ソースを参照

Add Serial4 & Serial5 for K64 & K66

main
PaulStoffregen 8年前
コミット
8b3d33689e
7個のファイルの変更868行の追加0行の削除
  1. +7
    -0
      keywords.txt
  2. +159
    -0
      teensy3/HardwareSerial.h
  3. +10
    -0
      teensy3/HardwareSerial4.cpp
  4. +10
    -0
      teensy3/HardwareSerial5.cpp
  5. +334
    -0
      teensy3/serial4.c
  6. +342
    -0
      teensy3/serial5.c
  7. +6
    -0
      teensy3/yield.cpp

+ 7
- 0
keywords.txt ファイルの表示

@@ -25,6 +25,13 @@ attachCts KEYWORD2
PROGMEM LITERAL2
DMAMEM LITERAL2
FASTRUN LITERAL2
Serial4 KEYWORD1
Serial5 KEYWORD1
Serial6 KEYWORD1
setRX KEYWORD2
setTX KEYWORD2
write9bit KEYWORD2
clear KEYWORD2

# removed by Arduino 1.0, but still in Teensyduino
BYTE LITERAL2

+ 159
- 0
teensy3/HardwareSerial.h ファイルの表示

@@ -164,6 +164,57 @@ int serial3_getchar(void);
int serial3_peek(void);
void serial3_clear(void);

void serial4_begin(uint32_t divisor);
void serial4_format(uint32_t format);
void serial4_end(void);
void serial4_set_transmit_pin(uint8_t pin);
void serial4_set_rx(uint8_t pin);
void serial4_set_tx(uint8_t pin, uint8_t opendrain);
int serial4_set_rts(uint8_t pin);
int serial4_set_cts(uint8_t pin);
void serial4_putchar(uint32_t c);
void serial4_write(const void *buf, unsigned int count);
void serial4_flush(void);
int serial4_write_buffer_free(void);
int serial4_available(void);
int serial4_getchar(void);
int serial4_peek(void);
void serial4_clear(void);

void serial5_begin(uint32_t divisor);
void serial5_format(uint32_t format);
void serial5_end(void);
void serial5_set_transmit_pin(uint8_t pin);
void serial5_set_rx(uint8_t pin);
void serial5_set_tx(uint8_t pin, uint8_t opendrain);
int serial5_set_rts(uint8_t pin);
int serial5_set_cts(uint8_t pin);
void serial5_putchar(uint32_t c);
void serial5_write(const void *buf, unsigned int count);
void serial5_flush(void);
int serial5_write_buffer_free(void);
int serial5_available(void);
int serial5_getchar(void);
int serial5_peek(void);
void serial5_clear(void);

void serial6_begin(uint32_t divisor);
void serial6_format(uint32_t format);
void serial6_end(void);
void serial6_set_transmit_pin(uint8_t pin);
void serial6_set_rx(uint8_t pin);
void serial6_set_tx(uint8_t pin, uint8_t opendrain);
int serial6_set_rts(uint8_t pin);
int serial6_set_cts(uint8_t pin);
void serial6_putchar(uint32_t c);
void serial6_write(const void *buf, unsigned int count);
void serial6_flush(void);
int serial6_write_buffer_free(void);
int serial6_available(void);
int serial6_getchar(void);
int serial6_peek(void);
void serial6_clear(void);

#ifdef __cplusplus
}
#endif
@@ -278,5 +329,113 @@ public:
extern HardwareSerial3 Serial3;
extern void serialEvent3(void);

