Teensy 4.1 core updated for C++20
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 40
  37. #define RX_BUFFER_SIZE 64
  38. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  39. ////////////////////////////////////////////////////////////////
  40. // changes not recommended below this point....
  41. ////////////////////////////////////////////////////////////////
  42. #ifdef SERIAL_9BIT_SUPPORT
  43. static uint8_t use9Bits = 0;
  44. #define BUFTYPE uint16_t
  45. #else
  46. #define BUFTYPE uint8_t
  47. #define use9Bits 0
  48. #endif
  49. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  50. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  51. static volatile uint8_t transmitting = 0;
  52. #if defined(KINETISK)
  53. static volatile uint8_t *transmit_pin=NULL;
  54. #define transmit_assert() *transmit_pin = 1
  55. #define transmit_deassert() *transmit_pin = 0
  56. #elif defined(KINETISL)
  57. static volatile uint8_t *transmit_pin=NULL;
  58. static uint8_t transmit_mask=0;
  59. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  60. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  61. #endif
  62. #if TX_BUFFER_SIZE > 255
  63. static volatile uint16_t tx_buffer_head = 0;
  64. static volatile uint16_t tx_buffer_tail = 0;
  65. #else
  66. static volatile uint8_t tx_buffer_head = 0;
  67. static volatile uint8_t tx_buffer_tail = 0;
  68. #endif
  69. #if RX_BUFFER_SIZE > 255
  70. static volatile uint16_t rx_buffer_head = 0;
  71. static volatile uint16_t rx_buffer_tail = 0;
  72. #else
  73. static volatile uint8_t rx_buffer_head = 0;
  74. static volatile uint8_t rx_buffer_tail = 0;
  75. #endif
  76. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  77. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  78. #ifdef HAS_KINETISK_UART1_FIFO
  79. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  80. #else
  81. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  82. #endif
  83. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  84. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  85. #define C2_TX_INACTIVE C2_ENABLE
  86. void serial2_begin(uint32_t divisor)
  87. {
  88. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  89. rx_buffer_head = 0;
  90. rx_buffer_tail = 0;
  91. tx_buffer_head = 0;
  92. tx_buffer_tail = 0;
  93. transmitting = 0;
  94. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  95. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  96. #if defined(HAS_KINETISK_UART1)
  97. UART1_BDH = (divisor >> 13) & 0x1F;
  98. UART1_BDL = (divisor >> 5) & 0xFF;
  99. UART1_C4 = divisor & 0x1F;
  100. #ifdef HAS_KINETISK_UART1_FIFO
  101. UART1_C1 = UART_C1_ILT;
  102. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  103. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  104. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  105. #else
  106. UART1_C1 = 0;
  107. UART1_PFIFO = 0;
  108. #endif
  109. #elif defined(HAS_KINETISL_UART1)
  110. UART1_BDH = (divisor >> 8) & 0x1F;
  111. UART1_BDL = divisor & 0xFF;
  112. UART1_C1 = 0;
  113. #endif
  114. UART1_C2 = C2_TX_INACTIVE;
  115. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  116. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  117. }
  118. void serial2_format(uint32_t format)
  119. {
  120. uint8_t c;
  121. c = UART1_C1;
  122. c = (c & ~0x13) | (format & 0x03); // configure parity
  123. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  124. UART1_C1 = c;
  125. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  126. c = UART1_S2 & ~0x10;
  127. if (format & 0x10) c |= 0x10; // rx invert
  128. UART1_S2 = c;
  129. c = UART1_C3 & ~0x10;
  130. if (format & 0x20) c |= 0x10; // tx invert
  131. UART1_C3 = c;
  132. #ifdef SERIAL_9BIT_SUPPORT
  133. c = UART1_C4 & 0x1F;
  134. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  135. UART1_C4 = c;
  136. use9Bits = format & 0x80;
  137. #endif
  138. // UART1_C1.0 = parity, 0=even, 1=odd
  139. // UART1_C1.1 = parity, 0=disable, 1=enable
  140. // UART1_C1.4 = mode, 1=9bit, 0=8bit
