|
|
@@ -0,0 +1,507 @@ |
|
|
|
/* Teensyduino Core Library |
|
|
|
* http://www.pjrc.com/teensy/ |
|
|
|
* Copyright (c) 2013 PJRC.COM, LLC. |
|
|
|
* |
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining |
|
|
|
* a copy of this software and associated documentation files (the |
|
|
|
* "Software"), to deal in the Software without restriction, including |
|
|
|
* without limitation the rights to use, copy, modify, merge, publish, |
|
|
|
* distribute, sublicense, and/or sell copies of the Software, and to |
|
|
|
* permit persons to whom the Software is furnished to do so, subject to |
|
|
|
* the following conditions: |
|
|
|
* |
|
|
|
* 1. The above copyright notice and this permission notice shall be |
|
|
|
* included in all copies or substantial portions of the Software. |
|
|
|
* |
|
|
|
* 2. If the Software is incorporated into a build system that allows |
|
|
|
* selection among a list of target devices, then similar target |
|
|
|
* devices manufactured by PJRC.COM must be included in the list of |
|
|
|
* target devices and selectable in the same manner. |
|
|
|
* |
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
|
|
* SOFTWARE. |
|
|
|
*/ |
|
|
|
|
|
|
|
// alternate version supporting RTS by disable of receive interrupt |
|
|
|
// https://forum.pjrc.com/threads/30536-Complete-implementation-of-UART-hardware-flow-control |
|
|
|
// https://forum.pjrc.com/threads/29446-Teensy-Hardware-Flow-Control-RTS-CTS/page2 |
|
|
|
|
|
|
|
#include "kinetis.h" |
|
|
|
#include "core_pins.h" |
|
|
|
#include "HardwareSerial.h" |
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////// |
|
|
|
// Tunable parameters (relatively safe to edit these numbers) |
|
|
|
//////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
#define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer |
|
|
|
#define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer |
|
|
|
#define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest |
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////// |
|
|
|
// changes not recommended below this point.... |
|
|
|
//////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
#ifdef SERIAL_9BIT_SUPPORT |
|
|
|
static uint8_t use9Bits = 0; |
|
|
|
#define BUFTYPE uint16_t |
|
|
|
#else |
|
|
|
#define BUFTYPE uint8_t |
|
|
|
#define use9Bits 0 |
|
|
|
#endif |
|
|
|
|
|
|
|
static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE]; |
|
|
|
static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE]; |
|
|
|
static volatile uint8_t transmitting = 0; |
|
|
|
#if defined(KINETISK) |
|
|
|
static volatile uint8_t *transmit_pin=NULL; |
|
|
|
#define transmit_assert() *transmit_pin = 1 |
|
|
|
#define transmit_deassert() *transmit_pin = 0 |
|
|
|
#elif defined(KINETISL) |
|
|
|
static volatile uint8_t *transmit_pin=NULL; |
|
|
|
static uint8_t transmit_mask=0; |
|
|
|
#define transmit_assert() *(transmit_pin+4) = transmit_mask; |
|
|
|
#define transmit_deassert() *(transmit_pin+8) = transmit_mask; |
|
|
|
#endif |
|
|
|
#if TX_BUFFER_SIZE > 255 |
|
|
|
static volatile uint16_t tx_buffer_head = 0; |
|
|
|
static volatile uint16_t tx_buffer_tail = 0; |
|
|
|
#else |
|
|
|
static volatile uint8_t tx_buffer_head = 0; |
|
|
|
static volatile uint8_t tx_buffer_tail = 0; |
|
|
|
#endif |
|
|
|
#if RX_BUFFER_SIZE > 255 |
|
|
|
static volatile uint16_t rx_buffer_head = 0; |
|
|
|