class HardwareSerial4 : public HardwareSerial
{
public:
virtual void begin(uint32_t baud) { serial4_begin(BAUD2DIV3(baud)); }
virtual void begin(uint32_t baud, uint32_t format) {
serial4_begin(BAUD2DIV3(baud));
serial4_format(format); }
virtual void end(void) { serial4_end(); }
virtual void transmitterEnable(uint8_t pin) { serial4_set_transmit_pin(pin); }
virtual void setRX(uint8_t pin) { serial4_set_rx(pin); }
virtual void setTX(uint8_t pin, bool opendrain=false) { serial4_set_tx(pin, opendrain); }
virtual bool attachRts(uint8_t pin) { return serial4_set_rts(pin); }
virtual bool attachCts(uint8_t pin) { return serial4_set_cts(pin); }
virtual int available(void) { return serial4_available(); }
virtual int peek(void) { return serial4_peek(); }
virtual int read(void) { return serial4_getchar(); }
virtual void flush(void) { serial4_flush(); }
virtual void clear(void) { serial4_clear(); }
virtual int availableForWrite(void) { return serial4_write_buffer_free(); }
virtual size_t write(uint8_t c) { serial4_putchar(c); return 1; }
virtual size_t write(unsigned long n) { return write((uint8_t)n); }
virtual size_t write(long n) { return write((uint8_t)n); }
virtual size_t write(unsigned int n) { return write((uint8_t)n); }
virtual size_t write(int n) { return write((uint8_t)n); }
virtual size_t write(const uint8_t *buffer, size_t size)
{ serial4_write(buffer, size); return size; }
virtual size_t write(const char *str) { size_t len = strlen(str);
serial4_write((const uint8_t *)str, len);
return len; }
virtual size_t write9bit(uint32_t c) { serial4_putchar(c); return 1; }
operator bool() { return true; }
};
extern HardwareSerial4 Serial4;
extern void serialEvent4(void);

class HardwareSerial5 : public HardwareSerial
{
public:
virtual void begin(uint32_t baud) { serial5_begin(BAUD2DIV3(baud)); }
virtual void begin(uint32_t baud, uint32_t format) {
serial5_begin(BAUD2DIV3(baud));
serial5_format(format); }
virtual void end(void) { serial5_end(); }
virtual void transmitterEnable(uint8_t pin) { serial5_set_transmit_pin(pin); }
virtual void setRX(uint8_t pin) { serial5_set_rx(pin); }
virtual void setTX(uint8_t pin, bool opendrain=false) { serial5_set_tx(pin, opendrain); }
virtual bool attachRts(uint8_t pin) { return serial5_set_rts(pin); }
virtual bool attachCts(uint8_t pin) { return serial5_set_cts(pin); }
virtual int available(void) { return serial5_available(); }
virtual int peek(void) { return serial5_peek(); }
virtual int read(void) { return serial5_getchar(); }
virtual void flush(void) { serial5_flush(); }
virtual void clear(void) { serial5_clear(); }
virtual int availableForWrite(void) { return serial5_write_buffer_free(); }
virtual size_t write(uint8_t c) { serial5_putchar(c); return 1; }
virtual size_t write(unsigned long n) { return write((uint8_t)n); }
virtual size_t write(long n) { return write((uint8_t)n); }
virtual size_t write(unsigned int n) { return write((uint8_t)n); }
virtual size_t write(int n) { return write((uint8_t)n); }
virtual size_t write(const uint8_t *buffer, size_t size)
{ serial5_write(buffer, size); return size; }
virtual size_t write(const char *str) { size_t len = strlen(str);
serial5_write((const uint8_t *)str, len);
return len; }
virtual size_t write9bit(uint32_t c) { serial5_putchar(c); return 1; }
operator bool() { return true; }
};
extern HardwareSerial5 Serial5;
extern void serialEvent5(void);

