Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 40
  37. #define RX_BUFFER_SIZE 64
  38. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  39. ////////////////////////////////////////////////////////////////
  40. // changes not recommended below this point....
  41. ////////////////////////////////////////////////////////////////
  42. #ifdef SERIAL_9BIT_SUPPORT
  43. static uint8_t use9Bits = 0;
  44. #define BUFTYPE uint16_t
  45. #else
  46. #define BUFTYPE uint8_t
  47. #define use9Bits 0
  48. #endif
  49. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  50. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  51. static volatile uint8_t transmitting = 0;
  52. #if defined(KINETISK)
  53. static volatile uint8_t *transmit_pin=NULL;
  54. #define transmit_assert() *transmit_pin = 1
  55. #define transmit_deassert() *transmit_pin = 0
  56. #elif defined(KINETISL)
  57. static volatile uint8_t *transmit_pin=NULL;
  58. static uint8_t transmit_mask=0;
  59. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  60. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  61. #endif
  62. #if TX_BUFFER_SIZE > 255
  63. static volatile uint16_t tx_buffer_head = 0;
  64. static volatile uint16_t tx_buffer_tail = 0;
  65. #else
  66. static volatile uint8_t tx_buffer_head = 0;
  67. static volatile uint8_t tx_buffer_tail = 0;
  68. #endif
  69. #if RX_BUFFER_SIZE > 255
  70. static volatile uint16_t rx_buffer_head = 0;
  71. static volatile uint16_t rx_buffer_tail = 0;
  72. #else
  73. static volatile uint8_t rx_buffer_head = 0;
  74. static volatile uint8_t rx_buffer_tail = 0;
  75. #endif
  76. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  77. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  78. #ifdef HAS_KINETISK_UART1_FIFO
  79. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  80. #else
  81. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  82. #endif
  83. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  84. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  85. #define C2_TX_INACTIVE C2_ENABLE
  86. void serial2_begin(uint32_t divisor)
  87. {
  88. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  89. rx_buffer_head = 0;
  90. rx_buffer_tail = 0;
  91. tx_buffer_head = 0;
  92. tx_buffer_tail = 0;
  93. transmitting = 0;
  94. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  95. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  96. #if defined(HAS_KINETISK_UART1)
  97. UART1_BDH = (divisor >> 13) & 0x1F;
  98. UART1_BDL = (divisor >> 5) & 0xFF;
  99. UART1_C4 = divisor & 0x1F;
  100. #ifdef HAS_KINETISK_UART1_FIFO
  101. UART1_C1 = UART_C1_ILT;
  102. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  103. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  104. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  105. #else
  106. UART1_C1 = 0;
  107. UART1_PFIFO = 0;
  108. #endif
  109. #elif defined(HAS_KINETISL_UART1)
  110. UART1_BDH = (divisor >> 8) & 0x1F;
  111. UART1_BDL = divisor & 0xFF;
  112. UART1_C1 = 0;
  113. #endif
  114. UART1_C2 = C2_TX_INACTIVE;
  115. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  116. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  117. }
  118. void serial2_format(uint32_t format)
  119. {
  120. uint8_t c;
  121. c = UART1_C1;
  122. c = (c & ~0x13) | (format & 0x03); // configure parity
  123. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  124. UART1_C1 = c;
  125. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  126. c = UART1_S2 & ~0x10;
  127. if (format & 0x10) c |= 0x10; // rx invert
  128. UART1_S2 = c;
  129. c = UART1_C3 & ~0x10;
  130. if (format & 0x20) c |= 0x10; // tx invert
  131. UART1_C3 = c;
  132. #ifdef SERIAL_9BIT_SUPPORT
  133. c = UART1_C4 & 0x1F;
  134. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  135. UART1_C4 = c;
  136. use9Bits = format & 0x80;
  137. #endif
  138. // UART1_C1.0 = parity, 0=even, 1=odd
  139. // UART1_C1.1 = parity, 0=disable, 1=enable
  140. // UART1_C1.4 = mode, 1=9bit, 0=8bit
