Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. #ifndef DMAChannel_h_
  2. #define DMAChannel_h_
  3. #include "kinetis.h"
  4. // This code is a work-in-progress. It's incomplete and not usable yet...
  5. //
  6. // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3
  7. // known libraries with DMA usage (in need of porting to this new scheme):
  8. //
  9. // https://github.com/PaulStoffregen/Audio
  10. // https://github.com/PaulStoffregen/OctoWS2811
  11. // https://github.com/pedvide/ADC
  12. // https://github.com/duff2013/SerialEvent
  13. // https://github.com/pixelmatix/SmartMatrix
  14. // https://github.com/crteensy/DmaSpi
  15. #ifdef __cplusplus
  16. class DMABaseClass {
  17. public:
  18. typedef struct __attribute__((packed)) {
  19. volatile const void * volatile SADDR;
  20. int16_t SOFF;
  21. union { uint16_t ATTR;
  22. struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; };
  23. union { uint32_t NBYTES; uint32_t NBYTES_MLNO;
  24. uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; };
  25. int32_t SLAST;
  26. volatile void * volatile DADDR;
  27. int16_t DOFF;
  28. union { volatile uint16_t CITER;
  29. volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; };
  30. int32_t DLASTSGA;
  31. volatile uint16_t CSR;
  32. union { volatile uint16_t BITER;
  33. volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; };
  34. } TCD_t;
  35. TCD_t *TCD;
  36. /***************************************/
  37. /** Data Transfer **/
  38. /***************************************/
  39. // Use a single variable as the data source. Typically a register
  40. // for receiving data from one of the hardware peripherals is used.
  41. void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); }
  42. void source(volatile const unsigned char &p) {
  43. TCD->SADDR = &p;
  44. TCD->SOFF = 0;
  45. TCD->ATTR_SRC = 0;
  46. if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
  47. TCD->SLAST = 0;
  48. }
  49. void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); }
  50. void source(volatile const unsigned short &p) {
  51. TCD->SADDR = &p;
  52. TCD->SOFF = 0;
  53. TCD->ATTR_SRC = 1;
  54. if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
  55. TCD->SLAST = 0;
  56. }
  57. void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); }
  58. void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); }
  59. void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); }
  60. void source(volatile const unsigned long &p) {
  61. TCD->SADDR = &p;
  62. TCD->SOFF = 0;
  63. TCD->ATTR_SRC = 2;
  64. if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
  65. TCD->SLAST = 0;
  66. }
  67. // Use a buffer (array of data) as the data source. Typically a
  68. // buffer for transmitting data is used.
  69. void sourceBuffer(volatile const signed char p[], unsigned int len) {
  70. sourceBuffer((volatile const uint8_t *)p, len); }
  71. void sourceBuffer(volatile const unsigned char p[], unsigned int len) {
  72. TCD->SADDR = p;
  73. TCD->SOFF = 1;
  74. TCD->ATTR_SRC = 0;
  75. TCD->NBYTES = 1;
  76. TCD->SLAST = -len;
  77. TCD->BITER = len;
  78. TCD->CITER = len;
  79. }
  80. void sourceBuffer(volatile const signed short p[], unsigned int len) {
  81. sourceBuffer((volatile const uint16_t *)p, len); }
  82. void sourceBuffer(volatile const unsigned short p[], unsigned int len) {
  83. TCD->SADDR = p;
  84. TCD->SOFF = 2;
  85. TCD->ATTR_SRC = 1;
  86. TCD->NBYTES = 2;
  87. TCD->SLAST = -len;
  88. TCD->BITER = len / 2;
  89. TCD->CITER = len / 2;
  90. }