class HardwareSerial6 : public HardwareSerial
{
public:
virtual void begin(uint32_t baud) { serial6_begin(BAUD2DIV3(baud)); }
virtual void begin(uint32_t baud, uint32_t format) {
serial6_begin(BAUD2DIV3(baud));
serial6_format(format); }
virtual void end(void) { serial6_end(); }
virtual void transmitterEnable(uint8_t pin) { serial6_set_transmit_pin(pin); }
virtual void setRX(uint8_t pin) { serial6_set_rx(pin); }
virtual void setTX(uint8_t pin, bool opendrain=false) { serial6_set_tx(pin, opendrain); }
virtual bool attachRts(uint8_t pin) { return serial6_set_rts(pin); }
virtual bool attachCts(uint8_t pin) { return serial6_set_cts(pin); }
virtual int available(void) { return serial6_available(); }
virtual int peek(void) { return serial6_peek(); }
virtual int read(void) { return serial6_getchar(); }
virtual void flush(void) { serial6_flush(); }
virtual void clear(void) { serial6_clear(); }
virtual int availableForWrite(void) { return serial6_write_buffer_free(); }
virtual size_t write(uint8_t c) { serial6_putchar(c); return 1; }
virtual size_t write(unsigned long n) { return write((uint8_t)n); }
virtual size_t write(long n) { return write((uint8_t)n); }
virtual size_t write(unsigned int n) { return write((uint8_t)n); }
virtual size_t write(int n) { return write((uint8_t)n); }
virtual size_t write(const uint8_t *buffer, size_t size)
{ serial6_write(buffer, size); return size; }
virtual size_t write(const char *str) { size_t len = strlen(str);
serial6_write((const uint8_t *)str, len);
return len; }
virtual size_t write9bit(uint32_t c) { serial6_putchar(c); return 1; }
operator bool() { return true; }
};
extern HardwareSerial6 Serial6;
extern void serialEvent6(void);




#endif
#endif

+ 10
- 0
teensy3/HardwareSerial4.cpp ファイルの表示

@@ -0,0 +1,10 @@
#include "HardwareSerial.h"

#ifdef HAS_KINETISK_UART3

HardwareSerial4 Serial4;

void serialEvent4() __attribute__((weak));
void serialEvent4() {}

#endif

+ 10
- 0
teensy3/HardwareSerial5.cpp ファイルの表示

@@ -0,0 +1,10 @@
#include "HardwareSerial.h"

#ifdef HAS_KINETISK_UART4

HardwareSerial5 Serial5;

void serialEvent5() __attribute__((weak));
void serialEvent5() {}

#endif

+ 334
- 0
teensy3/serial4.c ファイルの表示

@@ -0,0 +1,334 @@
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

#include "kinetis.h"
#include "core_pins.h"
#include "HardwareSerial.h"

#ifdef HAS_KINETISK_UART3

////////////////////////////////////////////////////////////////
// Tunable parameters (relatively safe to edit these numbers)
////////////////////////////////////////////////////////////////

#define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
#define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
#define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
#define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
#define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest


////////////////////////////////////////////////////////////////
// changes not recommended below this point....
////////////////////////////////////////////////////////////////

#ifdef SERIAL_9BIT_SUPPORT
static uint8_t use9Bits = 0;
#define BUFTYPE uint16_t
#else
#define BUFTYPE uint8_t
#define use9Bits 0
#endif

static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
static volatile uint8_t transmitting = 0;
static volatile uint8_t *transmit_pin=NULL;
#define transmit_assert() *transmit_pin = 1
#define transmit_deassert() *transmit_pin = 0
static volatile uint8_t *rts_pin=NULL;
#define rts_assert() *rts_pin = 0
#define rts_deassert() *rts_pin = 1
#if TX_BUFFER_SIZE > 255
static volatile uint16_t tx_buffer_head = 0;
static volatile uint16_t tx_buffer_tail = 0;
#else
static volatile uint8_t tx_buffer_head = 0;
static volatile uint8_t tx_buffer_tail = 0;
#endif
#if RX_BUFFER_SIZE > 255
static volatile uint16_t rx_buffer_head = 0;
static volatile uint16_t rx_buffer_tail = 0;
#else
static volatile uint8_t rx_buffer_head = 0;
static volatile uint8_t rx_buffer_tail = 0;
#endif

// UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
// UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer

#define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
#define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
#define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
#define C2_TX_INACTIVE C2_ENABLE

void serial4_begin(uint32_t divisor)
{
SIM_SCGC4 |= SIM_SCGC4_UART3; // turn on clock, TODO: use bitband
rx_buffer_head = 0;
rx_buffer_tail = 0;
tx_buffer_head = 0;
tx_buffer_tail = 0;
transmitting = 0;
CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
CORE_PIN32_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
UART3_BDH = (divisor >> 13) & 0x1F;
UART3_BDL = (divisor >> 5) & 0xFF;
UART3_C4 = divisor & 0x1F;
UART3_C1 = 0;
UART3_PFIFO = 0;
UART3_C2 = C2_TX_INACTIVE;
NVIC_SET_PRIORITY(IRQ_UART3_STATUS, IRQ_PRIORITY);
NVIC_ENABLE_IRQ(IRQ_UART3_STATUS);
}

void serial4_format(uint32_t format)
{
uint8_t c;

c = UART3_C1;
c = (c & ~0x13) | (format & 0x03); // configure parity
if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
UART3_C1 = c;
if ((format & 0x0F) == 0x04) UART3_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
c = UART3_S2 & ~0x10;
if (format & 0x10) c |= 0x10; // rx invert
UART3_S2 = c;
c = UART3_C3 & ~0x10;
if (format & 0x20) c |= 0x10; // tx invert
UART3_C3 = c;
#ifdef SERIAL_9BIT_SUPPORT
c = UART3_C4 & 0x1F;
if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
UART3_C4 = c;
use9Bits = format & 0x80;
#endif
}

void serial4_end(void)
{
if (!(SIM_SCGC4 & SIM_SCGC4_UART3)) return;
while (transmitting) yield(); // wait for buffered data to send
NVIC_DISABLE_IRQ(IRQ_UART3_STATUS);
UART3_C2 = 0;
CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
CORE_PIN32_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
rx_buffer_head = 0;
rx_buffer_tail = 0;
if (rts_pin) rts_deassert();
}

void serial4_set_transmit_pin(uint8_t pin)
{
while (transmitting) ;
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
transmit_pin = portOutputRegister(pin);
}

void serial4_set_tx(uint8_t pin, uint8_t opendrain)
{
}

void serial4_set_rx(uint8_t pin)
{
}

int serial4_set_rts(uint8_t pin)
{
if (!(SIM_SCGC4 & SIM_SCGC4_UART3)) return 0;
if (pin < CORE_NUM_DIGITAL) {
rts_pin = portOutputRegister(pin);
pinMode(pin, OUTPUT);
rts_assert();
} else {
rts_pin = NULL;
return 0;
}
return 1;
}

int serial4_set_cts(uint8_t pin)
{
return 0;
}

void serial4_putchar(uint32_t c)
{
uint32_t head, n;

if (!(SIM_SCGC4 & SIM_SCGC4_UART3)) return;
if (transmit_pin) transmit_assert();
head = tx_buffer_head;
if (++head >= TX_BUFFER_SIZE) head = 0;
while (tx_buffer_tail == head) {
int priority = nvic_execution_priority();
if (priority <= IRQ_PRIORITY) {
if ((UART3_S1 & UART_S1_TDRE)) {
uint32_t tail = tx_buffer_tail;
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART3_C3 = (UART3_C3 & ~0x40) | ((n & 0x100) >> 2);
UART3_D = n;
tx_buffer_tail = tail;
}
} else if (priority >= 256) {
yield(); // wait
}
}
tx_buffer[head] = c;
transmitting = 1;
tx_buffer_head = head;
UART3_C2 = C2_TX_ACTIVE;
}

void serial4_write(const void *buf, unsigned int count)
{
const uint8_t *p = (const uint8_t *)buf;
while (count-- > 0) serial4_putchar(*p++);
}

void serial4_flush(void)
{
while (transmitting) yield(); // wait
}

int serial4_write_buffer_free(void)
{
uint32_t head, tail;

head = tx_buffer_head;
tail = tx_buffer_tail;
if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}

