |
|
|
|
Wire.write((reg << 1) | ((val >> 8) & 1)); |
|
|
|
Wire.write(val & 0xFF); |
|
|
|
Wire.endTransmission(); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
bool AudioControlWM8731::volumeInteger(unsigned int n) |
|
|
|
{ |
|
|
|
if (n > 127) n = 127; |
|
|
|
//Serial.print("volumeInteger, n = "); |
|
|
|
//Serial.println(n); |
|
|
|
write(WM8731_REG_LHEADOUT, n | 0x180); |
|
|
|
write(WM8731_REG_RHEADOUT, n | 0x80); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/******************************************************************/ |
|
|
|
|
|
|
|
|
|
|
|
bool AudioControlWM8731master::enable(void) |
|
|
|
{ |
|
|
|
Wire.begin(); |
|
|
|
delay(5); |
|
|
|
//write(WM8731_REG_RESET, 0); |
|
|
|
|
|
|
|
write(WM8731_REG_INTERFACE, 0x42); // I2S, 16 bit, MCLK master |
|
|
|
write(WM8731_REG_SAMPLING, 0x20); // 256*Fs, 44.1 kHz, MCLK/1 |
|
|
|
|
|
|
|
// In order to prevent pops, the DAC should first be soft-muted (DACMU), |
|
|
|
// the output should then be de-selected from the line and headphone output |
|
|
|
// (DACSEL), then the DAC powered down (DACPD). |
|
|
|
|
|
|
|
write(WM8731_REG_DIGITAL, 0x08); // DAC soft mute |
|
|
|
write(WM8731_REG_ANALOG, 0x00); // disable all |
|
|
|
|
|
|
|
write(WM8731_REG_POWERDOWN, 0x00); // codec powerdown |
|
|
|
|
|
|
|
write(WM8731_REG_LHEADOUT, 0x80); // volume off |
|
|
|
write(WM8731_REG_RHEADOUT, 0x80); |
|
|
|
|
|
|
|
delay(100); // how long to power up? |
|
|
|
|
|
|
|
write(WM8731_REG_ACTIVE, 1); |
|
|
|
delay(5); |
|
|
|
write(WM8731_REG_DIGITAL, 0x00); // DAC unmuted |
|
|
|
write(WM8731_REG_ANALOG, 0x10); // DAC selected |
|
|
|
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
/******************************************************************/ |
|
|
|
|
|
|
|
#define CHIP_ID 0x0000 |
|
|
|
// 15:8 PARTID 0xA0 - 8 bit identifier for SGTL5000 |
|
|
|
// 7:0 REVID 0x00 - revision number for SGTL5000. |
|
|
|
|
|
|
|
#define CHIP_DIG_POWER 0x0002 |
|
|
|
// 6 ADC_POWERUP 1=Enable, 0=disable the ADC block, both digital & analog, |
|
|
|
// 5 DAC_POWERUP 1=Enable, 0=disable the DAC block, both analog and digital |
|
|
|
// 4 DAP_POWERUP 1=Enable, 0=disable the DAP block |
|
|
|
// 1 I2S_OUT_POWERUP 1=Enable, 0=disable the I2S data output |
|
|
|
// 0 I2S_IN_POWERUP 1=Enable, 0=disable the I2S data input |
|
|
|
|
|
|
|
#define CHIP_CLK_CTRL 0x0004 |
|
|
|
// 5:4 RATE_MODE Sets the sample rate mode. MCLK_FREQ is still specified |
|
|
|
// relative to the rate in SYS_FS |
|
|
|
// 0x0 = SYS_FS specifies the rate |
|
|
|
// 0x1 = Rate is 1/2 of the SYS_FS rate |
|
|
|
// 0x2 = Rate is 1/4 of the SYS_FS rate |
|
|
|
// 0x3 = Rate is 1/6 of the SYS_FS rate |
|
|
|
// 3:2 SYS_FS Sets the internal system sample rate (default=2) |
|
|
|
// 0x0 = 32 kHz |
|
|
|
// 0x1 = 44.1 kHz |
|
|
|
// 0x2 = 48 kHz |
|
|
|
// 0x3 = 96 kHz |
|
|
|
// 1:0 MCLK_FREQ Identifies incoming SYS_MCLK frequency and if the PLL should be used |
|
|
|
// 0x0 = 256*Fs |
|
|
|
// 0x1 = 384*Fs |
|
|
|
// 0x2 = 512*Fs |
|
|
|
// 0x3 = Use PLL |
|
|
|
// The 0x3 (Use PLL) setting must be used if the SYS_MCLK is not |
|
|
|
// a standard multiple of Fs (256, 384, or 512). This setting can |
|
|
|
// also be used if SYS_MCLK is a standard multiple of Fs. |
|
|
|
// Before this field is set to 0x3 (Use PLL), the PLL must be |
|
|
|
// powered up by setting CHIP_ANA_POWER->PLL_POWERUP and |
|
|
|
// CHIP_ANA_POWER->VCOAMP_POWERUP. Also, the PLL dividers must |
|
|
|
// be calculated based on the external MCLK rate and |
|
|
|
// CHIP_PLL_CTRL register must be set (see CHIP_PLL_CTRL register |
|
|
|
// description details on how to calculate the divisors). |
|
|
|
|
|
|
|
#define CHIP_I2S_CTRL 0x0006 |
|
|
|
// 8 SCLKFREQ Sets frequency of I2S_SCLK when in master mode (MS=1). When in slave |
|
|
|
// mode (MS=0), this field must be set appropriately to match SCLK input |
|
|
|
// rate. |
|
|
|
// 0x0 = 64Fs |
|
|
|
// 0x1 = 32Fs - Not supported for RJ mode (I2S_MODE = 1) |
|
|
|
// 7 MS Configures master or slave of I2S_LRCLK and I2S_SCLK. |
|
|
|
// 0x0 = Slave: I2S_LRCLK an I2S_SCLK are inputs |
|
|
|
// 0x1 = Master: I2S_LRCLK and I2S_SCLK are outputs |
|
|
|
// NOTE: If the PLL is used (CHIP_CLK_CTRL->MCLK_FREQ==0x3), |
|
|
|
// the SGTL5000 must be a master of the I2S port (MS==1) |
|
|
|
// 6 SCLK_INV Sets the edge that data (input and output) is clocked in on for I2S_SCLK |
|
|
|
// 0x0 = data is valid on rising edge of I2S_SCLK |
|
|
|