  91. void sourceBuffer(volatile const signed int p[], unsigned int len) {
  92. sourceBuffer((volatile const uint32_t *)p, len); }
  93. void sourceBuffer(volatile const unsigned int p[], unsigned int len) {
  94. sourceBuffer((volatile const uint32_t *)p, len); }
  95. void sourceBuffer(volatile const signed long p[], unsigned int len) {
  96. sourceBuffer((volatile const uint32_t *)p, len); }
  97. void sourceBuffer(volatile const unsigned long p[], unsigned int len) {
  98. TCD->SADDR = p;
  99. TCD->SOFF = 4;
  100. TCD->ATTR_SRC = 2;
  101. TCD->NBYTES = 4;
  102. TCD->SLAST = -len;
  103. TCD->BITER = len / 4;
  104. TCD->CITER = len / 4;
  105. }
  106. // Use a circular buffer as the data source
  107. void sourceCircular(volatile const signed char p[], unsigned int len) {
  108. sourceCircular((volatile const uint8_t *)p, len); }
  109. void sourceCircular(volatile const unsigned char p[], unsigned int len) {
  110. TCD->SADDR = p;
  111. TCD->SOFF = 1;
  112. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3);
  113. TCD->NBYTES = 1;
  114. TCD->SLAST = 0;
  115. TCD->BITER = len;
  116. TCD->CITER = len;
  117. }
  118. void sourceCircular(volatile const signed short p[], unsigned int len) {
  119. sourceCircular((volatile const uint16_t *)p, len); }
  120. void sourceCircular(volatile const unsigned short p[], unsigned int len) {
  121. TCD->SADDR = p;
  122. TCD->SOFF = 2;
  123. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1;
  124. TCD->NBYTES = 2;
  125. TCD->SLAST = 0;
  126. TCD->BITER = len / 2;
  127. TCD->CITER = len / 2;
  128. }
  129. void sourceCircular(volatile const signed int p[], unsigned int len) {
  130. sourceCircular((volatile const uint32_t *)p, len); }
  131. void sourceCircular(volatile const unsigned int p[], unsigned int len) {
  132. sourceCircular((volatile const uint32_t *)p, len); }
  133. void sourceCircular(volatile const signed long p[], unsigned int len) {
  134. sourceCircular((volatile const uint32_t *)p, len); }
  135. void sourceCircular(volatile const unsigned long p[], unsigned int len) {
  136. TCD->SADDR = p;
  137. TCD->SOFF = 4;
  138. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2;
  139. TCD->NBYTES = 4;
  140. TCD->SLAST = 0;
  141. TCD->BITER = len / 4;
  142. TCD->CITER = len / 4;
  143. }
  144. // Use a single variable as the data destination. Typically a register
  145. // for transmitting data to one of the hardware peripherals is used.
  146. void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); }
  147. void destination(volatile unsigned char &p) {
  148. TCD->DADDR = &p;
  149. TCD->DOFF = 0;
  150. TCD->ATTR_DST = 0;
  151. if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
  152. TCD->DLASTSGA = 0;
  153. }
  154. void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); }
  155. void destination(volatile unsigned short &p) {
  156. TCD->DADDR = &p;
  157. TCD->DOFF = 0;
  158. TCD->ATTR_DST = 1;
  159. if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
  160. TCD->DLASTSGA = 0;
  161. }
  162. void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); }
  163. void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); }
  164. void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); }
  165. void destination(volatile unsigned long &p) {
  166. TCD->DADDR = &p;
  167. TCD->DOFF = 0;
  168. TCD->ATTR_DST = 2;
  169. if ((uint32_t)p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
  170. TCD->DLASTSGA = 0;
  171. }
  172. // Use a buffer (array of data) as the data destination. Typically a
  173. // buffer for receiving data is used.