static volatile uint16_t rx_buffer_tail = 0; |
|
|
|
#else |
|
|
|
static volatile uint8_t rx_buffer_head = 0; |
|
|
|
static volatile uint8_t rx_buffer_tail = 0; |
|
|
|
#endif |
|
|
|
|
|
|
|
// UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS |
|
|
|
// UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer |
|
|
|
|
|
|
|
void serial_begin(uint32_t divisor) |
|
|
|
{ |
|
|
|
SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband |
|
|
|
rx_buffer_head = 0; |
|
|
|
rx_buffer_tail = 0; |
|
|
|
tx_buffer_head = 0; |
|
|
|
tx_buffer_tail = 0; |
|
|
|
transmitting = 0; |
|
|
|
CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); |
|
|
|
CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); |
|
|
|
#if defined(HAS_KINETISK_UART0) |
|
|
|
UART0_BDH = (divisor >> 13) & 0x1F; |
|
|
|
UART0_BDL = (divisor >> 5) & 0xFF; |
|
|
|
UART0_C4 = divisor & 0x1F; |
|
|
|
#ifdef HAS_KINETISK_UART0_FIFO |
|
|
|
UART0_C1 = UART_C1_ILT; |
|
|
|
UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set |
|
|
|
UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set |
|
|
|
UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE; |
|
|
|
#else |
|
|
|
UART0_C1 = 0; |
|
|
|
UART0_PFIFO = 0; |
|
|
|
#endif |
|
|
|
#elif defined(HAS_KINETISL_UART0) |
|
|
|
UART0_BDH = (divisor >> 8) & 0x1F; |
|
|
|
UART0_BDL = divisor & 0xFF; |
|
|
|
UART0_C1 = 0; |
|
|
|
#endif |
|
|
|
UART0_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE; |
|
|
|
NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY); |
|
|
|
NVIC_ENABLE_IRQ(IRQ_UART0_STATUS); |
|
|
|
} |
|
|
|
|
|
|
|
void serial_format(uint32_t format) |
|
|
|
{ |
|
|
|
uint8_t c; |
|
|
|
|
|
|
|
c = UART0_C1; |
|
|
|
c = (c & ~0x13) | (format & 0x03); // configure parity |
|
|
|
if (format & 0x04) c |= 0x10; // 9 bits (might include parity) |
|
|
|
UART0_C1 = c; |
|
|
|
if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1 |
|
|
|
c = UART0_S2 & ~0x10; |
|
|
|
if (format & 0x10) c |= 0x10; // rx invert |
|
|
|
UART0_S2 = c; |
|
|
|
c = UART0_C3 & ~0x10; |
|
|
|
if (format & 0x20) c |= 0x10; // tx invert |
|
|
|
UART0_C3 = c; |
|
|
|
#ifdef SERIAL_9BIT_SUPPORT |
|
|
|
c = UART0_C4 & 0x1F; |
|
|
|
if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits) |
|
|
|
UART0_C4 = c; |
|
|
|
use9Bits = format & 0x80; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
void serial_end(void) |
|
|
|
{ |
|
|
|
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; |
|
|
|
while (transmitting) yield(); // wait for buffered data to send |
|
|
|
NVIC_DISABLE_IRQ(IRQ_UART0_STATUS); |
|
|
|
UART0_C2 = 0; |
|
|
|
CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
|
|
|
CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
|
|
|
rx_buffer_head = 0; |
|
|
|
rx_buffer_tail = 0; |
|
|
|
} |
|
|
|
|
|
|
|
void serial_set_transmit_pin(uint8_t pin) |
|
|
|
{ |
|
|
|
while (transmitting) ; |
|
|
|
pinMode(pin, OUTPUT); |
|
|
|
digitalWrite(pin, LOW); |
|
|
|
transmit_pin = portOutputRegister(pin); |
|
|
|
#if defined(KINETISL) |
|
|
|
transmit_mask = digitalPinToBitMask(pin); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
int serial_set_rts(uint8_t pin) |
|
|
|
{ |
|
|
|
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0; |
|
|
|
if (pin == 6) { |
|
|
|
CORE_PIN6_CONFIG = PORT_PCR_MUX(3); |
|
|
|
} else if (pin == 19) { |
|
|
|
CORE_PIN19_CONFIG = PORT_PCR_MUX(3); |
|
|
|
} else { |
|
|
|