// 0x1 = data is valid on falling edge of I2S_SCLK |
|
|
|
// 5:4 DLEN I2S data length (default=1) |
|
|
|
// 0x0 = 32 bits (only valid when SCLKFREQ=0), |
|
|
|
// not valid for Right Justified Mode |
|
|
|
// 0x1 = 24 bits (only valid when SCLKFREQ=0) |
|
|
|
// 0x2 = 20 bits |
|
|
|
// 0x3 = 16 bits |
|
|
|
// 3:2 I2S_MODE Sets the mode for the I2S port |
|
|
|
// 0x0 = I2S mode or Left Justified (Use LRALIGN to select) |
|
|
|
// 0x1 = Right Justified Mode |
|
|
|
// 0x2 = PCM Format A/B |
|
|
|
// 0x3 = RESERVED |
|
|
|
// 1 LRALIGN I2S_LRCLK Alignment to data word. Not used for Right Justified mode |
|
|
|
// 0x0 = Data word starts 1 I2S_SCLK delay after I2S_LRCLK |
|
|
|
// transition (I2S format, PCM format A) |
|
|
|
// 0x1 = Data word starts after I2S_LRCLK transition (left |
|
|
|
// justified format, PCM format B) |
|
|
|
// 0 LRPOL I2S_LRCLK Polarity when data is presented. |
|
|
|
// 0x0 = I2S_LRCLK = 0 - Left, 1 - Right |
|
|
|
// 1x0 = I2S_LRCLK = 0 - Right, 1 - Left |
|
|
|
// The left subframe should be presented first regardless of |
|
|
|
// the setting of LRPOL. |
|
|
|
|
|
|
|
#define CHIP_SSS_CTRL 0x000A |
|
|
|
// 14 DAP_MIX_LRSWAP DAP Mixer Input Swap |
|
|
|
// 0x0 = Normal Operation |
|
|
|
// 0x1 = Left and Right channels for the DAP MIXER Input are swapped. |
|
|
|
// 13 DAP_LRSWAP DAP Mixer Input Swap |
|
|
|
// 0x0 = Normal Operation |
|
|
|
// 0x1 = Left and Right channels for the DAP Input are swapped |
|
|
|
// 12 DAC_LRSWAP DAC Input Swap |
|
|
|
// 0x0 = Normal Operation |
|
|
|
// 0x1 = Left and Right channels for the DAC are swapped |
|
|
|
// 10 I2S_LRSWAP I2S_DOUT Swap |
|
|
|
// 0x0 = Normal Operation |
|
|
|
// 0x1 = Left and Right channels for the I2S_DOUT are swapped |
|
|
|
// 9:8 DAP_MIX_SELECT Select data source for DAP mixer |
|
|
|
// 0x0 = ADC |
|
|
|
// 0x1 = I2S_IN |
|
|
|
// 0x2 = Reserved |
|
|
|
// 0x3 = Reserved |
|
|
|
// 7:6 DAP_SELECT Select data source for DAP |
|
|
|
// 0x0 = ADC |
|
|
|
// 0x1 = I2S_IN |
|
|
|
// 0x2 = Reserved |
|
|
|
// 0x3 = Reserved |
|
|
|
// 5:4 DAC_SELECT Select data source for DAC (default=1) |
|
|
|
// 0x0 = ADC |
|
|
|
// 0x1 = I2S_IN |
|
|
|
// 0x2 = Reserved |
|
|
|
// 0x3 = DAP |
|
|
|
// 1:0 I2S_SELECT Select data source for I2S_DOUT |
|
|
|
// 0x0 = ADC |
|
|
|
// 0x1 = I2S_IN |
|
|
|
// 0x2 = Reserved |
|
|
|
// 0x3 = DAP |
|
|
|
|
|
|
|
#define CHIP_ADCDAC_CTRL 0x000E |
|
|
|
// 13 VOL_BUSY_DAC_RIGHT Volume Busy DAC Right |
|
|
|
// 0x0 = Ready |
|
|
|
// 0x1 = Busy - This indicates the channel has not reached its |
|
|
|
// programmed volume/mute level |
|
|
|
// 12 VOL_BUSY_DAC_LEFT Volume Busy DAC Left |
|
|
|
// 0x0 = Ready |
|
|
|
// 0x1 = Busy - This indicates the channel has not reached its |
|
|
|
// programmed volume/mute level |
|
|
|
// 9 VOL_RAMP_EN Volume Ramp Enable (default=1) |
|
|
|
// 0x0 = Disables volume ramp. New volume settings take immediate |
|
|
|
// effect without a ramp |
|
|
|
// 0x1 = Enables volume ramp |
|
|
|
// This field affects DAC_VOL. The volume ramp effects both |
|
|
|
// volume settings and mute When set to 1 a soft mute is enabled. |
|
|
|
// 8 VOL_EXPO_RAMP Exponential Volume Ramp Enable |
|
|
|
// 0x0 = Linear ramp over top 4 volume octaves |
|
|
|
// 0x1 = Exponential ramp over full volume range |
|
|
|
// This bit only takes effect if VOL_RAMP_EN is 1. |
|
|
|
// 3 DAC_MUTE_RIGHT DAC Right Mute (default=1) |
|
|
|
// 0x0 = Unmute |
|
|
|
// 0x1 = Muted |
|
|
|
// If VOL_RAMP_EN = 1, this is a soft mute. |
|
|
|
// 2 DAC_MUTE_LEFT DAC Left Mute (default=1) |
|
|
|
// 0x0 = Unmute |
|
|
|
// 0x1 = Muted |
|
|
|
// If VOL_RAMP_EN = 1, this is a soft mute. |
|
|
|
// 1 ADC_HPF_FREEZE ADC High Pass Filter Freeze |
|
|
|
// 0x0 = Normal operation |
|
|
|
// 0x1 = Freeze the ADC high-pass filter offset register. The |
|
|
|
// offset continues to be subtracted from the ADC data stream. |
|
|
|
// 0 ADC_HPF_BYPASS ADC High Pass Filter Bypass |
|
|
|
// 0x0 = Normal operation |
|
|
|
// 0x1 = Bypassed and offset not updated |
|
|
|
|
|
|
|
#define CHIP_DAC_VOL 0x0010 |
|
|
|
// 15:8 DAC_VOL_RIGHT DAC Right Channel Volume. Set the Right channel DAC volume |
|
|
|
// with 0.5017 dB steps from 0 to -90 dB |
|
|
|
// 0x3B and less = Reserved |
|
|
|
// 0x3C = 0 dB |
|
|
|
// 0x3D = -0.5 dB |
|
|
|
// 0xF0 = -90 dB |
|
|
|
// 0xFC and greater = Muted |
|
|
|
// If VOL_RAMP_EN = 1, there is an automatic ramp to the |
|
|
|
// new volume setting. |
|
|
|