  174. void destinationBuffer(volatile signed char p[], unsigned int len) {
  175. destinationBuffer((volatile uint8_t *)p, len); }
  176. void destinationBuffer(volatile unsigned char p[], unsigned int len) {
  177. TCD->DADDR = p;
  178. TCD->DOFF = 1;
  179. TCD->ATTR_DST = 0;
  180. TCD->NBYTES = 1;
  181. TCD->DLASTSGA = -len;
  182. TCD->BITER = len;
  183. TCD->CITER = len;
  184. }
  185. void destinationBuffer(volatile signed short p[], unsigned int len) {
  186. destinationBuffer((volatile uint16_t *)p, len); }
  187. void destinationBuffer(volatile unsigned short p[], unsigned int len) {
  188. TCD->DADDR = p;
  189. TCD->DOFF = 2;
  190. TCD->ATTR_DST = 1;
  191. TCD->NBYTES = 2;
  192. TCD->DLASTSGA = -len;
  193. TCD->BITER = len / 2;
  194. TCD->CITER = len / 2;
  195. }
  196. void destinationBuffer(volatile signed int p[], unsigned int len) {
  197. destinationBuffer((volatile uint32_t *)p, len); }
  198. void destinationBuffer(volatile unsigned int p[], unsigned int len) {
  199. destinationBuffer((volatile uint32_t *)p, len); }
  200. void destinationBuffer(volatile signed long p[], unsigned int len) {
  201. destinationBuffer((volatile uint32_t *)p, len); }
  202. void destinationBuffer(volatile unsigned long p[], unsigned int len) {
  203. TCD->DADDR = p;
  204. TCD->DOFF = 4;
  205. TCD->ATTR_DST = 2;
  206. TCD->NBYTES = 4;
  207. TCD->DLASTSGA = -len;
  208. TCD->BITER = len / 4;
  209. TCD->CITER = len / 4;
  210. }
  211. // Use a circular buffer as the data destination
  212. void destinationCircular(volatile signed char p[], unsigned int len) {
  213. destinationCircular((volatile uint8_t *)p, len); }
  214. void destinationCircular(volatile unsigned char p[], unsigned int len) {
  215. TCD->DADDR = p;
  216. TCD->DOFF = 1;
  217. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3);
  218. TCD->NBYTES = 1;
  219. TCD->DLASTSGA = 0;
  220. TCD->BITER = len;
  221. TCD->CITER = len;
  222. }
  223. void destinationCircular(volatile signed short p[], unsigned int len) {
  224. destinationCircular((volatile uint16_t *)p, len); }
  225. void destinationCircular(volatile unsigned short p[], unsigned int len) {
  226. TCD->DADDR = p;
  227. TCD->DOFF = 2;
  228. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1;
  229. TCD->NBYTES = 2;
  230. TCD->DLASTSGA = 0;
  231. TCD->BITER = len / 2;
  232. TCD->CITER = len / 2;
  233. }
  234. void destinationCircular(volatile signed int p[], unsigned int len) {
  235. destinationCircular((volatile uint32_t *)p, len); }
  236. void destinationCircular(volatile unsigned int p[], unsigned int len) {
  237. destinationCircular((volatile uint32_t *)p, len); }
  238. void destinationCircular(volatile signed long p[], unsigned int len) {
  239. destinationCircular((volatile uint32_t *)p, len); }
  240. void destinationCircular(volatile unsigned long p[], unsigned int len) {
  241. TCD->DADDR = p;
  242. TCD->DOFF = 4;
  243. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2;
  244. TCD->NBYTES = 4;
  245. TCD->DLASTSGA = 0;
  246. TCD->BITER = len / 4;
  247. TCD->CITER = len / 4;
  248. }
  249. /*************************************************/
  250. /** Quantity of Data to Transfer **/
  251. /*************************************************/
  252. // Set the data size used for each triggered transfer
  253. void transferSize(unsigned int len) {
  254. if (len == 4) {
  255. TCD->NBYTES = 4;
  256. if (TCD->SOFF != 0) TCD->SOFF = 4;
  257. if (TCD->DOFF != 0) TCD->DOFF = 4;
  258. TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202;
  259. } else if (len == 2) {
  260. TCD->NBYTES = 2;
  261. if (TCD->SOFF != 0) TCD->SOFF = 2;
  262. if (TCD->DOFF != 0) TCD->DOFF = 2;
  263. TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101;
  264. } else {
  265. TCD->NBYTES = 1;
  266. if (TCD->SOFF != 0) TCD->SOFF = 1;
  267. if (TCD->DOFF != 0) TCD->DOFF = 1;
  268. TCD->ATTR = TCD->ATTR & 0xF8F8;
  269. }
  270. }
  271. // Set the number of transfers (number of triggers until complete)
  272. void transferCount(unsigned int len) {
  273. if (len > 32767) return;
  274. if (len >= 512) {
  275. TCD->BITER = len;
  276. TCD->CITER = len;
  277. } else {
  278. TCD->BITER = (TCD->BITER & 0xFE00) | len;
  279. TCD->CITER = (TCD->CITER & 0xFE00) | len;
  280. }
  281. }
  282. /*************************************************/
  283. /** Special Options / Features **/
  284. /*************************************************/
  285. void interruptAtCompletion(void) {
  286. TCD->CSR |= DMA_TCD_CSR_INTMAJOR;
  287. }
  288. void interruptAtHalf(void) {
  289. TCD->CSR |= DMA_TCD_CSR_INTHALF;
  290. }
  291. void disableOnCompletion(void) {
  292. TCD->CSR |= DMA_TCD_CSR_DREQ;
  293. }
  294. void replaceSettingsOnCompletion(const DMABaseClass &settings) {
  295. TCD->DLASTSGA = (int32_t)(settings.TCD);
  296. TCD->CSR &= ~DMA_TCD_CSR_DONE;
  297. TCD->CSR |= DMA_TCD_CSR_ESG;
  298. }
  299. protected:
  300. // users should not be able to create instances of DMABaseClass, which
  301. // require the inheriting class to initialize the TCD pointer.
