| /* Teensyduino Core Library | |||||
| * http://www.pjrc.com/teensy/ | |||||
| * Copyright (c) 2013 PJRC.COM, LLC. | |||||
| * | |||||
| * Permission is hereby granted, free of charge, to any person obtaining | |||||
| * a copy of this software and associated documentation files (the | |||||
| * "Software"), to deal in the Software without restriction, including | |||||
| * without limitation the rights to use, copy, modify, merge, publish, | |||||
| * distribute, sublicense, and/or sell copies of the Software, and to | |||||
| * permit persons to whom the Software is furnished to do so, subject to | |||||
| * the following conditions: | |||||
| * | |||||
| * 1. The above copyright notice and this permission notice shall be | |||||
| * included in all copies or substantial portions of the Software. | |||||
| * | |||||
| * 2. If the Software is incorporated into a build system that allows | |||||
| * selection among a list of target devices, then similar target | |||||
| * devices manufactured by PJRC.COM must be included in the list of | |||||
| * target devices and selectable in the same manner. | |||||
| * | |||||
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||||
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||||
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||||
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |||||
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |||||
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |||||
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |||||
| * SOFTWARE. | |||||
| */ | |||||
| // alternate version supporting RTS by disable of receive interrupt | |||||
| // https://forum.pjrc.com/threads/30536-Complete-implementation-of-UART-hardware-flow-control | |||||
| // https://forum.pjrc.com/threads/29446-Teensy-Hardware-Flow-Control-RTS-CTS/page2 | |||||
| #include "kinetis.h" | |||||
| #include "core_pins.h" | |||||
| #include "HardwareSerial.h" | |||||
| //////////////////////////////////////////////////////////////// | |||||
| // Tunable parameters (relatively safe to edit these numbers) | |||||
| //////////////////////////////////////////////////////////////// | |||||
| #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer | |||||
| #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer | |||||
| #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest | |||||
| //////////////////////////////////////////////////////////////// | |||||
| // changes not recommended below this point.... | |||||
| //////////////////////////////////////////////////////////////// | |||||
| #ifdef SERIAL_9BIT_SUPPORT | |||||
| static uint8_t use9Bits = 0; | |||||
| #define BUFTYPE uint16_t | |||||
| #else | |||||
| #define BUFTYPE uint8_t | |||||
| #define use9Bits 0 | |||||
| #endif | |||||
| static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE]; | |||||
| static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE]; | |||||
| static volatile uint8_t transmitting = 0; | |||||
| #if defined(KINETISK) | |||||
| static volatile uint8_t *transmit_pin=NULL; | |||||
| #define transmit_assert() *transmit_pin = 1 | |||||
| #define transmit_deassert() *transmit_pin = 0 | |||||
| #elif defined(KINETISL) | |||||
| static volatile uint8_t *transmit_pin=NULL; | |||||
| static uint8_t transmit_mask=0; | |||||
| #define transmit_assert() *(transmit_pin+4) = transmit_mask; | |||||
| #define transmit_deassert() *(transmit_pin+8) = transmit_mask; | |||||
| #endif | |||||
| #if TX_BUFFER_SIZE > 255 | |||||
| static volatile uint16_t tx_buffer_head = 0; | |||||