// 7:0 DAC_VOL_LEFT DAC Left Channel Volume. Set the Left channel DAC volume |
|
|
|
// with 0.5017 dB steps from 0 to -90 dB |
|
|
|
// 0x3B and less = Reserved |
|
|
|
// 0x3C = 0 dB |
|
|
|
// 0x3D = -0.5 dB |
|
|
|
// 0xF0 = -90 dB |
|
|
|
// 0xFC and greater = Muted |
|
|
|
// If VOL_RAMP_EN = 1, there is an automatic ramp to the |
|
|
|
// new volume setting. |
|
|
|
|
|
|
|
#define CHIP_PAD_STRENGTH 0x0014 |
|
|
|
// 9:8 I2S_LRCLK I2S LRCLK Pad Drive Strength (default=1) |
|
|
|
// Sets drive strength for output pads per the table below. |
|
|
|
// VDDIO 1.8 V 2.5 V 3.3 V |
|
|
|
// 0x0 = Disable |
|
|
|
// 0x1 = 1.66 mA 2.87 mA 4.02 mA |
|
|
|
// 0x2 = 3.33 mA 5.74 mA 8.03 mA |
|
|
|
// 0x3 = 4.99 mA 8.61 mA 12.05 mA |
|
|
|
// 7:6 I2S_SCLK I2S SCLK Pad Drive Strength (default=1) |
|
|
|
// 5:4 I2S_DOUT I2S DOUT Pad Drive Strength (default=1) |
|
|
|
// 3:2 CTRL_DATA I2C DATA Pad Drive Strength (default=3) |
|
|
|
// 1:0 CTRL_CLK I2C CLK Pad Drive Strength (default=3) |
|
|
|
// (all use same table as I2S_LRCLK) |
|
|
|
|
|
|
|
#define CHIP_ANA_ADC_CTRL 0x0020 |
|
|
|
// 8 ADC_VOL_M6DB ADC Volume Range Reduction |
|
|
|
// This bit shifts both right and left analog ADC volume |
|
|
|
// range down by 6.0 dB. |
|
|
|
// 0x0 = No change in ADC range |
|
|
|
// 0x1 = ADC range reduced by 6.0 dB |
|
|
|
// 7:4 ADC_VOL_RIGHT ADC Right Channel Volume |
|
|
|
// Right channel analog ADC volume control in 1.5 dB steps. |
|
|
|
// 0x0 = 0 dB |
|
|
|
// 0x1 = +1.5 dB |
|
|
|
// ... |
|
|
|
// 0xF = +22.5 dB |
|
|
|
// This range is -6.0 dB to +16.5 dB if ADC_VOL_M6DB is set to 1. |
|
|
|
// 3:0 ADC_VOL_LEFT ADC Left Channel Volume |
|
|
|
// (same scale as ADC_VOL_RIGHT) |
|
|
|
|
|
|
|
#define CHIP_ANA_HP_CTRL 0x0022 |
|
|
|
// 14:8 HP_VOL_RIGHT Headphone Right Channel Volume (default 0x18) |
|
|
|
// Right channel headphone volume control with 0.5 dB steps. |
|
|
|
// 0x00 = +12 dB |
|
|
|
// 0x01 = +11.5 dB |
|
|
|
// 0x18 = 0 dB |
|
|
|
// ... |
|
|
|
// 0x7F = -51.5 dB |
|
|
|
// 6:0 HP_VOL_LEFT Headphone Left Channel Volume (default 0x18) |
|
|
|
// (same scale as HP_VOL_RIGHT) |
|
|
|
|
|
|
|
#define CHIP_ANA_CTRL 0x0024 |
|
|
|
// 8 MUTE_LO LINEOUT Mute, 0 = Unmute, 1 = Mute (default 1) |
|
|
|
// 6 SELECT_HP Select the headphone input, 0 = DAC, 1 = LINEIN |
|
|
|
// 5 EN_ZCD_HP Enable the headphone zero cross detector (ZCD) |
|
|
|
// 0x0 = HP ZCD disabled |
|
|
|
// 0x1 = HP ZCD enabled |
|
|
|
// 4 MUTE_HP Mute the headphone outputs, 0 = Unmute, 1 = Mute (default) |
|
|
|
// 2 SELECT_ADC Select the ADC input, 0 = Microphone, 1 = LINEIN |
|
|
|
// 1 EN_ZCD_ADC Enable the ADC analog zero cross detector (ZCD) |
|
|
|
// 0x0 = ADC ZCD disabled |
|
|
|
// 0x1 = ADC ZCD enabled |
|
|
|
// 0 MUTE_ADC Mute the ADC analog volume, 0 = Unmute, 1 = Mute (default) |
|
|
|
|
|
|
|
#define CHIP_LINREG_CTRL 0x0026 |
|
|
|
// 6 VDDC_MAN_ASSN Determines chargepump source when VDDC_ASSN_OVRD is set. |
|
|
|
// 0x0 = VDDA |
|
|
|
// 0x1 = VDDIO |
|
|
|
// 5 VDDC_ASSN_OVRD Charge pump Source Assignment Override |
|
|
|
// 0x0 = Charge pump source is automatically assigned based |
|
|
|
// on higher of VDDA and VDDIO |
|
|
|
// 0x1 = the source of charge pump is manually assigned by |
|
|
|
// VDDC_MAN_ASSN If VDDIO and VDDA are both the same |
|
|
|
// and greater than 3.1 V, VDDC_ASSN_OVRD and |
|
|
|
// VDDC_MAN_ASSN should be used to manually assign |
|
|
|
// VDDIO as the source for charge pump. |
|
|
|
// 3:0 D_PROGRAMMING Sets the VDDD linear regulator output voltage in 50 mV steps. |
|
|
|
// Must clear the LINREG_SIMPLE_POWERUP and STARTUP_POWERUP bits |
|
|
|
// in the 0x0030 (CHIP_ANA_POWER) register after power-up, for |
|
|
|
// this setting to produce the proper VDDD voltage. |
|
|
|
// 0x0 = 1.60 |
|
|
|
// 0xF = 0.85 |
|
|
|
|
|
|
|
#define CHIP_REF_CTRL 0x0028 // bandgap reference bias voltage and currents |
|
|
|
// 8:4 VAG_VAL Analog Ground Voltage Control |
|
|
|
// These bits control the analog ground voltage in 25 mV steps. |
|
|
|
// This should usually be set to VDDA/2 or lower for best |
|
|
|
// performance (maximum output swing at minimum THD). This VAG |
|
|
|
// reference is also used for the DAC and ADC voltage reference. |
|
|
|
// So changing this voltage scales the output swing of the DAC |
|
|
|
// and the output signal of the ADC. |
|
|
|
// 0x00 = 0.800 V |
|
|
|
// 0x1F = 1.575 V |
|
|
|
// 3:1 BIAS_CTRL Bias control |
|
|
|
// These bits adjust the bias currents for all of the analog |