  141. // UART1_C4.5 = mode, 1=10bit, 0=8bit
  142. // UART1_C3.4 = txinv, 0=normal, 1=inverted
  143. // UART1_S2.4 = rxinv, 0=normal, 1=inverted
  144. }
  145. void serial2_end(void)
  146. {
  147. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  148. while (transmitting) yield(); // wait for buffered data to send
  149. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  150. UART1_C2 = 0;
  151. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  152. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  153. rx_buffer_head = 0;
  154. rx_buffer_tail = 0;
  155. }
  156. void serial2_set_transmit_pin(uint8_t pin)
  157. {
  158. while (transmitting) ;
  159. pinMode(pin, OUTPUT);
  160. digitalWrite(pin, LOW);
  161. transmit_pin = portOutputRegister(pin);
  162. #if defined(KINETISL)
  163. transmit_mask = digitalPinToBitMask(pin);
  164. #endif
  165. }
  166. void serial2_putchar(uint32_t c)
  167. {
  168. uint32_t head, n;
  169. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  170. if (transmit_pin) transmit_assert();
  171. head = tx_buffer_head;
  172. if (++head >= TX_BUFFER_SIZE) head = 0;
  173. while (tx_buffer_tail == head) {
  174. int priority = nvic_execution_priority();
  175. if (priority <= IRQ_PRIORITY) {
  176. if ((UART1_S1 & UART_S1_TDRE)) {
  177. uint32_t tail = tx_buffer_tail;
  178. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  179. n = tx_buffer[tail];
  180. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  181. UART1_D = n;
  182. tx_buffer_tail = tail;
  183. }
  184. } else if (priority >= 256) {
  185. yield(); // wait
  186. }
  187. }
  188. tx_buffer[head] = c;
  189. transmitting = 1;
  190. tx_buffer_head = head;
  191. UART1_C2 = C2_TX_ACTIVE;
  192. }
  193. #ifdef HAS_KINETISK_UART1_FIFO
  194. void serial2_write(const void *buf, unsigned int count)
  195. {
  196. const uint8_t *p = (const uint8_t *)buf;
  197. const uint8_t *end = p + count;
  198. uint32_t head, n;
  199. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  200. if (transmit_pin) transmit_assert();
  201. while (p < end) {
  202. head = tx_buffer_head;
  203. if (++head >= TX_BUFFER_SIZE) head = 0;
  204. if (tx_buffer_tail == head) {
  205. UART1_C2 = C2_TX_ACTIVE;
  206. do {
  207. int priority = nvic_execution_priority();
  208. if (priority <= IRQ_PRIORITY) {
  209. if ((UART1_S1 & UART_S1_TDRE)) {
  210. uint32_t tail = tx_buffer_tail;
  211. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  212. n = tx_buffer[tail];
  213. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  214. UART1_D = n;
  215. tx_buffer_tail = tail;
  216. }
  217. } else if (priority >= 256) {
  218. yield();
  219. }
  220. } while (tx_buffer_tail == head);
  221. }
  222. tx_buffer[head] = *p++;
  223. transmitting = 1;
  224. tx_buffer_head = head;
  225. }
  226. UART1_C2 = C2_TX_ACTIVE;
  227. }
  228. #else
  229. void serial2_write(const void *buf, unsigned int count)
  230. {
  231. const uint8_t *p = (const uint8_t *)buf;
  232. while (count-- > 0) serial2_putchar(*p++);
  233. }
  234. #endif
  235. void serial2_flush(void)
  236. {
  237. while (transmitting) yield(); // wait
  238. }
  239. int serial2_write_buffer_free(void)
  240. {
  241. uint32_t head, tail;
  242. head = tx_buffer_head;
  243. tail = tx_buffer_tail;
  244. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  245. return tail - head - 1;
  246. }
  247. int serial2_available(void)
  248. {
  249. uint32_t head, tail;
  250. head = rx_buffer_head;
  251. tail = rx_buffer_tail;
  252. if (head >= tail) return head - tail;
  253. return RX_BUFFER_SIZE + head - tail;
  254. }
  255. int serial2_getchar(void)
  256. {
  257. uint32_t head, tail;
  258. int c;
  259. head = rx_buffer_head;
  260. tail = rx_buffer_tail;
  261. if (head == tail) return -1;
  262. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  263. c = rx_buffer[tail];
  264. rx_buffer_tail = tail;
  265. return c;
  266. }
  267. int serial2_peek(void)
  268. {
  269. uint32_t head, tail;
  270. head = rx_buffer_head;