| static volatile uint16_t tx_buffer_tail = 0; | |||||
| #else | |||||
| static volatile uint8_t tx_buffer_head = 0; | |||||
| static volatile uint8_t tx_buffer_tail = 0; | |||||
| #endif | |||||
| #if RX_BUFFER_SIZE > 255 | |||||
| static volatile uint16_t rx_buffer_head = 0; | |||||
| static volatile uint16_t rx_buffer_tail = 0; | |||||
| #else | |||||
| static volatile uint8_t rx_buffer_head = 0; | |||||
| static volatile uint8_t rx_buffer_tail = 0; | |||||
| #endif | |||||
| // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS | |||||
| // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer | |||||
| void serial_begin(uint32_t divisor) | |||||
| { | |||||
| SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband | |||||
| rx_buffer_head = 0; | |||||
| rx_buffer_tail = 0; | |||||
| tx_buffer_head = 0; | |||||
| tx_buffer_tail = 0; | |||||
| transmitting = 0; | |||||
| CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); | |||||
| CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); | |||||
| #if defined(HAS_KINETISK_UART0) | |||||
| UART0_BDH = (divisor >> 13) & 0x1F; | |||||
| UART0_BDL = (divisor >> 5) & 0xFF; | |||||
| UART0_C4 = divisor & 0x1F; | |||||
| #ifdef HAS_KINETISK_UART0_FIFO | |||||
| UART0_C1 = UART_C1_ILT; | |||||
| UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set | |||||
| UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set | |||||
| UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE; | |||||
| #else | |||||
| UART0_C1 = 0; | |||||
| UART0_PFIFO = 0; | |||||
| #endif | |||||
| #elif defined(HAS_KINETISL_UART0) | |||||
| UART0_BDH = (divisor >> 8) & 0x1F; | |||||
| UART0_BDL = divisor & 0xFF; | |||||
| UART0_C1 = 0; | |||||
| #endif | |||||
| UART0_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE; | |||||
| NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY); | |||||
| NVIC_ENABLE_IRQ(IRQ_UART0_STATUS); | |||||
| } | |||||
| void serial_format(uint32_t format) | |||||
| { | |||||
| uint8_t c; | |||||
| c = UART0_C1; | |||||
| c = (c & ~0x13) | (format & 0x03); // configure parity | |||||
| if (format & 0x04) c |= 0x10; // 9 bits (might include parity) | |||||
| UART0_C1 = c; | |||||
| if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1 | |||||
| c = UART0_S2 & ~0x10; | |||||
| if (format & 0x10) c |= 0x10; // rx invert | |||||
| UART0_S2 = c; | |||||
| c = UART0_C3 & ~0x10; | |||||
| if (format & 0x20) c |= 0x10; // tx invert | |||||
| UART0_C3 = c; | |||||
| #ifdef SERIAL_9BIT_SUPPORT | |||||
| c = UART0_C4 & 0x1F; | |||||
| if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits) | |||||
| UART0_C4 = c; | |||||
| use9Bits = format & 0x80; | |||||
| #endif | |||||
| } | |||||
| void serial_end(void) | |||||
| { | |||||
| if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; | |||||
| while (transmitting) yield(); // wait for buffered data to send | |||||
| NVIC_DISABLE_IRQ(IRQ_UART0_STATUS); | |||||
| UART0_C2 = 0; | |||||
| CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); | |||||
| CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); | |||||
| rx_buffer_head = 0; | |||||
| rx_buffer_tail = 0; | |||||
| } | |||||
| void serial_set_transmit_pin(uint8_t pin) | |||||
| { | |||||
| while (transmitting) ; | |||||
| pinMode(pin, OUTPUT); | |||||
| digitalWrite(pin, LOW); | |||||
| transmit_pin = portOutputRegister(pin); | |||||
| #if defined(KINETISL) | |||||
| transmit_mask = digitalPinToBitMask(pin); | |||||
| #endif | |||||
| } | |||||
| int serial_set_rts(uint8_t pin) | |||||
| { | |||||
| if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0; | |||||
