|
- /*
- TwoWire.cpp - TWI/I2C library for Wiring & Arduino
- Copyright (c) 2006 Nicholas Zambetti. All right reserved.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-
- Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
- */
-
- #include "Wire.h"
-
- #if defined(__arm__) && defined(TEENSYDUINO)
-
- #include "kinetis.h"
- #include <string.h> // for memcpy
- #include "core_pins.h"
- #include "Wire.h"
-
- void sda_rising_isr(void);
-
- TwoWire::TwoWire()
- {
- rxBufferIndex = 0;
- rxBufferLength = 0;
- txBufferIndex = 0;
- txBufferLength = 0;
- transmitting = 0;
- sda_pin_num = 18;
- scl_pin_num = 19;
- user_onRequest = NULL;
- user_onReceive = NULL;
- }
-
- void TwoWire::begin(void)
- {
- //serial_begin(BAUD2DIV(115200));
- //serial_print("\nWire Begin\n");
-
- slave_mode = 0;
- SIM_SCGC4 |= SIM_SCGC4_I2C0; // TODO: use bitband
- I2C0_C1 = 0;
- // On Teensy 3.0 external pullup resistors *MUST* be used
- // the PORT_PCR_PE bit is ignored when in I2C mode
- // I2C will not work at all without pullup resistors
- // It might seem like setting PORT_PCR_PE & PORT_PCR_PS
- // would enable pullup resistors. However, there seems
- // to be a bug in chip while I2C is enabled, where setting
- // those causes the port to be driven strongly high.
- if (sda_pin_num == 18) {
- CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (sda_pin_num == 17) {
- CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (sda_pin_num == 34) {
- CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (sda_pin_num == 8) {
- CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (sda_pin_num == 48) {
- CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #endif
- }
- if (scl_pin_num == 19) {
- CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (scl_pin_num == 16) {
- CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (scl_pin_num == 33) {
- CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (scl_pin_num == 7) {
- CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (scl_pin_num == 47) {
- CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #endif
- }
- setClock(100000);
- I2C0_C2 = I2C_C2_HDRS;
- I2C0_C1 = I2C_C1_IICEN;
- //pinMode(3, OUTPUT);
- //pinMode(4, OUTPUT);
- }
-
- void TwoWire::setClock(uint32_t frequency)
- {
- if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return;
-
- #if F_BUS == 120000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV1152; // 104 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV288; // 416 kHz
- } else {
- I2C0_F = I2C_F_DIV128; // 0.94 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 108000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV1024; // 105 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV256; // 422 kHz
- } else {
- I2C0_F = I2C_F_DIV112; // 0.96 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 96000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV960; // 100 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV240; // 400 kHz
- } else {
- I2C0_F = I2C_F_DIV96; // 1.0 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 90000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV896; // 100 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV224; // 402 kHz
- } else {
- I2C0_F = I2C_F_DIV88; // 1.02 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 80000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV768; // 104 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV192; // 416 kHz
- } else {
- I2C0_F = I2C_F_DIV80; // 1.0 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 72000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV640; // 112 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV192; // 375 kHz
- } else {
- I2C0_F = I2C_F_DIV72; // 1.0 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 64000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV640; // 100 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV160; // 400 kHz
- } else {
- I2C0_F = I2C_F_DIV64; // 1.0 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 60000000
- if (frequency < 400000) {
- I2C0_F = 0x2C; // 104 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x1C; // 416 kHz
- } else {
- I2C0_F = 0x12; // 938 kHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 56000000
- if (frequency < 400000) {
- I2C0_F = 0x2B; // 109 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x1C; // 389 kHz
- } else {
- I2C0_F = 0x0E; // 1 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 54000000
- if (frequency < 400000) {
- I2C0_F = I2C_F_DIV512; // 105 kHz
- } else if (frequency < 1000000) {
- I2C0_F = I2C_F_DIV128; // 422 kHz
- } else {
- I2C0_F = I2C_F_DIV56; // 0.96 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 48000000
- if (frequency < 400000) {