int serial4_available(void)
{
uint32_t head, tail;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head >= tail) return head - tail;
return RX_BUFFER_SIZE + head - tail;
}

int serial4_getchar(void)
{
uint32_t head, tail;
int c;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head == tail) return -1;
if (++tail >= RX_BUFFER_SIZE) tail = 0;
c = rx_buffer[tail];
rx_buffer_tail = tail;
if (rts_pin) {
int avail;
if (head >= tail) avail = head - tail;
else avail = RX_BUFFER_SIZE + head - tail;
if (avail <= RTS_LOW_WATERMARK) rts_assert();
}
return c;
}

int serial4_peek(void)
{
uint32_t head, tail;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head == tail) return -1;
if (++tail >= RX_BUFFER_SIZE) tail = 0;
return rx_buffer[tail];
}

void serial4_clear(void)
{
rx_buffer_head = rx_buffer_tail;
if (rts_pin) rts_assert();
}

// status interrupt combines
// Transmit data below watermark UART_S1_TDRE
// Transmit complete UART_S1_TC
// Idle line UART_S1_IDLE
// Receive data above watermark UART_S1_RDRF
// LIN break detect UART_S2_LBKDIF
// RxD pin active edge UART_S2_RXEDGIF

void uart3_status_isr(void)
{
uint32_t head, tail, n;
uint8_t c;

if (UART3_S1 & UART_S1_RDRF) {
if (use9Bits && (UART3_C3 & 0x80)) {
n = UART3_D | 0x100;
} else {
n = UART3_D;
}
head = rx_buffer_head + 1;
if (head >= RX_BUFFER_SIZE) head = 0;
if (head != rx_buffer_tail) {
rx_buffer[head] = n;
rx_buffer_head = head;
}
if (rts_pin) {
int avail;
tail = tx_buffer_tail;
if (head >= tail) avail = head - tail;
else avail = RX_BUFFER_SIZE + head - tail;
if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
}
}
c = UART3_C2;
if ((c & UART_C2_TIE) && (UART3_S1 & UART_S1_TDRE)) {
head = tx_buffer_head;
tail = tx_buffer_tail;
if (head == tail) {
UART3_C2 = C2_TX_COMPLETING;
} else {
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART3_C3 = (UART3_C3 & ~0x40) | ((n & 0x100) >> 2);
UART3_D = n;
tx_buffer_tail = tail;
}
}
if ((c & UART_C2_TCIE) && (UART3_S1 & UART_S1_TC)) {
transmitting = 0;
if (transmit_pin) transmit_deassert();
UART3_C2 = C2_TX_INACTIVE;
}
}

#endif // HAS_KINETISK_UART3

+ 342
- 0
teensy3/serial5.c ファイルの表示

@@ -0,0 +1,342 @@
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

#include "kinetis.h"
#include "core_pins.h"
#include "HardwareSerial.h"

#ifdef HAS_KINETISK_UART4

////////////////////////////////////////////////////////////////
// Tunable parameters (relatively safe to edit these numbers)
////////////////////////////////////////////////////////////////

#define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
#define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
#define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
#define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
#define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest


////////////////////////////////////////////////////////////////
// changes not recommended below this point....
////////////////////////////////////////////////////////////////

#ifdef SERIAL_9BIT_SUPPORT
static uint8_t use9Bits = 0;
#define BUFTYPE uint16_t
#else
#define BUFTYPE uint8_t
#define use9Bits 0
#endif

static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
static volatile uint8_t transmitting = 0;
static volatile uint8_t *transmit_pin=NULL;
#define transmit_assert() *transmit_pin = 1
#define transmit_deassert() *transmit_pin = 0
static volatile uint8_t *rts_pin=NULL;
#define rts_assert() *rts_pin = 0
#define rts_deassert() *rts_pin = 1
#if TX_BUFFER_SIZE > 255
static volatile uint16_t tx_buffer_head = 0;
static volatile uint16_t tx_buffer_tail = 0;
#else
static volatile uint8_t tx_buffer_head = 0;
static volatile uint8_t tx_buffer_tail = 0;
#endif
#if RX_BUFFER_SIZE > 255
static volatile uint16_t rx_buffer_head = 0;
static volatile uint16_t rx_buffer_tail = 0;
#else
static volatile uint8_t rx_buffer_head = 0;
static volatile uint8_t rx_buffer_tail = 0;
#endif

// UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
// UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer

#define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
#define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
#define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
#define C2_TX_INACTIVE C2_ENABLE

void serial5_begin(uint32_t divisor)
{
SIM_SCGC1 |= SIM_SCGC1_UART4; // turn on clock, TODO: use bitband
rx_buffer_head = 0;
rx_buffer_tail = 0;
tx_buffer_head = 0;
tx_buffer_tail = 0;
transmitting = 0;
CORE_PIN34_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
CORE_PIN33_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
UART4_BDH = (divisor >> 13) & 0x1F;
UART4_BDL = (divisor >> 5) & 0xFF;
UART4_C4 = divisor & 0x1F;
UART4_C1 = 0;
UART4_PFIFO = 0;
UART4_C2 = C2_TX_INACTIVE;
NVIC_SET_PRIORITY(IRQ_UART4_STATUS, IRQ_PRIORITY);
NVIC_ENABLE_IRQ(IRQ_UART4_STATUS);
}

void serial5_format(uint32_t format)
{
uint8_t c;

c = UART4_C1;
c = (c & ~0x13) | (format & 0x03); // configure parity
if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
UART4_C1 = c;
if ((format & 0x0F) == 0x04) UART4_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
c = UART4_S2 & ~0x10;
if (format & 0x10) c |= 0x10; // rx invert
UART4_S2 = c;
c = UART4_C3 & ~0x10;
if (format & 0x20) c |= 0x10; // tx invert
UART4_C3 = c;
#ifdef SERIAL_9BIT_SUPPORT
c = UART4_C4 & 0x1F;
if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
UART4_C4 = c;
use9Bits = format & 0x80;
#endif
}

void serial5_end(void)
{
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return;
while (transmitting) yield(); // wait for buffered data to send
NVIC_DISABLE_IRQ(IRQ_UART4_STATUS);
UART4_C2 = 0;
CORE_PIN34_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
CORE_PIN33_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
rx_buffer_head = 0;
rx_buffer_tail = 0;
if (rts_pin) rts_deassert();
}

void serial5_set_transmit_pin(uint8_t pin)
{
while (transmitting) ;
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
transmit_pin = portOutputRegister(pin);
}

void serial5_set_tx(uint8_t pin, uint8_t opendrain)
{
}

void serial5_set_rx(uint8_t pin)
{
}

int serial5_set_rts(uint8_t pin)
{
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0;
if (pin < CORE_NUM_DIGITAL) {
rts_pin = portOutputRegister(pin);
pinMode(pin, OUTPUT);
rts_assert();
} else {
rts_pin = NULL;
return 0;
}
return 1;
}

int serial5_set_cts(uint8_t pin)
{
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0;
if (pin == 24) {
CORE_PIN24_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
} else {
UART4_MODEM &= ~UART_MODEM_TXCTSE;
return 0;
}
UART4_MODEM |= UART_MODEM_TXCTSE;
return 1;
}

void serial5_putchar(uint32_t c)
{
uint32_t head, n;

if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return;
if (transmit_pin) transmit_assert();
head = tx_buffer_head;
if (++head >= TX_BUFFER_SIZE) head = 0;
while (tx_buffer_tail == head) {
int priority = nvic_execution_priority();
if (priority <= IRQ_PRIORITY) {
if ((UART4_S1 & UART_S1_TDRE)) {
uint32_t tail = tx_buffer_tail;
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART4_C3 = (UART4_C3 & ~0x40) | ((n & 0x100) >> 2);
UART4_D = n;
tx_buffer_tail = tail;
}
} else if (priority >= 256) {
yield(); // wait
}
}
tx_buffer[head] = c;
transmitting = 1;
tx_buffer_head = head;
UART4_C2 = C2_TX_ACTIVE;
}