|
|
|
// blocks. By lowering the bias current a lower quiescent power |
|
|
|
// is achieved. It should be noted that this mode can affect |
|
|
|
// performance by 3-4 dB. |
|
|
|
// 0x0 = Nominal |
|
|
|
// 0x1-0x3=+12.5% |
|
|
|
// 0x4=-12.5% |
|
|
|
// 0x5=-25% |
|
|
|
// 0x6=-37.5% |
|
|
|
// 0x7=-50% |
|
|
|
// 0 SMALL_POP VAG Ramp Control |
|
|
|
// Setting this bit slows down the VAG ramp from ~200 to ~400 ms |
|
|
|
// to reduce the startup pop, but increases the turn on/off time. |
|
|
|
// 0x0 = Normal VAG ramp |
|
|
|
// 0x1 = Slow down VAG ramp |
|
|
|
|
|
|
|
#define CHIP_MIC_CTRL 0x002A // microphone gain & internal microphone bias |
|
|
|
// 9:8 BIAS_RESISTOR MIC Bias Output Impedance Adjustment |
|
|
|
// Controls an adjustable output impedance for the microphone bias. |
|
|
|
// If this is set to zero the micbias block is powered off and |
|
|
|
// the output is highZ. |
|
|
|
// 0x0 = Powered off |
|
|
|
// 0x1 = 2.0 kohm |
|
|
|
// 0x2 = 4.0 kohm |
|
|
|
// 0x3 = 8.0 kohm |
|
|
|
// 6:4 BIAS_VOLT MIC Bias Voltage Adjustment |
|
|
|
// Controls an adjustable bias voltage for the microphone bias |
|
|
|
// amp in 250 mV steps. This bias voltage setting should be no |
|
|
|
// more than VDDA-200 mV for adequate power supply rejection. |
|
|
|
// 0x0 = 1.25 V |
|
|
|
// ... |
|
|
|
// 0x7 = 3.00 V |
|
|
|
// 1:0 GAIN MIC Amplifier Gain |
|
|
|
// Sets the microphone amplifier gain. At 0 dB setting the THD |
|
|
|
// can be slightly higher than other paths- typically around |
|
|
|
// ~65 dB. At other gain settings the THD are better. |
|
|
|
// 0x0 = 0 dB |
|
|
|
// 0x1 = +20 dB |
|
|
|
// 0x2 = +30 dB |
|
|
|
// 0x3 = +40 dB |
|
|
|
|
|
|
|
#define CHIP_LINE_OUT_CTRL 0x002C |
|
|
|
// 11:8 OUT_CURRENT Controls the output bias current for the LINEOUT amplifiers. The |
|
|
|
// nominal recommended setting for a 10 kohm load with 1.0 nF load cap |
|
|
|
// is 0x3. There are only 5 valid settings. |
|
|
|
// 0x0=0.18 mA |
|
|
|
// 0x1=0.27 mA |
|
|
|
// 0x3=0.36 mA |
|
|
|
// 0x7=0.45 mA |
|
|
|
// 0xF=0.54 mA |
|
|
|
// 5:0 LO_VAGCNTRL LINEOUT Amplifier Analog Ground Voltage |
|
|
|
// Controls the analog ground voltage for the LINEOUT amplifiers |
|
|
|
// in 25 mV steps. This should usually be set to VDDIO/2. |
|
|
|
// 0x00 = 0.800 V |
|
|
|
// ... |
|
|
|
// 0x1F = 1.575 V |
|
|
|
// ... |
|
|
|
// 0x23 = 1.675 V |
|
|
|
// 0x24-0x3F are invalid |
|
|
|
|
|
|
|
#define CHIP_LINE_OUT_VOL 0x002E |
|
|
|
// 12:8 LO_VOL_RIGHT LINEOUT Right Channel Volume (default=4) |
|
|
|
// Controls the right channel LINEOUT volume in 0.5 dB steps. |
|
|
|
// Higher codes have more attenuation. |
|
|
|
// 4:0 LO_VOL_LEFT LINEOUT Left Channel Output Level (default=4) |
|
|
|
// Used to normalize the output level of the left line output |
|
|
|
// to full scale based on the values used to set |
|
|
|
// LINE_OUT_CTRL->LO_VAGCNTRL and CHIP_REF_CTRL->VAG_VAL. |
|
|
|
// In general this field should be set to: |
|
|
|
// 40*log((VAG_VAL)/(LO_VAGCNTRL)) + 15 |
|
|
|
// Suggested values based on typical VDDIO and VDDA voltages. |
|
|
|
// VDDA VAG_VAL VDDIO LO_VAGCNTRL LO_VOL_* |
|
|
|
// 1.8 V 0.9 3.3 V 1.55 0x06 |
|
|
|
// 1.8 V 0.9 1.8 V 0.9 0x0F |
|
|
|
// 3.3 V 1.55 1.8 V 0.9 0x19 |
|
|
|
// 3.3 V 1.55 3.3 V 1.55 0x0F |
|
|
|
// After setting to the nominal voltage, this field can be used |
|
|
|
// to adjust the output level in +/-0.5 dB increments by using |
|
|
|
// values higher or lower than the nominal setting. |
|
|
|
|
|
|
|
#define CHIP_ANA_POWER 0x0030 // power down controls for the analog blocks. |
|
|
|
// The only other power-down controls are BIAS_RESISTOR in the MIC_CTRL register |
|
|
|
// and the EN_ZCD control bits in ANA_CTRL. |
|
|
|
// 14 DAC_MONO While DAC_POWERUP is set, this allows the DAC to be put into left only |
|
|
|
// mono operation for power savings. 0=mono, 1=stereo (default) |
|
|
|
// 13 LINREG_SIMPLE_POWERUP Power up the simple (low power) digital supply regulator. |
|
|
|
// After reset, this bit can be cleared IF VDDD is driven |
|
|
|
// externally OR the primary digital linreg is enabled with |
|
|
|
// LINREG_D_POWERUP |
|
|
|
// 12 STARTUP_POWERUP Power up the circuitry needed during the power up ramp and reset. |
|
|
|
// After reset this bit can be cleared if VDDD is coming from |
|
|
|
// an external source. |
|
|
|
// 11 VDDC_CHRGPMP_POWERUP Power up the VDDC charge pump block. If neither VDDA or VDDIO |
|
|
|