- I2C0_F = 0x27; // 100 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x1A; // 400 kHz
- } else {
- I2C0_F = 0x0D; // 1 MHz
- }
- I2C0_FLT = 4;
- #elif F_BUS == 40000000
- if (frequency < 400000) {
- I2C0_F = 0x29; // 104 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x19; // 416 kHz
- } else {
- I2C0_F = 0x0B; // 1 MHz
- }
- I2C0_FLT = 3;
- #elif F_BUS == 36000000
- if (frequency < 400000) {
- I2C0_F = 0x28; // 113 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x19; // 375 kHz
- } else {
- I2C0_F = 0x0A; // 1 MHz
- }
- I2C0_FLT = 3;
- #elif F_BUS == 24000000
- if (frequency < 400000) {
- I2C0_F = 0x1F; // 100 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x12; // 375 kHz
- } else {
- I2C0_F = 0x02; // 1 MHz
- }
- I2C0_FLT = 2;
- #elif F_BUS == 16000000
- if (frequency < 400000) {
- I2C0_F = 0x20; // 100 kHz
- } else if (frequency < 1000000) {
- I2C0_F = 0x07; // 400 kHz
- } else {
- I2C0_F = 0x00; // 800 MHz
- }
- I2C0_FLT = 1;
- #elif F_BUS == 8000000
- if (frequency < 400000) {
- I2C0_F = 0x14; // 100 kHz
- } else {
- I2C0_F = 0x00; // 400 kHz
- }
- I2C0_FLT = 1;
- #elif F_BUS == 4000000
- if (frequency < 400000) {
- I2C0_F = 0x07; // 100 kHz
- } else {
- I2C0_F = 0x00; // 200 kHz
- }
- I2C0_FLT = 1;
- #elif F_BUS == 2000000
- I2C0_F = 0x00; // 100 kHz
- I2C0_FLT = 1;
- #else
- #error "F_BUS must be 120, 108, 96, 90, 80, 72, 64, 60, 56, 54, 48, 40, 36, 24, 16, 8, 4 or 2 MHz"
- #endif
- }
-
- void TwoWire::setSDA(uint8_t pin)
- {
- if (pin == sda_pin_num) return;
- if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) {
- if (sda_pin_num == 18) {
- CORE_PIN18_CONFIG = 0;
- } else if (sda_pin_num == 17) {
- CORE_PIN17_CONFIG = 0;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (sda_pin_num == 34) {
- CORE_PIN34_CONFIG = 0;
- } else if (sda_pin_num == 8) {
- CORE_PIN8_CONFIG = 0;
- } else if (sda_pin_num == 48) {
- CORE_PIN48_CONFIG = 0;
- #endif
- }
-
- if (pin == 18) {
- CORE_PIN18_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (pin == 17) {
- CORE_PIN17_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (pin == 34) {
- CORE_PIN34_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (pin == 8) {
- CORE_PIN8_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (pin == 48) {
- CORE_PIN48_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #endif
- }
- }
- sda_pin_num = pin;
- }
-
- void TwoWire::setSCL(uint8_t pin)
- {
- if (pin == scl_pin_num) return;
- if ((SIM_SCGC4 & SIM_SCGC4_I2C0)) {
- if (scl_pin_num == 19) {
- CORE_PIN19_CONFIG = 0;
- } else if (scl_pin_num == 16) {
- CORE_PIN16_CONFIG = 0;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (scl_pin_num == 33) {
- CORE_PIN33_CONFIG = 0;
- } else if (scl_pin_num == 7) {
- CORE_PIN7_CONFIG = 0;
- } else if (scl_pin_num == 47) {
- CORE_PIN47_CONFIG = 0;
- #endif
- }
-
- if (pin == 19) {
- CORE_PIN19_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (pin == 16) {
- CORE_PIN16_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (pin == 33) {
- CORE_PIN33_CONFIG = PORT_PCR_MUX(5)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (pin == 7) {
- CORE_PIN7_CONFIG = PORT_PCR_MUX(7)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- } else if (pin == 47) {
- CORE_PIN47_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_ODE|PORT_PCR_SRE|PORT_PCR_DSE;
- #endif
- }
- }
- scl_pin_num = pin;
- }
-
- void TwoWire::begin(uint8_t address)
- {
- begin();
- I2C0_A1 = address << 1;
- slave_mode = 1;
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE;
- NVIC_ENABLE_IRQ(IRQ_I2C0);
- }
-
- void TwoWire::end()
- {
- if (!(SIM_SCGC4 & SIM_SCGC4_I2C0)) return;
- NVIC_DISABLE_IRQ(IRQ_I2C0);
- I2C0_C1 = 0;
- if (sda_pin_num == 18) {
- CORE_PIN18_CONFIG = 0;
- } else if (sda_pin_num == 17) {
- CORE_PIN17_CONFIG = 0;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (sda_pin_num == 34) {
- CORE_PIN34_CONFIG = 0;
- } else if (sda_pin_num == 8) {
- CORE_PIN8_CONFIG = 0;
- } else if (sda_pin_num == 48) {
- CORE_PIN48_CONFIG = 0;
- #endif
- }
- if (scl_pin_num == 19) {
- CORE_PIN19_CONFIG = 0;
- } else if (scl_pin_num == 16) {
- CORE_PIN16_CONFIG = 0;
- #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
- } else if (scl_pin_num == 33) {
- CORE_PIN33_CONFIG = 0;
- } else if (scl_pin_num == 7) {
- CORE_PIN7_CONFIG = 0;
- } else if (scl_pin_num == 47) {
- CORE_PIN47_CONFIG = 0;
- #endif
- }
- SIM_SCGC4 &= ~SIM_SCGC4_I2C0; // TODO: use bitband
- }
-
- void i2c0_isr(void)
- {
- uint8_t status, c1, data;
- static uint8_t receiving=0;
-
- status = I2C0_S;
- //serial_print(".");
- if (status & I2C_S_ARBL) {
- // Arbitration Lost
- I2C0_S = I2C_S_ARBL;
- //serial_print("a");
- if (receiving && Wire.rxBufferLength > 0) {
- // TODO: does this detect the STOP condition in slave receive mode?