void serial5_write(const void *buf, unsigned int count)
{
const uint8_t *p = (const uint8_t *)buf;
while (count-- > 0) serial5_putchar(*p++);
}

void serial5_flush(void)
{
while (transmitting) yield(); // wait
}

int serial5_write_buffer_free(void)
{
uint32_t head, tail;

head = tx_buffer_head;
tail = tx_buffer_tail;
if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}

int serial5_available(void)
{
uint32_t head, tail;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head >= tail) return head - tail;
return RX_BUFFER_SIZE + head - tail;
}

int serial5_getchar(void)
{
uint32_t head, tail;
int c;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head == tail) return -1;
if (++tail >= RX_BUFFER_SIZE) tail = 0;
c = rx_buffer[tail];
rx_buffer_tail = tail;
if (rts_pin) {
int avail;
if (head >= tail) avail = head - tail;
else avail = RX_BUFFER_SIZE + head - tail;
if (avail <= RTS_LOW_WATERMARK) rts_assert();
}
return c;
}

int serial5_peek(void)
{
uint32_t head, tail;

head = rx_buffer_head;
tail = rx_buffer_tail;
if (head == tail) return -1;
if (++tail >= RX_BUFFER_SIZE) tail = 0;
return rx_buffer[tail];
}

void serial5_clear(void)
{
rx_buffer_head = rx_buffer_tail;
if (rts_pin) rts_assert();
}

// status interrupt combines
// Transmit data below watermark UART_S1_TDRE
// Transmit complete UART_S1_TC
// Idle line UART_S1_IDLE
// Receive data above watermark UART_S1_RDRF
// LIN break detect UART_S2_LBKDIF
// RxD pin active edge UART_S2_RXEDGIF

void uart4_status_isr(void)
{
uint32_t head, tail, n;
uint8_t c;

if (UART4_S1 & UART_S1_RDRF) {
if (use9Bits && (UART4_C3 & 0x80)) {
n = UART4_D | 0x100;
} else {
n = UART4_D;
}
head = rx_buffer_head + 1;
if (head >= RX_BUFFER_SIZE) head = 0;
if (head != rx_buffer_tail) {
rx_buffer[head] = n;
rx_buffer_head = head;
}
if (rts_pin) {
int avail;
tail = tx_buffer_tail;
if (head >= tail) avail = head - tail;
else avail = RX_BUFFER_SIZE + head - tail;
if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
}
}
c = UART4_C2;
if ((c & UART_C2_TIE) && (UART4_S1 & UART_S1_TDRE)) {
head = tx_buffer_head;
tail = tx_buffer_tail;
if (head == tail) {
UART4_C2 = C2_TX_COMPLETING;
} else {
if (++tail >= TX_BUFFER_SIZE) tail = 0;
n = tx_buffer[tail];
if (use9Bits) UART4_C3 = (UART4_C3 & ~0x40) | ((n & 0x100) >> 2);
UART4_D = n;
tx_buffer_tail = tail;
}
}
if ((c & UART_C2_TCIE) && (UART4_S1 & UART_S1_TC)) {
transmitting = 0;
if (transmit_pin) transmit_deassert();
UART4_C2 = C2_TX_INACTIVE;
}
}

#endif // HAS_KINETISK_UART4

+ 6
- 0
teensy3/yield.cpp ファイルの表示

@@ -44,5 +44,11 @@ void yield(void)
if (Serial1.available()) serialEvent1();
if (Serial2.available()) serialEvent2();
if (Serial3.available()) serialEvent3();
#ifdef HAS_KINETISK_UART3
if (Serial4.available()) serialEvent4();
#endif
#ifdef HAS_KINETISK_UART4
if (Serial5.available()) serialEvent5();
#endif
running = 0;
};

読み込み中…
キャンセル
保存