  302. DMABaseClass() {}
  303. static inline void copy_tcd(TCD_t *dst, const TCD_t *src) {
  304. const uint32_t *p = (const uint32_t *)src;
  305. uint32_t *q = (uint32_t *)dst;
  306. uint32_t t1, t2, t3, t4;
  307. t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
  308. *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
  309. t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
  310. *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
  311. }
  312. };
  313. // DMASetting represents settings stored only in memory, which can be
  314. // applied to any DMA channel.
  315. class DMASetting : public DMABaseClass {
  316. public:
  317. DMASetting() {
  318. TCD = &tcddata;
  319. }
  320. DMASetting(const DMASetting &c) {
  321. TCD = &tcddata;
  322. *this = c;
  323. }
  324. DMASetting(const DMABaseClass &c) {
  325. TCD = &tcddata;
  326. *this = c;
  327. }
  328. DMASetting & operator = (const DMABaseClass &rhs) {
  329. copy_tcd(TCD, rhs.TCD);
  330. return *this;
  331. }
  332. private:
  333. TCD_t tcddata __attribute__((aligned(32)));
  334. };
  335. // DMAChannel reprents an actual DMA channel and its current settings
  336. class DMAChannel : public DMABaseClass {
  337. public:
  338. /*************************************************/
  339. /** Channel Allocation **/
  340. /*************************************************/
  341. DMAChannel() {
  342. init();
  343. }
  344. DMAChannel(const DMAChannel &c) {
  345. TCD = c.TCD;
  346. channel = c.channel;
  347. }
  348. DMAChannel(const DMASetting &c) {
  349. init();
  350. copy_tcd(TCD, c.TCD);
  351. }
  352. DMAChannel & operator = (const DMAChannel &rhs) {
  353. if (channel != rhs.channel) {
  354. release();
  355. TCD = rhs.TCD;
  356. channel = rhs.channel;
  357. }
  358. return *this;
  359. }
  360. DMAChannel & operator = (const DMASetting &rhs) {
  361. copy_tcd(TCD, rhs.TCD);
  362. return *this;
  363. }
  364. ~DMAChannel() {
  365. release();
  366. }
  367. private:
  368. void init(void);
  369. void release(void);
  370. public:
  371. /***************************************/
  372. /** Triggering **/
  373. /***************************************/
  374. // Triggers cause the DMA channel to actually move data. Each
  375. // trigger moves a single data unit, which is typically 8, 16 or
  376. // 32 bits. If a channel is configured for 200 transfers
  377. // Use a hardware trigger to make the DMA channel run
  378. void triggerAtHardwareEvent(uint8_t source) {
  379. volatile uint8_t *mux;
  380. mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
  381. *mux = 0;
  382. *mux = (source & 63) | DMAMUX_ENABLE;
  383. }
  384. // Use another DMA channel as the trigger, causing this
  385. // channel to trigger after each transfer is makes, except
  386. // the its last transfer. This effectively makes the 2
  387. // channels run in parallel until the last transfer
  388. void triggerAtTransfersOf(DMABaseClass &ch) {
  389. ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK)
  390. | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK;
  391. ch.TCD->CITER = ch.TCD->BITER ;
  392. }
  393. // Use another DMA channel as the trigger, causing this
  394. // channel to trigger when the other channel completes.