// is 3.0 V or larger this bit should be cleared before analog |
|
|
|
// blocks are powered up. |
|
|
|
// 10 PLL_POWERUP PLL Power Up, 0 = Power down, 1 = Power up |
|
|
|
// When cleared, the PLL is turned off. This must be set before |
|
|
|
// CHIP_CLK_CTRL->MCLK_FREQ is programmed to 0x3. The |
|
|
|
// CHIP_PLL_CTRL register must be configured correctly before |
|
|
|
// setting this bit. |
|
|
|
// 9 LINREG_D_POWERUP Power up the primary VDDD linear regulator, 0 = Power down, 1 = Power up |
|
|
|
// 8 VCOAMP_POWERUP Power up the PLL VCO amplifier, 0 = Power down, 1 = Power up |
|
|
|
// 7 VAG_POWERUP Power up the VAG reference buffer. |
|
|
|
// Setting this bit starts the power up ramp for the headphone |
|
|
|
// and LINEOUT. The headphone (and/or LINEOUT) powerup should |
|
|
|
// be set BEFORE clearing this bit. When this bit is cleared |
|
|
|
// the power-down ramp is started. The headphone (and/or LINEOUT) |
|
|
|
// powerup should stay set until the VAG is fully ramped down |
|
|
|
// (200 to 400 ms after clearing this bit). |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
// 6 ADC_MONO While ADC_POWERUP is set, this allows the ADC to be put into left only |
|
|
|
// mono operation for power savings. This mode is useful when |
|
|
|
// only using the microphone input. |
|
|
|
// 0x0 = Mono (left only), 0x1 = Stereo |
|
|
|
// 5 REFTOP_POWERUP Power up the reference bias currents |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
// This bit can be cleared when the part is a sleep state |
|
|
|
// to minimize analog power. |
|
|
|
// 4 HEADPHONE_POWERUP Power up the headphone amplifiers |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
// 3 DAC_POWERUP Power up the DACs |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
// 2 CAPLESS_HEADPHONE_POWERUP Power up the capless headphone mode |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
// 1 ADC_POWERUP Power up the ADCs |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
// 0 LINEOUT_POWERUP Power up the LINEOUT amplifiers |
|
|
|
// 0x0 = Power down, 0x1 = Power up |
|
|
|
|
|
|
|
#define CHIP_PLL_CTRL 0x0032 |
|
|
|
// 15:11 INT_DIVISOR |
|
|
|
// 10:0 FRAC_DIVISOR |
|
|
|
|
|
|
|
#define CHIP_CLK_TOP_CTRL 0x0034 |
|
|
|
// 11 ENABLE_INT_OSC Setting this bit enables an internal oscillator to be used for the |
|
|
|
// zero cross detectors, the short detect recovery, and the |
|
|
|
// charge pump. This allows the I2S clock to be shut off while |
|
|
|
// still operating an analog signal path. This bit can be kept |
|
|
|
// on when the I2S clock is enabled, but the I2S clock is more |
|
|
|
// accurate so it is preferred to clear this bit when I2S is present. |
|
|
|
// 3 INPUT_FREQ_DIV2 SYS_MCLK divider before PLL input |
|
|
|
// 0x0 = pass through |
|
|
|
// 0x1 = SYS_MCLK is divided by 2 before entering PLL |
|
|
|
// This must be set when the input clock is above 17 Mhz. This |
|
|
|
// has no effect when the PLL is powered down. |
|
|
|
|
|
|
|
#define CHIP_ANA_STATUS 0x0036 |
|
|
|
// 9 LRSHORT_STS This bit is high whenever a short is detected on the left or right |
|
|
|
// channel headphone drivers. |
|
|
|
// 8 CSHORT_STS This bit is high whenever a short is detected on the capless headphone |
|
|
|
// common/center channel driver. |
|
|
|
// 4 PLL_IS_LOCKED This bit goes high after the PLL is locked. |
|
|
|
|
|
|
|
#define CHIP_ANA_TEST1 0x0038 // intended only for debug. |
|
|
|
#define CHIP_ANA_TEST2 0x003A // intended only for debug. |
|
|
|
|
|
|
|
#define CHIP_SHORT_CTRL 0x003C |
|
|
|
// 14:12 LVLADJR Right channel headphone short detector in 25 mA steps. |
|
|
|
// 0x3=25 mA |
|
|
|
// 0x2=50 mA |
|
|
|
// 0x1=75 mA |
|
|
|
// 0x0=100 mA |
|
|
|
// 0x4=125 mA |
|
|
|
// 0x5=150 mA |
|
|
|
// 0x6=175 mA |
|
|
|
// 0x7=200 mA |
|
|
|
// This trip point can vary by ~30% over process so leave plenty |
|
|
|
// of guard band to avoid false trips. This short detect trip |
|
|
|
// point is also effected by the bias current adjustments made |
|
|
|
// by CHIP_REF_CTRL->BIAS_CTRL and by CHIP_ANA_TEST1->HP_IALL_ADJ. |
|
|
|
// 10:8 LVLADJL Left channel headphone short detector in 25 mA steps. |
|
|
|
// (same scale as LVLADJR) |
|
|
|
// 6:4 LVLADJC Capless headphone center channel short detector in 50 mA steps. |
|
|
|
// 0x3=50 mA |
|
|
|
// 0x2=100 mA |
|
|
|
// 0x1=150 mA |
|
|
|
// 0x0=200 mA |
|
|
|
// 0x4=250 mA |
|
|
|
// 0x5=300 mA |
|
|
|
// 0x6=350 mA |
|
|
|
// 0x7=400 mA |
|
|
|