| if (pin == 6) { | |||||
| CORE_PIN6_CONFIG = PORT_PCR_MUX(3); | |||||
| } else if (pin == 19) { | |||||
| CORE_PIN19_CONFIG = PORT_PCR_MUX(3); | |||||
| } else { | |||||
| UART0_MODEM &= ~UART_MODEM_RXRTSE; | |||||
| return 0; | |||||
| } | |||||
| UART0_MODEM |= UART_MODEM_RXRTSE; | |||||
| return 1; | |||||
| } | |||||
| int serial_set_cts(uint8_t pin) | |||||
| { | |||||
| if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0; | |||||
| if (pin == 18) { | |||||
| CORE_PIN18_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown? | |||||
| } else if (pin == 20) { | |||||
| CORE_PIN20_CONFIG = PORT_PCR_MUX(3); // TODO: weak pullup or pulldown? | |||||
| } else { | |||||
| UART0_MODEM &= ~UART_MODEM_TXCTSE; | |||||
| return 0; | |||||
| } | |||||
| UART0_MODEM |= UART_MODEM_TXCTSE; | |||||
| return 1; | |||||
| } | |||||
| void serial_putchar(uint32_t c) | |||||
| { | |||||
| uint32_t head, n; | |||||
| if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; | |||||
| if (transmit_pin) transmit_assert(); | |||||
| head = tx_buffer_head; | |||||
| if (++head >= TX_BUFFER_SIZE) head = 0; | |||||
| while (tx_buffer_tail == head) { | |||||
| int priority = nvic_execution_priority(); | |||||
| if (priority <= IRQ_PRIORITY) { | |||||
| if ((UART0_S1 & UART_S1_TDRE)) { | |||||
| uint32_t tail = tx_buffer_tail; | |||||
| if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
| n = tx_buffer[tail]; | |||||
| if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
| UART0_D = n; | |||||
| tx_buffer_tail = tail; | |||||
| } | |||||
| } else if (priority >= 256) { | |||||
| yield(); | |||||
| } | |||||
| } | |||||
| tx_buffer[head] = c; | |||||
| transmitting = 1; | |||||
| tx_buffer_head = head; | |||||
| UART0_C2 |= UART_C2_TIE; | |||||
| UART0_C2 &= ~UART_C2_TCIE; | |||||
| } | |||||
| #ifdef HAS_KINETISK_UART0_FIFO | |||||
| void serial_write(const void *buf, unsigned int count) | |||||
| { | |||||
| const uint8_t *p = (const uint8_t *)buf; | |||||
| const uint8_t *end = p + count; | |||||
| uint32_t head, n; | |||||
| if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; | |||||
| if (transmit_pin) transmit_assert(); | |||||
| while (p < end) { | |||||
| head = tx_buffer_head; | |||||
| if (++head >= TX_BUFFER_SIZE) head = 0; | |||||
| if (tx_buffer_tail == head) { | |||||
| UART0_C2 |= UART_C2_TIE; | |||||
| UART0_C2 &= ~UART_C2_TCIE; | |||||
| do { | |||||
| int priority = nvic_execution_priority(); | |||||
| if (priority <= IRQ_PRIORITY) { | |||||
| if ((UART0_S1 & UART_S1_TDRE)) { | |||||
| uint32_t tail = tx_buffer_tail; | |||||
| if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
| n = tx_buffer[tail]; | |||||
| if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
| UART0_D = n; | |||||
| tx_buffer_tail = tail; | |||||
| } | |||||
| } else if (priority >= 256) { | |||||
| yield(); | |||||
| } | |||||
| } while (tx_buffer_tail == head); | |||||
| } | |||||
| tx_buffer[head] = *p++; | |||||
| transmitting = 1; | |||||
| tx_buffer_head = head; | |||||
| } | |||||
| UART0_C2 |= UART_C2_TIE; | |||||
| UART0_C2 &= ~UART_C2_TCIE; | |||||
| } | |||||
| #else | |||||
| void serial_write(const void *buf, unsigned int count) | |||||
| { | |||||
| const uint8_t *p = (const uint8_t *)buf; | |||||
| while (count-- > 0) serial_putchar(*p++); | |||||
| } | |||||
| #endif | |||||
| void serial_flush(void) | |||||
| { | |||||
| while (transmitting) yield(); // wait | |||||
| } | |||||
| int serial_write_buffer_free(void) | |||||
| { | |||||
| uint32_t head, tail; | |||||
| head = tx_buffer_head; | |||||