  395. void triggerAtCompletionOf(DMABaseClass &ch) {
  396. ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE))
  397. | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK;
  398. }
  399. // Cause this DMA channel to be continuously triggered, so
  400. // it will move data as rapidly as possible, without waiting.
  401. // Normally this would be used with disableOnCompletion().
  402. void triggerContinuously(void) {
  403. volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0;
  404. mux[channel] = 0;
  405. #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS
  406. mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel;
  407. #else
  408. // search for an unused "always on" source
  409. unsigned int i = DMAMUX_SOURCE_ALWAYS0;
  410. for (i = DMAMUX_SOURCE_ALWAYS0;
  411. i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) {
  412. unsigned int ch;
  413. for (ch=0; ch < DMA_NUM_CHANNELS; ch++) {
  414. if (mux[ch] == i) break;
  415. }
  416. if (ch >= DMA_NUM_CHANNELS) {
  417. mux[channel] = (i | DMAMUX_ENABLE);
  418. return;
  419. }
  420. }
  421. #endif
  422. }
  423. // Manually trigger the DMA channel.
  424. void triggerManual(void) {
  425. DMA_SSRT = channel;
  426. }
  427. /***************************************/
  428. /** Interrupts **/
  429. /***************************************/
  430. // An interrupt routine can be run when the DMA channel completes
  431. // the entire transfer, and also optionally when half of the
  432. // transfer is completed.
  433. void attachInterrupt(void (*isr)(void)) {
  434. _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
  435. NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
  436. }
  437. void detachInterrupt(void) {
  438. NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
  439. }
  440. void clearInterrupt(void) {
  441. DMA_CINT = channel;
  442. }
  443. /***************************************/
  444. /** Enable / Disable **/
  445. /***************************************/
  446. void enable(void) {
  447. DMA_SERQ = channel;
  448. }
  449. void disable(void) {
  450. DMA_CERQ = channel;
  451. }
  452. /***************************************/
  453. /** Status **/
  454. /***************************************/
  455. bool complete(void) {
  456. if (TCD->CSR & DMA_TCD_CSR_DONE) return true;
  457. return false;
  458. }
  459. void clearComplete(void) {
  460. DMA_CDNE = channel;
  461. }
  462. bool error(void) {
  463. if (DMA_ERR & (1<<channel)) return true;
  464. return false;
  465. }
  466. void clearError(void) {
  467. DMA_CERR = channel;
  468. }
  469. void * sourceAddress(void) {
  470. return (void *)(TCD->SADDR);
  471. }
  472. void * destinationAddress(void) {
  473. return (void *)(TCD->DADDR);
  474. }
  475. /***************************************/
  476. /** Direct Hardware Access **/
  477. /***************************************/
  478. // For complex and unusual configurations not possible with the above
  479. // functions, the Transfer Control Descriptor (TCD) and channel number
  480. // can be used directly. This leads to less portable and less readable
  481. // code, but direct control of all parameters is possible.