UART0_MODEM &= ~UART_MODEM_RXRTSE; |
|
|
|
return 0; |
|
|
|
} |
|
|
|
UART0_MODEM |= UART_MODEM_RXRTSE; |
|
|
|
return 1; |
|
|
|
} |
|
|
|
|
|
|
|
int serial_set_cts(uint8_t pin) |
|
|
|
{ |
|
|
|
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0; |
|
|
|
if (pin == 18) { |
|
|
|
CORE_PIN18_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown? |
|
|
|
} else if (pin == 20) { |
|
|
|
CORE_PIN20_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown? |
|
|
|
} else { |
|
|
|
UART0_MODEM &= ~UART_MODEM_TXCTSE; |
|
|
|
return 0; |
|
|
|
} |
|
|
|
UART0_MODEM |= UART_MODEM_TXCTSE; |
|
|
|
return 1; |
|
|
|
} |
|
|
|
|
|
|
|
void serial_putchar(uint32_t c) |
|
|
|
{ |
|
|
|
uint32_t head, n; |
|
|
|
|
|
|
|
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; |
|
|
|
if (transmit_pin) transmit_assert(); |
|
|
|
head = tx_buffer_head; |
|
|
|
if (++head >= TX_BUFFER_SIZE) head = 0; |
|
|
|
while (tx_buffer_tail == head) { |
|
|
|
int priority = nvic_execution_priority(); |
|
|
|
if (priority <= IRQ_PRIORITY) { |
|
|
|
if ((UART0_S1 & UART_S1_TDRE)) { |
|
|
|
uint32_t tail = tx_buffer_tail; |
|
|
|
if (++tail >= TX_BUFFER_SIZE) tail = 0; |
|
|
|
n = tx_buffer[tail]; |
|
|
|
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); |
|
|
|
UART0_D = n; |
|
|
|
tx_buffer_tail = tail; |
|
|
|
} |
|
|
|
} else if (priority >= 256) { |
|
|
|
yield(); |
|
|
|
} |
|
|
|
} |
|
|
|
tx_buffer[head] = c; |
|
|
|
transmitting = 1; |
|
|
|
tx_buffer_head = head; |
|
|
|
UART0_C2 |= UART_C2_TIE; |
|
|
|
UART0_C2 &= ~UART_C2_TCIE; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef HAS_KINETISK_UART0_FIFO |
|
|
|
void serial_write(const void *buf, unsigned int count) |
|
|
|
{ |
|
|
|
const uint8_t *p = (const uint8_t *)buf; |
|
|
|
const uint8_t *end = p + count; |
|
|
|
uint32_t head, n; |
|
|
|
|
|
|
|
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; |
|
|
|
if (transmit_pin) transmit_assert(); |
|
|
|
while (p < end) { |
|
|
|
head = tx_buffer_head; |
|
|
|
if (++head >= TX_BUFFER_SIZE) head = 0; |
|
|
|
if (tx_buffer_tail == head) { |
|
|
|
UART0_C2 |= UART_C2_TIE; |
|
|
|
UART0_C2 &= ~UART_C2_TCIE; |
|
|
|
do { |
|
|
|
int priority = nvic_execution_priority(); |
|
|
|
if (priority <= IRQ_PRIORITY) { |
|
|
|
if ((UART0_S1 & UART_S1_TDRE)) { |
|
|
|
uint32_t tail = tx_buffer_tail; |
|
|
|
if (++tail >= TX_BUFFER_SIZE) tail = 0; |
|
|
|
n = tx_buffer[tail]; |
|
|
|
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); |
|
|
|
UART0_D = n; |
|
|
|
tx_buffer_tail = tail; |
|
|
|
} |
|
|
|
} else if (priority >= 256) { |
|
|
|
yield(); |
|
|
|
} |
|
|
|
} while (tx_buffer_tail == head); |
|
|
|
} |
|
|
|
tx_buffer[head] = *p++; |
|
|
|
transmitting = 1; |
|
|
|
tx_buffer_head = head; |
|
|
|
} |
|
|
|
UART0_C2 |= UART_C2_TIE; |
|
|
|
UART0_C2 &= ~UART_C2_TCIE; |
|
|
|
} |
|
|
|
#else |
|
|
|
void serial_write(const void *buf, unsigned int count) |
|
|
|
{ |
|
|
|
const uint8_t *p = (const uint8_t *)buf; |
|
|
|
while (count-- > 0) serial_putchar(*p++); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
void serial_flush(void) |
|
|
|
{ |
|
|
|
while (transmitting) yield(); // wait |
|
|
|
} |
|
|
|
|
|
|
|
int serial_write_buffer_free(void) |
|
|
|
{ |
|
|
|
uint32_t head, tail; |
|
|
|
|
|
|
|
head = tx_buffer_head; |
|
|
|
tail = tx_buffer_tail; |
|
|
|
if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail; |
|
|
|
return tail - head - 1; |