  141. // UART1_C4.5 = mode, 1=10bit, 0=8bit
  142. // UART1_C3.4 = txinv, 0=normal, 1=inverted
  143. // UART1_S2.4 = rxinv, 0=normal, 1=inverted
  144. }
  145. void serial2_end(void)
  146. {
  147. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  148. while (transmitting) yield(); // wait for buffered data to send
  149. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  150. UART1_C2 = 0;
  151. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  152. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  153. rx_buffer_head = 0;
  154. rx_buffer_tail = 0;
  155. }
  156. void serial2_set_transmit_pin(uint8_t pin)
  157. {
  158. while (transmitting) ;
  159. pinMode(pin, OUTPUT);
  160. digitalWrite(pin, LOW);
  161. transmit_pin = portOutputRegister(pin);
  162. #if defined(KINETISL)
  163. transmit_mask = digitalPinToBitMask(pin);
  164. #endif
  165. }
  166. void serial2_putchar(uint32_t c)
  167. {
  168. uint32_t head, n;
  169. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  170. if (transmit_pin) transmit_assert();
  171. head = tx_buffer_head;
  172. if (++head >= TX_BUFFER_SIZE) head = 0;
  173. while (tx_buffer_tail == head) {
  174. int priority = nvic_execution_priority();
  175. if (priority <= IRQ_PRIORITY) {
  176. if ((UART1_S1 & UART_S1_TDRE)) {
  177. uint32_t tail = tx_buffer_tail;
  178. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  179. n = tx_buffer[tail];
  180. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  181. UART1_D = n;
  182. tx_buffer_tail = tail;
  183. }
  184. } else if (priority >= 256) {
  185. yield(); // wait
  186. }
  187. }
  188. tx_buffer[head] = c;
  189. transmitting = 1;
  190. tx_buffer_head = head;
  191. UART1_C2 = C2_TX_ACTIVE;
  192. }
  193. #ifdef HAS_KINETISK_UART1_FIFO
  194. void serial2_write(const void *buf, unsigned int count)
  195. {
  196. const uint8_t *p = (const uint8_t *)buf;
  197. const uint8_t *end = p + count;
  198. uint32_t head, n;
  199. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  200. if (transmit_pin) transmit_assert();
  201. while (p < end) {
  202. head = tx_buffer_head;
  203. if (++head >= TX_BUFFER_SIZE) head = 0;
  204. if (tx_buffer_tail == head) {
  205. UART1_C2 = C2_TX_ACTIVE;
  206. do {
  207. int priority = nvic_execution_priority();
  208. if (priority <= IRQ_PRIORITY) {
  209. if ((UART1_S1 & UART_S1_TDRE)) {
  210. uint32_t tail = tx_buffer_tail;
  211. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  212. n = tx_buffer[tail];
  213. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  214. UART1_D = n;
  215. tx_buffer_tail = tail;
  216. }
  217. } else if (priority >= 256) {
  218. yield();
  219. }
  220. } while (tx_buffer_tail == head);
  221. }
  222. tx_buffer[head] = *p++;
  223. transmitting = 1;
  224. tx_buffer_head = head;
  225. }
  226. UART1_C2 = C2_TX_ACTIVE;
  227. }
  228. #else
  229. void serial2_write(const void *buf, unsigned int count)
  230. {
  231. const uint8_t *p = (const uint8_t *)buf;
  232. while (count-- > 0) serial2_putchar(*p++);
  233. }
  234. #endif
  235. void serial2_flush(void)
  236. {
  237. while (transmitting) yield(); // wait
  238. }
  239. int serial2_write_buffer_free(void)
  240. {
  241. uint32_t head, tail;
  242. head = tx_buffer_head;
  243. tail = tx_buffer_tail;
  244. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  245. return tail - head - 1;
  246. }
  247. int serial2_available(void)
  248. {
  249. uint32_t head, tail;
  250. head = rx_buffer_head;
  251. tail = rx_buffer_tail;
  252. if (head >= tail) return head - tail;
  253. return RX_BUFFER_SIZE + head - tail;
  254. }
  255. int serial2_getchar(void)
  256. {
  257. uint32_t head, tail;
  258. int c;
  259. head = rx_buffer_head;
  260. tail = rx_buffer_tail;
  261. if (head == tail) return -1;
  262. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  263. c = rx_buffer[tail];
  264. rx_buffer_tail = tail;
  265. return c;
  266. }
  267. int serial2_peek(void)
  268. {
  269. uint32_t head, tail;