  482. uint8_t channel;
  483. // TCD is accessible due to inheritance from DMABaseClass
  484. /* usage cases:
  485. ************************
  486. OctoWS2811:
  487. ************************
  488. // enable clocks to the DMA controller and DMAMUX
  489. SIM_SCGC7 |= SIM_SCGC7_DMA;
  490. SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
  491. DMA_CR = 0;
  492. DMA_CERQ = 1;
  493. DMA_CERQ = 2;
  494. DMA_CERQ = 3;
  495. // DMA channel #1 sets WS2811 high at the beginning of each cycle
  496. DMA_TCD1_SADDR = &ones;
  497. DMA_TCD1_SOFF = 0;
  498. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  499. DMA_TCD1_NBYTES_MLNO = 1;
  500. DMA_TCD1_SLAST = 0;
  501. DMA_TCD1_DADDR = &GPIOD_PSOR;
  502. DMA_TCD1_DOFF = 0;
  503. DMA_TCD1_CITER_ELINKNO = bufsize;
  504. DMA_TCD1_DLASTSGA = 0;
  505. DMA_TCD1_CSR = DMA_TCD_CSR_DREQ;
  506. DMA_TCD1_BITER_ELINKNO = bufsize;
  507. dma1.source(ones);
  508. dma1.destination(GPIOD_PSOR);
  509. dma1.size(1);
  510. dma1.count(bufsize);
  511. dma1.disableOnCompletion();
  512. // DMA channel #2 writes the pixel data at 20% of the cycle
  513. DMA_TCD2_SADDR = frameBuffer;
  514. DMA_TCD2_SOFF = 1;
  515. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  516. DMA_TCD2_NBYTES_MLNO = 1;
  517. DMA_TCD2_SLAST = -bufsize;
  518. DMA_TCD2_DADDR = &GPIOD_PDOR;
  519. DMA_TCD2_DOFF = 0;
  520. DMA_TCD2_CITER_ELINKNO = bufsize;
  521. DMA_TCD2_DLASTSGA = 0;
  522. DMA_TCD2_CSR = DMA_TCD_CSR_DREQ;
  523. DMA_TCD2_BITER_ELINKNO = bufsize;
  524. dma2.source(frameBuffer, sizeof(frameBuffer));
  525. dma2.destination(GPIOD_PDOR);
  526. dma2.size(1);
  527. dma2.count(bufsize);
  528. dma2.disableOnCompletion();
  529. // DMA channel #3 clear all the pins low at 48% of the cycle
  530. DMA_TCD3_SADDR = &ones;
  531. DMA_TCD3_SOFF = 0;
  532. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  533. DMA_TCD3_NBYTES_MLNO = 1;
  534. DMA_TCD3_SLAST = 0;
  535. DMA_TCD3_DADDR = &GPIOD_PCOR;
  536. DMA_TCD3_DOFF = 0;
  537. DMA_TCD3_CITER_ELINKNO = bufsize;
  538. DMA_TCD3_DLASTSGA = 0;
  539. DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR;
  540. DMA_TCD3_BITER_ELINKNO = bufsize;
  541. dma3.source(ones);
  542. dma3.destination(GPIOD_PCOR);
  543. dma3.size(1);
  544. dma3.count(bufsize);
  545. dma3.disableOnCompletion();
  546. ************************
  547. Audio, DAC
  548. ************************
  549. DMA_CR = 0;
  550. DMA_TCD4_SADDR = dac_buffer;
  551. DMA_TCD4_SOFF = 2;
  552. DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  553. DMA_TCD4_NBYTES_MLNO = 2;
  554. DMA_TCD4_SLAST = -sizeof(dac_buffer);
  555. DMA_TCD4_DADDR = &DAC0_DAT0L;
  556. DMA_TCD4_DOFF = 0;
  557. DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2;
  558. DMA_TCD4_DLASTSGA = 0;
  559. DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2;
  560. DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  561. DMAMUX0_CHCFG4 = DMAMUX_DISABLE;
  562. DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE;
  563. ************************
  564. Audio, I2S
  565. ************************
  566. DMA_CR = 0;
  567. DMA_TCD0_SADDR = i2s_tx_buffer;
  568. DMA_TCD0_SOFF = 2;
  569. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  570. DMA_TCD0_NBYTES_MLNO = 2;
  571. DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer);
  572. DMA_TCD0_DADDR = &I2S0_TDR0;
  573. DMA_TCD0_DOFF = 0;
  574. DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  575. DMA_TCD0_DLASTSGA = 0;
  576. DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  577. DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  578. DMAMUX0_CHCFG0 = DMAMUX_DISABLE;
  579. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE;
  580. ************************
  581. ADC lib, Pedro Villanueva
  582. ************************
  583. DMA_CR = 0; // normal mode of operation
  584. *DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing
  585. *DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  586. DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  587. DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values
  588. *DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop)
  589. *DMA_TCD_SADDR = ADC_RA; // source address
  590. *DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes
  591. *DMA_TCD_SLAST = 0; // don't change src address after major loop completes
  592. *DMA_TCD_DADDR = elems; // destination address
  593. *DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop
  594. *DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element
  595. *DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled
  596. *DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled
  597. *DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete
  598. DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request
  599. DMA_CINT = DMA_channel; // clear interrupts
  600. uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0;
  601. if(ADC_number==1){
  602. DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1;
  603. }
  604. *DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0
  605. DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request
  606. NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts
  607. ************************
  608. SmartMatrix
  609. ************************
  610. // enable minor loop mapping so addresses can get reset after minor loops
  611. DMA_CR = 1 << 7;
  612. // DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO
  613. // using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins
  614. // address temporary buffer is refreshed before each DMA trigger (by DMA channel #2)
  615. // only use single major loop, never disable channel
  616. #define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2
  617. DMA_TCD0_SADDR = &gpiosync.gpio_pcor;
  618. DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  619. DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  620. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
  621. // Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete
  622. // Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop
  623. DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE |
  624. ((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) |
  625. (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor));
  626. // start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset)
  627. DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER;
  628. // update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER
  629. DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER;
  630. DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  631. // single major loop
  632. DMA_TCD0_CITER_ELINKNO = 1;
  633. DMA_TCD0_BITER_ELINKNO = 1;
  634. // link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete
  635. DMA_TCD0_CSR = (1 << 8) | (1 << 5);
  636. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE;
  637. // DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle
  638. // only use single major loop, never disable channel
  639. DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues;
  640. DMA_TCD1_SOFF = sizeof(uint16_t);
  641. DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  642. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  643. // 16-bit = 2 bytes transferred
  644. // transfer two 16-bit values, reset destination address back after each minor loop
  645. DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  646. // start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset)
  647. DMA_TCD1_DADDR = &gpiosync.gpio_pcor;
  648. DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  649. DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor));
  650. // no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete
  651. DMA_TCD1_CITER_ELINKNO = 1;
  652. DMA_TCD1_BITER_ELINKNO = 1;
  653. DMA_TCD1_CSR = 0;
  654. // DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block
  655. // only use single major loop, never disable channel
  656. // link to channel 3 when complete
  657. #define TIMER_REGISTERS_TO_UPDATE 2
  658. DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe;
  659. DMA_TCD2_SOFF = sizeof(uint16_t);
  660. DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  661. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  662. // 16-bit = 2 bytes transferred
  663. DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t);
  664. DMA_TCD2_DADDR = &FTM1_C1V;
  665. DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V;
  666. DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD);
  667. // no minor loop linking, single major loop
  668. DMA_TCD2_CITER_ELINKNO = 1;
  669. DMA_TCD2_BITER_ELINKNO = 1;
  670. // link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete
  671. DMA_TCD2_CSR = (3 << 8) | (1 << 5);
  672. DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE;
  673. #define DMA_TCD_MLOFF_MASK (0x3FFFFC00)
  674. // DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete
  675. DMA_TCD3_SADDR = matrixUpdateData[0][0];
  676. DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2;
  677. // SADDR will get updated by ISR, no need to set SLAST
  678. DMA_TCD3_SLAST = 0;
  679. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  680. // after each minor loop, set source to point back to the beginning of this set of data,
  681. // but advance by 1 byte to get the next significant bits data
  682. DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE |
  683. (((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) |
  684. (MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK);
  685. DMA_TCD3_DADDR = &GPIOD_PDOR;
  686. DMA_TCD3_DOFF = 0;
  687. DMA_TCD3_DLASTSGA = 0;
  688. DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW;
  689. DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW;
  690. // int after major loop is complete
  691. DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR;
  692. // for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer)
  693. //DMA_TCD3_CSR |= (0x02 << 14);
  694. // enable a done interrupt when all DMA operations are complete
  695. NVIC_ENABLE_IRQ(IRQ_DMA_CH3);
  696. // enable additional dma interrupt used as software interrupt
  697. NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority
  698. NVIC_ENABLE_IRQ(IRQ_DMA_CH1);
  699. // enable channels 0, 1, 2, 3
  700. DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
  701. // at the end after everything is set up: enable timer from system clock, with appropriate prescale
  702. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE);
  703. */
  704. };
  705. // arrange the relative priority of 2 or more DMA channels
  706. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2);
  707. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3);
  708. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4);
  709. extern "C" {
  710. #endif
  711. extern uint16_t dma_channel_allocated_mask;
  712. #ifdef __cplusplus
  713. }
  714. #endif
  715. #endif