|
|
|
} |
|
|
|
|
|
|
|
int serial_available(void) |
|
|
|
{ |
|
|
|
uint32_t head, tail; |
|
|
|
|
|
|
|
head = rx_buffer_head; |
|
|
|
tail = rx_buffer_tail; |
|
|
|
if (head >= tail) return head - tail; |
|
|
|
return RX_BUFFER_SIZE + head - tail; |
|
|
|
} |
|
|
|
|
|
|
|
int serial_getchar(void) |
|
|
|
{ |
|
|
|
uint32_t head, tail; |
|
|
|
int c; |
|
|
|
|
|
|
|
head = rx_buffer_head; |
|
|
|
tail = rx_buffer_tail; |
|
|
|
if (head == tail) return -1; |
|
|
|
if (++tail >= RX_BUFFER_SIZE) tail = 0; |
|
|
|
c = rx_buffer[tail]; |
|
|
|
rx_buffer_tail = tail; |
|
|
|
#ifdef HAS_KINETISK_UART0_FIFO |
|
|
|
if ((UART0_C2 & (UART_C2_RIE | UART_C2_ILIE))==0) {//rx interrupt currently disabled |
|
|
|
int freespace; |
|
|
|
if (head >= tail) //rx head and tail would be unchanged from above if interrupts were disabled |
|
|
|
freespace = RX_BUFFER_SIZE -1 + tail - head; |
|
|
|
else |
|
|
|
freespace = tail - head - 1; |
|
|
|
if (freespace >= UART0_RCFIFO) { |
|
|
|
UART0_C2 |= (UART_C2_RIE | UART_C2_ILIE);//enable rx interrupts |
|
|
|
} |
|
|
|
} |
|
|
|
#else |
|
|
|
UART0_C2 |= UART_C2_RIE; |
|
|
|
#endif |
|
|
|
return c; |
|
|
|
} |
|
|
|
|
|
|
|
int serial_peek(void) |
|
|
|
{ |
|
|
|
uint32_t head, tail; |
|
|
|
|
|
|
|
head = rx_buffer_head; |
|
|
|
tail = rx_buffer_tail; |
|
|
|
if (head == tail) return -1; |
|
|
|
if (++tail >= RX_BUFFER_SIZE) tail = 0; |
|
|
|
return rx_buffer[tail]; |
|
|
|
} |
|
|
|
|
|
|
|
void serial_clear(void) |
|
|
|
{ |
|
|
|
#ifdef HAS_KINETISK_UART0_FIFO |
|
|
|
if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; |
|
|
|
UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); |
|
|
|
UART0_CFIFO = UART_CFIFO_RXFLUSH; |
|
|
|
UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); |
|
|
|
#endif |
|
|
|
rx_buffer_head = rx_buffer_tail; |
|
|
|
} |
|
|
|
|
|
|
|
// status interrupt combines |
|
|
|
// Transmit data below watermark UART_S1_TDRE |
|
|
|
// Transmit complete UART_S1_TC |
|
|
|
// Idle line UART_S1_IDLE |
|
|
|
// Receive data above watermark UART_S1_RDRF |
|
|
|
// LIN break detect UART_S2_LBKDIF |
|
|
|
// RxD pin active edge UART_S2_RXEDGIF |
|
|
|
|
|
|
|
void uart0_status_isr(void) |
|
|
|
{ |
|
|
|
uint32_t head, tail, n; |
|
|
|
uint8_t c; |
|
|
|
#ifdef HAS_KINETISK_UART0_FIFO |
|
|
|
uint32_t newhead; |
|
|
|
|
|
|
|
if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) { |
|
|
|
if (UART0_RCFIFO == 0) { |
|
|
|
// The only way to clear the IDLE interrupt flag is |
|
|
|
// to read the data register. But reading with no |
|
|
|
// data causes a FIFO underrun, which causes the |
|
|
|
// FIFO to return corrupted data. If anyone from |
|
|
|
// Freescale reads this, what a poor design! There |
|
|
|
// write should be a write-1-to-clear for IDLE. |
|
|
|
c = UART0_D; |
|
|
|
// flushing the fifo recovers from the underrun, |
|
|
|
// but there's a possible race condition where a |
|
|
|
// new character could be received between reading |
|
|
|
// RCFIFO == 0 and flushing the FIFO. To minimize |
|
|
|
// the chance, interrupts are disabled so a higher |
|
|
|
// priority interrupt (hopefully) doesn't delay. |
|
|
|
// TODO: change this to disabling the IDLE interrupt |
|
|
|
// which won't be simple, since we already manage |
|
|
|
// which transmit interrupts are enabled. |
|
|
|
__disable_irq(); |
|
|
|
UART0_CFIFO = UART_CFIFO_RXFLUSH; |
|
|
|