  270. head = rx_buffer_head;
  271. tail = rx_buffer_tail;
  272. if (head == tail) return -1;
  273. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  274. return rx_buffer[tail];
  275. }
  276. void serial2_clear(void)
  277. {
  278. #ifdef HAS_KINETISK_UART1_FIFO
  279. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  280. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  281. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  282. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  283. #endif
  284. rx_buffer_head = rx_buffer_tail;
  285. }
  286. // status interrupt combines
  287. // Transmit data below watermark UART_S1_TDRE
  288. // Transmit complete UART_S1_TC
  289. // Idle line UART_S1_IDLE
  290. // Receive data above watermark UART_S1_RDRF
  291. // LIN break detect UART_S2_LBKDIF
  292. // RxD pin active edge UART_S2_RXEDGIF
  293. void uart1_status_isr(void)
  294. {
  295. uint32_t head, tail, n;
  296. uint8_t c;
  297. #ifdef HAS_KINETISK_UART1_FIFO
  298. uint32_t newhead;
  299. uint8_t avail;
  300. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  301. __disable_irq();
  302. avail = UART1_RCFIFO;
  303. if (avail == 0) {
  304. // The only way to clear the IDLE interrupt flag is
  305. // to read the data register. But reading with no
  306. // data causes a FIFO underrun, which causes the
  307. // FIFO to return corrupted data. If anyone from
  308. // Freescale reads this, what a poor design! There
  309. // write should be a write-1-to-clear for IDLE.
  310. c = UART1_D;
  311. // flushing the fifo recovers from the underrun,
  312. // but there's a possible race condition where a
  313. // new character could be received between reading
  314. // RCFIFO == 0 and flushing the FIFO. To minimize
  315. // the chance, interrupts are disabled so a higher
  316. // priority interrupt (hopefully) doesn't delay.
  317. // TODO: change this to disabling the IDLE interrupt
  318. // which won't be simple, since we already manage
  319. // which transmit interrupts are enabled.
  320. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  321. __enable_irq();
  322. } else {
  323. __enable_irq();
  324. head = rx_buffer_head;
  325. tail = rx_buffer_tail;
  326. do {
  327. if (use9Bits && (UART1_C3 & 0x80)) {
  328. n = UART1_D | 0x100;
  329. } else {
  330. n = UART1_D;
  331. }
  332. newhead = head + 1;
  333. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  334. if (newhead != tail) {
  335. head = newhead;
  336. rx_buffer[head] = n;
  337. }
  338. } while (--avail > 0);
  339. rx_buffer_head = head;
  340. }
  341. }
  342. c = UART1_C2;
  343. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  344. head = tx_buffer_head;
  345. tail = tx_buffer_tail;
  346. do {
  347. if (tail == head) break;
  348. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  349. avail = UART1_S1;
  350. n = tx_buffer[tail];
  351. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  352. UART1_D = n;
  353. } while (UART1_TCFIFO < 8);
  354. tx_buffer_tail = tail;
  355. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  356. }
  357. #else
  358. if (UART1_S1 & UART_S1_RDRF) {
  359. n = UART1_D;
  360. if (use9Bits && (UART1_C3 & 0x80)) n |= 0x100;
  361. head = rx_buffer_head + 1;
  362. if (head >= RX_BUFFER_SIZE) head = 0;
  363. if (head != rx_buffer_tail) {
  364. rx_buffer[head] = n;
  365. rx_buffer_head = head;
  366. }
  367. }
  368. c = UART1_C2;
  369. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  370. head = tx_buffer_head;
  371. tail = tx_buffer_tail;
  372. if (head == tail) {
  373. UART1_C2 = C2_TX_COMPLETING;
  374. } else {
  375. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  376. n = tx_buffer[tail];
  377. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  378. UART1_D = n;
  379. tx_buffer_tail = tail;
  380. }
  381. }
  382. #endif
  383. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  384. transmitting = 0;
  385. if (transmit_pin) transmit_deassert();
  386. UART1_C2 = C2_TX_INACTIVE;
  387. }
  388. }