| tail = tx_buffer_tail; | |||||
| if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail; | |||||
| return tail - head - 1; | |||||
| } | |||||
| int serial_available(void) | |||||
| { | |||||
| uint32_t head, tail; | |||||
| head = rx_buffer_head; | |||||
| tail = rx_buffer_tail; | |||||
| if (head >= tail) return head - tail; | |||||
| return RX_BUFFER_SIZE + head - tail; | |||||
| } | |||||
| int serial_getchar(void) | |||||
| { | |||||
| uint32_t head, tail; | |||||
| int c; | |||||
| head = rx_buffer_head; | |||||
| tail = rx_buffer_tail; | |||||
| if (head == tail) return -1; | |||||
| if (++tail >= RX_BUFFER_SIZE) tail = 0; | |||||
| c = rx_buffer[tail]; | |||||
| rx_buffer_tail = tail; | |||||
| #ifdef HAS_KINETISK_UART0_FIFO | |||||
| if ((UART0_C2 & (UART_C2_RIE | UART_C2_ILIE))==0) {//rx interrupt currently disabled | |||||
| int freespace; | |||||
| if (head >= tail) //rx head and tail would be unchanged from above if interrupts were disabled | |||||
| freespace = RX_BUFFER_SIZE -1 + tail - head; | |||||
| else | |||||
| freespace = tail - head - 1; | |||||
| if (freespace >= UART0_RCFIFO) { | |||||
| UART0_C2 |= (UART_C2_RIE | UART_C2_ILIE);//enable rx interrupts | |||||
| } | |||||
| } | |||||
| #else | |||||
| UART0_C2 |= UART_C2_RIE; | |||||
| #endif | |||||
| return c; | |||||
| } | |||||
| int serial_peek(void) | |||||
| { | |||||
| uint32_t head, tail; | |||||
| head = rx_buffer_head; | |||||
| tail = rx_buffer_tail; | |||||
| if (head == tail) return -1; | |||||
| if (++tail >= RX_BUFFER_SIZE) tail = 0; | |||||
| return rx_buffer[tail]; | |||||
| } | |||||
| void serial_clear(void) | |||||
| { | |||||
| #ifdef HAS_KINETISK_UART0_FIFO | |||||
| if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return; | |||||
| UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); | |||||
| UART0_CFIFO = UART_CFIFO_RXFLUSH; | |||||
| UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE); | |||||
| #endif | |||||
| rx_buffer_head = rx_buffer_tail; | |||||
| } | |||||
| // status interrupt combines | |||||
| // Transmit data below watermark UART_S1_TDRE | |||||
| // Transmit complete UART_S1_TC | |||||
| // Idle line UART_S1_IDLE | |||||
| // Receive data above watermark UART_S1_RDRF | |||||
| // LIN break detect UART_S2_LBKDIF | |||||
| // RxD pin active edge UART_S2_RXEDGIF | |||||
| void uart0_status_isr(void) | |||||
| { | |||||
| uint32_t head, tail, n; | |||||
| uint8_t c; | |||||
| #ifdef HAS_KINETISK_UART0_FIFO | |||||
| uint32_t newhead; | |||||
| if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) { | |||||
| if (UART0_RCFIFO == 0) { | |||||
| // The only way to clear the IDLE interrupt flag is | |||||
| // to read the data register. But reading with no | |||||
| // data causes a FIFO underrun, which causes the | |||||
| // FIFO to return corrupted data. If anyone from | |||||
| // Freescale reads this, what a poor design! There | |||||
| // write should be a write-1-to-clear for IDLE. | |||||
| c = UART0_D; | |||||
| // flushing the fifo recovers from the underrun, | |||||
| // but there's a possible race condition where a | |||||
| // new character could be received between reading | |||||
| // RCFIFO == 0 and flushing the FIFO. To minimize | |||||
| // the chance, interrupts are disabled so a higher | |||||
| // priority interrupt (hopefully) doesn't delay. | |||||
| // TODO: change this to disabling the IDLE interrupt | |||||
| // which won't be simple, since we already manage | |||||
| // which transmit interrupts are enabled. | |||||
| __disable_irq(); | |||||