// 3:2 MODE_LR Behavior of left/right short detection |
|
|
|
// 0x0 = Disable short detector, reset short detect latch, |
|
|
|
// software view non-latched short signal |
|
|
|
// 0x1 = Enable short detector and reset the latch at timeout |
|
|
|
// (every ~50 ms) |
|
|
|
// 0x2 = This mode is not used/invalid |
|
|
|
// 0x3 = Enable short detector with only manual reset (have |
|
|
|
// to return to 0x0 to reset the latch) |
|
|
|
// 1:0 MODE_CM Behavior of capless headphone central short detection |
|
|
|
// (same settings as MODE_LR) |
|
|
|
|
|
|
|
#define DAP_CONTROL 0x0100 |
|
|
|
#define DAP_PEQ 0x0102 |
|
|
|
#define DAP_BASS_ENHANCE 0x0104 |
|
|
|
#define DAP_BASS_ENHANCE_CTRL 0x0106 |
|
|
|
#define DAP_AUDIO_EQ 0x0108 |
|
|
|
#define DAP_SGTL_SURROUND 0x010A |
|
|
|
#define DAP_FILTER_COEF_ACCESS 0x010C |
|
|
|
#define DAP_COEF_WR_B0_MSB 0x010E |
|
|
|
#define DAP_COEF_WR_B0_LSB 0x0110 |
|
|
|
#define DAP_AUDIO_EQ_BASS_BAND0 0x0116 // 115 Hz |
|
|
|
#define DAP_AUDIO_EQ_BAND1 0x0118 // 330 Hz |
|
|
|
#define DAP_AUDIO_EQ_BAND2 0x011A // 990 Hz |
|
|
|
#define DAP_AUDIO_EQ_BAND3 0x011C // 3000 Hz |
|
|
|
#define DAP_AUDIO_EQ_TREBLE_BAND4 0x011E // 9900 Hz |
|
|
|
#define DAP_MAIN_CHAN 0x0120 |
|
|
|
#define DAP_MIX_CHAN 0x0122 |
|
|
|
#define DAP_AVC_CTRL 0x0124 |
|
|
|
#define DAP_AVC_THRESHOLD 0x0126 |
|
|
|
#define DAP_AVC_ATTACK 0x0128 |
|
|
|
#define DAP_AVC_DECAY 0x012A |
|
|
|
#define DAP_COEF_WR_B1_MSB 0x012C |
|
|
|
#define DAP_COEF_WR_B1_LSB 0x012E |
|
|
|
#define DAP_COEF_WR_B2_MSB 0x0130 |
|
|
|
#define DAP_COEF_WR_B2_LSB 0x0132 |
|
|
|
#define DAP_COEF_WR_A1_MSB 0x0134 |
|
|
|
#define DAP_COEF_WR_A1_LSB 0x0136 |
|
|
|
#define DAP_COEF_WR_A2_MSB 0x0138 |
|
|
|
#define DAP_COEF_WR_A2_LSB 0x013A |
|
|
|
|
|
|
|
#define SGTL5000_I2C_ADDR 0x0A // CTRL_ADR0_CS pin low (normal configuration) |
|
|
|
//#define SGTL5000_I2C_ADDR 0x2A // CTRL_ADR0_CS pin high |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool AudioControlSGTL5000::enable(void) |
|
|
|
{ |
|
|
|
//unsigned int n; |
|
|
|
|
|
|
|
muted = true; |
|
|
|
Wire.begin(); |
|
|
|
delay(5); |
|
|
|
//Serial.print("chip ID = "); |
|
|
|
//delay(5); |
|
|
|
//n = read(CHIP_ID); |
|
|
|
//Serial.println(n, HEX); |
|
|
|
|
|
|
|
write(CHIP_ANA_POWER, 0x4060); // VDDD is externally driven with 1.8V |
|
|
|
write(CHIP_LINREG_CTRL, 0x006C); // VDDA & VDDIO both over 3.1V |
|
|
|
write(CHIP_REF_CTRL, 0x01F1); // VAG=1.575 slow ramp, normal bias current |
|
|
|
write(CHIP_LINE_OUT_CTRL, 0x0322); // LO_VAGCNTRL=1.65V, OUT_CURRENT=0.36mA |
|
|
|
write(CHIP_SHORT_CTRL, 0x4446); // allow up to 125mA |
|
|
|
write(CHIP_ANA_CTRL, 0x0137); // enable zero cross detectors |
|
|
|
write(CHIP_ANA_POWER, 0x40FF); // power up: lineout, hp, adc, dac |
|
|
|
write(CHIP_DIG_POWER, 0x0073); // power up all digital stuff |
|
|
|
delay(400); |
|
|
|
// 40*log((1.575)/(1.65)) + 15 = 13.1391993746043 but it seems wrong, 5 is better... |
|
|
|
write(CHIP_LINE_OUT_VOL, 0x0505); // TODO: correct value for 3.3V |
|
|
|
write(CHIP_CLK_CTRL, 0x0004); // 44.1 kHz, 256*Fs |
|
|
|
write(CHIP_I2S_CTRL, 0x0130); // SCLK=32*Fs, 16bit, I2S format |
|
|
|
// default signal routing is ok? |
|
|
|
write(CHIP_SSS_CTRL, 0x0010); // ADC->I2S, I2S->DAC |
|
|
|
write(CHIP_ADCDAC_CTRL, 0x0000); // disable dac mute |
|
|
|
write(CHIP_DAC_VOL, 0x3C3C); // digital gain, 0dB |
|
|
|
write(CHIP_ANA_HP_CTRL, 0x7F7F); // set volume (lowest level) |
|
|
|
write(CHIP_ANA_CTRL, 0x0136); // enable zero cross detectors |
|
|
|
//mute = false; |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
unsigned int AudioControlSGTL5000::read(unsigned int reg) |
|
|
|
{ |
|
|
|
unsigned int val; |
|
|
|
|
|
|
|
Wire.beginTransmission(SGTL5000_I2C_ADDR); |
|
|
|
Wire.write(reg >> 8); |
|
|
|
Wire.write(reg); |
|
|
|
if (Wire.endTransmission(false) != 0) return 0; |
|
|
|
if (Wire.requestFrom(SGTL5000_I2C_ADDR, 2) < 2) return 0; |
|
|
|
val = Wire.read() << 8; |
|
|
|
val |= Wire.read(); |
|
|
|
return val; |
|
|
|
} |
|
|
|
|
|
|
|
bool AudioControlSGTL5000::write(unsigned int reg, unsigned int val) |
|
|
|
{ |
|
|
|
if (reg == CHIP_ANA_CTRL) ana_ctrl = val; |
|
|
|
Wire.beginTransmission(SGTL5000_I2C_ADDR); |
|
|
|
Wire.write(reg >> 8); |
|
|
|
Wire.write(reg); |
|
|
|
Wire.write(val >> 8); |
|
|
|
Wire.write(val); |
|
|
|
if (Wire.endTransmission() == 0) return true; |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
unsigned int AudioControlSGTL5000::modify(unsigned int reg, unsigned int val, unsigned int iMask) |