__enable_irq(); |
|
|
|
} else { |
|
|
|
head = rx_buffer_head; |
|
|
|
tail = rx_buffer_tail; |
|
|
|
do { |
|
|
|
newhead = head + 1; |
|
|
|
if (newhead >= RX_BUFFER_SIZE) newhead = 0; |
|
|
|
if (UART0_MODEM & UART_MODEM_RXRTSE) { |
|
|
|
if (newhead == tail) { |
|
|
|
UART0_C2 &= ~(UART_C2_RIE | UART_C2_ILIE);//disable rx interrupts |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
if (UART0_RCFIFO==1) UART0_S1; //as per page 1214 of datasheet regarding resetting of RDRF flag |
|
|
|
if (use9Bits && (UART0_C3 & 0x80)) { |
|
|
|
n = UART0_D | 0x100; |
|
|
|
} else { |
|
|
|
n = UART0_D; |
|
|
|
} |
|
|
|
head = newhead; |
|
|
|
rx_buffer[head] = n; |
|
|
|
} while (UART0_RCFIFO); |
|
|
|
rx_buffer_head = head; |
|
|
|
} |
|
|
|
} |
|
|
|
c = UART0_C2; |
|
|
|
if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) { |
|
|
|
head = tx_buffer_head; |
|
|
|
tail = tx_buffer_tail; |
|
|
|
do { |
|
|
|
if (tail == head) break; |
|
|
|
if (++tail >= TX_BUFFER_SIZE) tail = 0; |
|
|
|
UART0_S1; |
|
|
|
n = tx_buffer[tail]; |
|
|
|
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); |
|
|
|
UART0_D = n; |
|
|
|
} while (UART0_TCFIFO < 8); |
|
|
|
tx_buffer_tail = tail; |
|
|
|
if (UART0_S1 & UART_S1_TDRE) { |
|
|
|
UART0_C2 |= UART_C2_TCIE; |
|
|
|
UART0_C2 &= ~UART_C2_TIE; |
|
|
|
} |
|
|
|
} |
|
|
|
#else |
|
|
|
if (UART0_S1 & UART_S1_RDRF) { |
|
|
|
do { |
|
|
|
head = rx_buffer_head + 1; |
|
|
|
if (head >= RX_BUFFER_SIZE) head = 0; |
|
|
|
if (UART0_MODEM & UART_MODEM_RXRTSE) { |
|
|
|
if (head == rx_buffer_tail) { |
|
|
|
UART0_C2 &= ~(UART_C2_RIE);//disable rx interrupts |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
n = UART0_D; |
|
|
|
if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100; |
|
|
|
rx_buffer[head] = n; |
|
|
|
rx_buffer_head = head; |
|
|
|
break; |
|
|
|
} while (true); |
|
|
|
} |
|
|
|
c = UART0_C2; |
|
|
|
if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) { |
|
|
|
head = tx_buffer_head; |
|
|
|
tail = tx_buffer_tail; |
|
|
|
if (head == tail) { |
|
|
|
UART0_C2 |= UART_C2_TCIE; |
|
|
|
UART0_C2 &= ~UART_C2_TIE; |
|
|
|
} else { |
|
|
|
if (++tail >= TX_BUFFER_SIZE) tail = 0; |
|
|
|
n = tx_buffer[tail]; |
|
|
|
if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); |
|
|
|
UART0_D = n; |
|
|
|
tx_buffer_tail = tail; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) { |
|
|
|
transmitting = 0; |
|
|
|
if (transmit_pin) transmit_deassert(); |
|
|
|
UART0_C2 &= ~(UART_C2_TCIE | UART_C2_TIE); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void serial_print(const char *p) |
|
|
|
{ |
|
|
|
while (*p) { |
|
|
|
char c = *p++; |
|
|
|
if (c == '\n') serial_putchar('\r'); |
|
|
|
serial_putchar(c); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static void serial_phex1(uint32_t n) |
|
|
|
{ |
|
|
|
n &= 15; |
|
|
|
if (n < 10) { |
|
|
|
serial_putchar('0' + n); |
|
|
|
} else { |
|
|
|
serial_putchar('A' - 10 + n); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void serial_phex(uint32_t n) |
|
|
|
{ |
|
|
|
serial_phex1(n >> 4); |
|
|
|
serial_phex1(n); |
|
|
|
} |
|
|
|
|
|
|
|
void serial_phex16(uint32_t n) |
|
|
|
{ |
|
|
|
serial_phex(n >> 8); |
|
|
|
serial_phex(n); |
|
|
|
} |
|
|
|
|
|
|
|
void serial_phex32(uint32_t n) |
|
|
|
{ |
|
|
|
serial_phex(n >> 24); |
|
|
|
serial_phex(n >> 16); |
|
|
|
serial_phex(n >> 8); |
|
|
|
serial_phex(n); |
|
|
|
} |