| UART0_CFIFO = UART_CFIFO_RXFLUSH; | |||||
| __enable_irq(); | |||||
| } else { | |||||
| head = rx_buffer_head; | |||||
| tail = rx_buffer_tail; | |||||
| do { | |||||
| newhead = head + 1; | |||||
| if (newhead >= RX_BUFFER_SIZE) newhead = 0; | |||||
| if (UART0_MODEM & UART_MODEM_RXRTSE) { | |||||
| if (newhead == tail) { | |||||
| UART0_C2 &= ~(UART_C2_RIE | UART_C2_ILIE);//disable rx interrupts | |||||
| break; | |||||
| } | |||||
| } | |||||
| if (UART0_RCFIFO==1) UART0_S1; //as per page 1214 of datasheet regarding resetting of RDRF flag | |||||
| if (use9Bits && (UART0_C3 & 0x80)) { | |||||
| n = UART0_D | 0x100; | |||||
| } else { | |||||
| n = UART0_D; | |||||
| } | |||||
| head = newhead; | |||||
| rx_buffer[head] = n; | |||||
| } while (UART0_RCFIFO); | |||||
| rx_buffer_head = head; | |||||
| } | |||||
| } | |||||
| c = UART0_C2; | |||||
| if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) { | |||||
| head = tx_buffer_head; | |||||
| tail = tx_buffer_tail; | |||||
| do { | |||||
| if (tail == head) break; | |||||
| if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
| UART0_S1; | |||||
| n = tx_buffer[tail]; | |||||
| if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
| UART0_D = n; | |||||
| } while (UART0_TCFIFO < 8); | |||||
| tx_buffer_tail = tail; | |||||
| if (UART0_S1 & UART_S1_TDRE) { | |||||
| UART0_C2 |= UART_C2_TCIE; | |||||
| UART0_C2 &= ~UART_C2_TIE; | |||||
| } | |||||
| } | |||||
| #else | |||||
| if (UART0_S1 & UART_S1_RDRF) { | |||||
| do { | |||||
| head = rx_buffer_head + 1; | |||||
| if (head >= RX_BUFFER_SIZE) head = 0; | |||||
| if (UART0_MODEM & UART_MODEM_RXRTSE) { | |||||
| if (head == rx_buffer_tail) { | |||||
| UART0_C2 &= ~(UART_C2_RIE);//disable rx interrupts | |||||
| break; | |||||
| } | |||||
| } | |||||
| n = UART0_D; | |||||
| if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100; | |||||
| rx_buffer[head] = n; | |||||
| rx_buffer_head = head; | |||||
| break; | |||||
| } while (true); | |||||
| } | |||||
| c = UART0_C2; | |||||
| if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) { | |||||
| head = tx_buffer_head; | |||||
| tail = tx_buffer_tail; | |||||
| if (head == tail) { | |||||
| UART0_C2 |= UART_C2_TCIE; | |||||
| UART0_C2 &= ~UART_C2_TIE; | |||||
| } else { | |||||
| if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
| n = tx_buffer[tail]; | |||||
| if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
| UART0_D = n; | |||||
| tx_buffer_tail = tail; | |||||
| } | |||||
| } | |||||
| #endif | |||||
| if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) { | |||||
| transmitting = 0; | |||||
| if (transmit_pin) transmit_deassert(); | |||||
| UART0_C2 &= ~(UART_C2_TCIE | UART_C2_TIE); | |||||
| } | |||||
| } | |||||
| void serial_print(const char *p) | |||||
| { | |||||
| while (*p) { | |||||
| char c = *p++; | |||||
| if (c == '\n') serial_putchar('\r'); | |||||
| serial_putchar(c); | |||||
| } | |||||
| } | |||||
| static void serial_phex1(uint32_t n) | |||||
| { | |||||
| n &= 15; | |||||
| if (n < 10) { | |||||
| serial_putchar('0' + n); | |||||
| } else { | |||||
| serial_putchar('A' - 10 + n); | |||||
| } | |||||
| } | |||||
| void serial_phex(uint32_t n) | |||||
| { | |||||
| serial_phex1(n >> 4); | |||||
| serial_phex1(n); | |||||
| } | |||||
| void serial_phex16(uint32_t n) | |||||
| { | |||||
| serial_phex(n >> 8); | |||||
| serial_phex(n); | |||||
| } | |||||
| void serial_phex32(uint32_t n) | |||||
| { | |||||
| serial_phex(n >> 24); | |||||
| serial_phex(n >> 16); | |||||
| serial_phex(n >> 8); | |||||
| serial_phex(n); | |||||
| } |