|
|
|
{ |
|
|
|
unsigned int val1 = (read(reg)&(~iMask))|val; |
|
|
|
if(!write(reg,val1)) return 0; |
|
|
|
return val1; |
|
|
|
} |
|
|
|
|
|
|
|
bool AudioControlSGTL5000::volumeInteger(unsigned int n) |
|
|
|
{ |
|
|
|
if (n == 0) { |
|
|
|
muted = true; |
|
|
|
write(CHIP_ANA_HP_CTRL, 0x7F7F); |
|
|
|
return muteHeadphone(); |
|
|
|
} else if (n > 0x80) { |
|
|
|
n = 0; |
|
|
|
} else { |
|
|
|
n = 0x80 - n; |
|
|
|
} |
|
|
|
if (muted) { |
|
|
|
muted = false; |
|
|
|
unmuteHeadphone(); |
|
|
|
} |
|
|
|
n = n | (n << 8); |
|
|
|
return write(CHIP_ANA_HP_CTRL, n); // set volume |
|
|
|
} |
|
|
|
|
|
|
|
bool AudioControlSGTL5000::volume(float left, float right) |
|
|
|
{ |
|
|
|
unsigned short m=((0x7F-calcVol(right,0x7F))<<8)|(0x7F-calcVol(left,0x7F)); |
|
|
|
return write(CHIP_ANA_HP_CTRL, m); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// CHIP_LINE_OUT_VOL |
|
|
|
unsigned short AudioControlSGTL5000::lo_lvl(uint8_t n) |
|
|
|
{ |
|
|
|
n&=31; |
|
|
|
return modify(CHIP_LINE_OUT_VOL,(n<<8)|n,(31<<8)|31); |
|
|
|
} |
|
|
|
|
|
|
|
unsigned short AudioControlSGTL5000::lo_lvl(uint8_t left, uint8_t right) |
|
|
|
{ |
|
|
|
left&=31; |
|
|
|
right&=31; |
|
|
|
return modify(CHIP_LINE_OUT_VOL,(right<<8)|left,(31<<8)|31); |
|
|
|
} |
|
|
|
|
|
|
|
unsigned short AudioControlSGTL5000::dac_vol(float n) // set both directly |
|
|
|
{ |
|
|
|
if(read(CHIP_ADCDAC_CTRL)&(3<<2)!=((n>0 ? 0:3)<<2)) modify(CHIP_ADCDAC_CTRL,(n>0 ? 0:3)<<2,3<<2); |
|
|
|
unsigned char m=calcVol(n,0xC0); |
|
|
|
return modify(CHIP_DAC_VOL,((0xFC-m)<<8)|(0xFC-m),65535); |
|
|
|
} |
|
|
|
unsigned short AudioControlSGTL5000::dac_vol(float left, float right) |
|
|
|
{ |
|
|
|
unsigned short adcdac=((right>0 ? 0:2)|(left>0 ? 0:1))<<2; |
|
|
|
if(read(CHIP_ADCDAC_CTRL)&(3<<2)!=adcdac) modify(CHIP_ADCDAC_CTRL,adcdac,1<<2); |
|
|
|
unsigned short m=(0xFC-calcVol(right,0xC0))<<8|(0xFC-calcVol(left,0xC0)); |
|
|
|
return modify(CHIP_DAC_VOL,m,65535); |
|
|
|
} |
|
|
|
// DAP_CONTROL |
|
|
|
unsigned short AudioControlSGTL5000::dap_mix_enable(uint8_t n) |
|
|
|
{ |
|
|
|
return modify(DAP_CONTROL,(n&1)<<4,1<<4); |
|
|
|
} |
|
|
|
unsigned short AudioControlSGTL5000::dap_enable(uint8_t n) |
|
|
|
{ |
|
|
|
if(n) n=1; |
|
|
|
unsigned char DAC=1+(2*n); // I2S_IN if n==0 else DAP |
|
|
|
modify(DAP_CONTROL,n,1); |
|
|
|
return modify(CHIP_SSS_CTRL,(0<<6)|(DAC<<4),(3<<6)|(3<<4)); |
|
|
|
} |
|
|
|
|
|
|
|
unsigned short AudioControlSGTL5000::dap_enable(void) |
|
|
|
{ |
|
|
|
return dap_enable(1); |
|
|
|
} |
|
|
|
|
|
|
|
// DAP_PEQ |
|
|
|
unsigned short AudioControlSGTL5000::dap_peqs(uint8_t n) // valid to n&7, 0 thru 7 filters enabled. |
|
|
|
{ |
|
|
|
return modify(DAP_PEQ,(n&7),7); |
|
|
|
} |
|
|
|
|
|
|
|
// DAP_AUDIO_EQ |
|
|
|
unsigned short AudioControlSGTL5000::dap_audio_eq(uint8_t n) // 0=NONE, 1=PEQ (7 IIR Biquad filters), 2=TONE (tone), 3=GEQ (5 band EQ) |
|
|
|
{ |
|
|
|
return modify(DAP_AUDIO_EQ,n&3,3); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/******************************************************************/ |
|
|
|
|
|
|
|
void AudioFilterFIR::begin(short *cp,int n_coeffs) |
|
|
|
{ |
|
|
|
@@ -2825,146 +2093,6 @@ void AudioEffectChorus::update(void) |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// DAP_AUDIO_EQ_BASS_BAND0 & DAP_AUDIO_EQ_BAND1 & DAP_AUDIO_EQ_BAND2 etc etc |
|
|
|
unsigned short AudioControlSGTL5000::dap_audio_eq_band(uint8_t bandNum, float n) // by signed percentage -100/+100; dap_audio_eq(3); |
|
|
|
{ // 0x00==-12dB, 0x2F==0dB, 0x5F==12dB |
|
|
|
n=((n/100)*48)+0.499; |
|
|
|
if(n<-47) n=-47; |
|
|
|
if(n>48) n=48; |
|
|
|
n+=47; |
|
|
|
return modify(DAP_AUDIO_EQ_BASS_BAND0+(bandNum*2),(unsigned int)n,127); |
|
|
|
} |
|
|
|
void AudioControlSGTL5000::dap_audio_eq_geq(float bass, float mid_bass, float midrange, float mid_treble, float treble) |
|
|
|
{ |
|
|
|
dap_audio_eq_band(0,bass); |
|
|
|
dap_audio_eq_band(1,mid_bass); |
|
|
|
dap_audio_eq_band(2,midrange); |
|
|
|
dap_audio_eq_band(3,mid_treble); |
|
|
|
dap_audio_eq_band(4,treble); |
|
|
|
} |
|
|
|
void AudioControlSGTL5000::dap_audio_eq_tone(float bass, float treble) // dap_audio_eq(2); |
|
|
|
{ |
|
|
|
dap_audio_eq_band(0,bass); |
|
|
|
dap_audio_eq_band(4,treble); |
|
|
|
} |
|
|
|
|
|
|
|
// SGTL5000 PEQ Coefficient loader |
|
|
|
void AudioControlSGTL5000::load_peq(uint8_t filterNum, int *filterParameters) |
|
|
|
{ |
|
|
|
// 1111 11111111 11111111 |