  271. tail = rx_buffer_tail;
  272. if (head == tail) return -1;
  273. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  274. return rx_buffer[tail];
  275. }
  276. void serial2_clear(void)
  277. {
  278. #ifdef HAS_KINETISK_UART1_FIFO
  279. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  280. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  281. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  282. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  283. #endif
  284. rx_buffer_head = rx_buffer_tail;
  285. }
  286. // status interrupt combines
  287. // Transmit data below watermark UART_S1_TDRE
  288. // Transmit complete UART_S1_TC
  289. // Idle line UART_S1_IDLE
  290. // Receive data above watermark UART_S1_RDRF
  291. // LIN break detect UART_S2_LBKDIF
  292. // RxD pin active edge UART_S2_RXEDGIF
  293. void uart1_status_isr(void)
  294. {
  295. uint32_t head, tail, n;
  296. uint8_t c;
  297. #ifdef HAS_KINETISK_UART1_FIFO
  298. uint32_t newhead;
  299. uint8_t avail;
  300. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  301. __disable_irq();
  302. avail = UART1_RCFIFO;
  303. if (avail == 0) {
  304. // The only way to clear the IDLE interrupt flag is
  305. // to read the data register. But reading with no
  306. // data causes a FIFO underrun, which causes the
  307. // FIFO to return corrupted data. If anyone from
  308. // Freescale reads this, what a poor design! There
  309. // write should be a write-1-to-clear for IDLE.
  310. c = UART1_D;
  311. // flushing the fifo recovers from the underrun,
  312. // but there's a possible race condition where a
  313. // new character could be received between reading
  314. // RCFIFO == 0 and flushing the FIFO. To minimize
  315. // the chance, interrupts are disabled so a higher
  316. // priority interrupt (hopefully) doesn't delay.
  317. // TODO: change this to disabling the IDLE interrupt
  318. // which won't be simple, since we already manage
  319. // which transmit interrupts are enabled.
  320. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  321. __enable_irq();
  322. } else {
  323. __enable_irq();
  324. head = rx_buffer_head;
  325. tail = rx_buffer_tail;
  326. do {
  327. if (use9Bits && (UART1_C3 & 0x80)) {
  328. n = UART1_D | 0x100;
  329. } else {
  330. n = UART1_D;
  331. }
  332. newhead = head + 1;
  333. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  334. if (newhead != tail) {
  335. head = newhead;
  336. rx_buffer[head] = n;
  337. }
  338. } while (--avail > 0);
  339. rx_buffer_head = head;
  340. }
  341. }
  342. c = UART1_C2;
  343. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  344. head = tx_buffer_head;
  345. tail = tx_buffer_tail;
  346. do {
  347. if (tail == head) break;
  348. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  349. avail = UART1_S1;
  350. n = tx_buffer[tail];
  351. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  352. UART1_D = n;
  353. } while (UART1_TCFIFO < 8);
  354. tx_buffer_tail = tail;
  355. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  356. }
  357. #else
  358. if (UART1_S1 & UART_S1_RDRF) {
  359. n = UART1_D;
  360. if (use9Bits && (UART1_C3 & 0x80)) n |= 0x100;
  361. head = rx_buffer_head + 1;
  362. if (head >= RX_BUFFER_SIZE) head = 0;
  363. if (head != rx_buffer_tail) {
  364. rx_buffer[head] = n;
  365. rx_buffer_head = head;
  366. }
  367. }
  368. c = UART1_C2;
  369. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  370. head = tx_buffer_head;
  371. tail = tx_buffer_tail;
  372. if (head == tail) {
  373. UART1_C2 = C2_TX_COMPLETING;
  374. } else {
  375. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  376. n = tx_buffer[tail];
  377. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  378. UART1_D = n;
  379. tx_buffer_tail = tail;
  380. }
  381. }
  382. #endif
  383. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  384. transmitting = 0;
  385. if (transmit_pin) transmit_deassert();
  386. UART1_C2 = C2_TX_INACTIVE;
  387. }
  388. }