|
|
|
|
|
|
|
write(DAP_COEF_WR_B0_MSB,(*filterParameters>>4)&65535); |
|
|
|
write(DAP_COEF_WR_B0_LSB,(*filterParameters++)&15); |
|
|
|
write(DAP_COEF_WR_B1_MSB,(*filterParameters>>4)&65535); |
|
|
|
write(DAP_COEF_WR_B1_LSB,(*filterParameters++)&15); |
|
|
|
write(DAP_COEF_WR_B2_MSB,(*filterParameters>>4)&65535); |
|
|
|
write(DAP_COEF_WR_B2_LSB,(*filterParameters++)&15); |
|
|
|
write(DAP_COEF_WR_A1_MSB,(*filterParameters>>4)&65535); |
|
|
|
write(DAP_COEF_WR_A1_LSB,(*filterParameters++)&15); |
|
|
|
write(DAP_COEF_WR_A2_MSB,(*filterParameters>>4)&65535); |
|
|
|
write(DAP_COEF_WR_A2_LSB,(*filterParameters++)&15); |
|
|
|
write(DAP_FILTER_COEF_ACCESS,(uint16_t)0x100|filterNum); |
|
|
|
delay(10); // seems necessary, didn't work for 1ms. |
|
|
|
modify(DAP_FILTER_COEF_ACCESS,(uint16_t)filterNum,15); |
|
|
|
} |
|
|
|
|
|
|
|
unsigned char AudioControlSGTL5000::calcVol(float n, unsigned char range) |
|
|
|
{ |
|
|
|
n=(n*(((float)range)/100))+0.499; |
|
|
|
if ((unsigned char)n>range) n=range; |
|
|
|
return (unsigned char)n; |
|
|
|
} |
|
|
|
|
|
|
|
// if(SGTL5000_PEQ) quantization_unit=524288; if(AudioFilterBiquad) quantization_unit=2147483648; |
|
|
|
void calcBiquad(uint8_t filtertype, float fC, float dB_Gain, float Q, uint32_t quantization_unit, uint32_t fS, int *coef) |
|
|
|
{ |
|
|
|
|
|
|
|
// I used resources like http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt |
|
|
|
// to make this routine, I tested most of the filter types and they worked. Such filters have limits and |
|
|
|
// before calling this routine with varying values the end user should check that those values are limited |
|
|
|
// to valid results. |
|
|
|
|
|
|
|
float A; |
|
|
|
if(filtertype<FILTER_PARAEQ) A=pow(10,dB_Gain/20); else A=pow(10,dB_Gain/40); |
|
|
|
float W0 = 2*3.14159265358979323846*fC/fS; |
|
|
|
float cosw=cos(W0); |
|
|
|
float sinw=sin(W0); |
|
|
|
//float alpha = sinw*sinh((log(2)/2)*BW*W0/sinw); |
|
|
|
//float beta = sqrt(2*A); |
|
|
|
float alpha = sinw / (2 * Q); |
|
|
|
float beta = sqrt(A)/Q; |
|
|
|
float b0,b1,b2,a0,a1,a2; |
|
|
|
|
|
|
|
switch(filtertype) { |
|
|
|
case FILTER_LOPASS: |
|
|
|
b0 = (1.0F - cosw) * 0.5F; // =(1-COS($H$2))/2 |
|
|
|
b1 = 1.0F - cosw; |
|
|
|
b2 = (1.0F - cosw) * 0.5F; |
|
|
|
a0 = 1.0F + alpha; |
|
|
|
a1 = 2.0F * cosw; |
|
|
|
a2 = alpha - 1.0F; |
|
|
|
break; |
|
|
|
case FILTER_HIPASS: |
|
|
|
b0 = (1.0F + cosw) * 0.5F; |
|
|
|
b1 = -(cosw + 1.0F); |
|
|
|
b2 = (1.0F + cosw) * 0.5F; |
|
|
|
a0 = 1.0F + alpha; |
|
|
|
a1 = 2.0F * cosw; |
|
|
|
a2 = alpha - 1.0F; |
|
|
|
break; |
|
|
|
case FILTER_BANDPASS: |
|
|
|
b0 = alpha; |
|
|
|
b1 = 0.0F; |
|
|
|
b2 = -alpha; |
|
|
|
a0 = 1.0F + alpha; |
|
|
|
a1 = 2.0F * cosw; |
|
|
|
a2 = alpha - 1.0F; |
|
|
|
break; |
|
|
|
case FILTER_NOTCH: |
|
|
|
b0=1; |
|
|
|
b1=-2*cosw; |
|
|
|
b2=1; |
|
|
|
a0=1+alpha; |
|
|
|
a1=2*cosw; |
|
|
|
a2=-(1-alpha); |
|
|
|
break; |
|
|
|
case FILTER_PARAEQ: |
|
|
|
b0 = 1 + (alpha*A); |
|
|
|
b1 =-2 * cosw; |
|
|
|
b2 = 1 - (alpha*A); |
|
|
|
a0 = 1 + (alpha/A); |
|
|
|
a1 = 2 * cosw; |
|
|
|
a2 =-(1-(alpha/A)); |
|
|
|
break; |
|
|
|
case FILTER_LOSHELF: |
|
|
|
b0 = A * ((A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw)); |
|
|
|
b1 = 2.0F * A * ((A-1.0F) - ((A+1.0F)*cosw)); |
|
|
|
b2 = A * ((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw)); |
|
|
|
a0 = (A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw); |
|
|
|
a1 = 2.0F * ((A-1.0F) + ((A+1.0F)*cosw)); |
|
|
|
a2 = -((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw)); |
|
|
|
break; |
|
|
|
case FILTER_HISHELF: |
|
|
|
b0 = A * ((A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw)); |
|
|
|
b1 = -2.0F * A * ((A-1.0F) + ((A+1.0F)*cosw)); |
|
|
|
b2 = A * ((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw)); |
|
|
|
a0 = (A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw); |
|
|
|
a1 = -2.0F * ((A-1.0F) - ((A+1.0F)*cosw)); |
|
|
|
a2 = -((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw)); |
|
|
|
} |
|
|
|
|
|
|
|
a0=(a0*2)/(float)quantization_unit; // once here instead of five times there... |
|
|
|
b0/=a0; |
|
|
|
*coef++=(int)(b0+0.499); |
|
|
|
b1/=a0; |
|
|
|
*coef++=(int)(b1+0.499); |
|
|
|
b2/=a0; |
|
|
|
*coef++=(int)(b2+0.499); |
|
|
|
a1/=a0; |
|
|
|
*coef++=(int)(a1+0.499); |
|
|
|
a2/=a0; |
|
|
|
*coef++=(int)(a2+0.499); |
|
|
|
} |
|
|
|
|
|
|
|
/******************************************************************/ |
|
|
|
|