-
-
- }
- if (!(status & I2C_S_IAAS)) return;
- }
- if (status & I2C_S_IAAS) {
- //serial_print("\n");
- // Addressed As A Slave
- if (status & I2C_S_SRW) {
- //serial_print("T");
- // Begin Slave Transmit
- receiving = 0;
- Wire.txBufferLength = 0;
- if (Wire.user_onRequest != NULL) {
- Wire.user_onRequest();
- }
- if (Wire.txBufferLength == 0) {
- // is this correct, transmitting a single zero
- // when we should send nothing? Arduino's AVR
- // implementation does this, but is it ok?
- Wire.txBufferLength = 1;
- Wire.txBuffer[0] = 0;
- }
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX;
- I2C0_D = Wire.txBuffer[0];
- Wire.txBufferIndex = 1;
- } else {
- // Begin Slave Receive
- //serial_print("R");
- receiving = 1;
- Wire.rxBufferLength = 0;
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE;
- data = I2C0_D;
- }
- I2C0_S = I2C_S_IICIF;
- return;
- }
- #if defined(KINETISL)
- c1 = I2C0_FLT;
- if ((c1 & I2C_FLT_STOPF) && (c1 & I2C_FLT_STOPIE)) {
- I2C0_FLT = c1 & ~I2C_FLT_STOPIE;
- if (Wire.user_onReceive != NULL) {
- Wire.rxBufferIndex = 0;
- Wire.user_onReceive(Wire.rxBufferLength);
- }
- }
- #endif
- c1 = I2C0_C1;
- if (c1 & I2C_C1_TX) {
- // Continue Slave Transmit
- //serial_print("t");
- if ((status & I2C_S_RXAK) == 0) {
- //serial_print(".");
- // Master ACK'd previous byte
- if (Wire.txBufferIndex < Wire.txBufferLength) {
- I2C0_D = Wire.txBuffer[Wire.txBufferIndex++];
- } else {
- I2C0_D = 0;
- }
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_TX;
- } else {
- //serial_print("*");
- // Master did not ACK previous byte
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE;
- data = I2C0_D;
- }
- } else {
- // Continue Slave Receive
- Wire.irqcount = 0;
- #if defined(KINETISK)
- attachInterrupt(18, sda_rising_isr, RISING);
- #elif defined(KINETISL)
- I2C0_FLT |= I2C_FLT_STOPIE;
- #endif
- //digitalWriteFast(4, HIGH);
- data = I2C0_D;
- //serial_phex(data);
- if (Wire.rxBufferLength < BUFFER_LENGTH && receiving) {
- Wire.rxBuffer[Wire.rxBufferLength++] = data;
- }
- //digitalWriteFast(4, LOW);
- }
- I2C0_S = I2C_S_IICIF;
- }
-
- // Detects the stop condition that terminates a slave receive transfer.
- // Sadly, the I2C in Kinetis K series lacks the stop detect interrupt
- // This pin change interrupt hack is needed to detect the stop condition
- void sda_rising_isr(void)
- {
- //digitalWrite(3, HIGH);
- if (!(I2C0_S & I2C_S_BUSY)) {
- detachInterrupt(18);
- if (Wire.user_onReceive != NULL) {
- Wire.rxBufferIndex = 0;
- Wire.user_onReceive(Wire.rxBufferLength);
- }
- //delayMicroseconds(100);
- } else {
- if (++Wire.irqcount >= 2 || !Wire.slave_mode) {
- detachInterrupt(18);
- }
- }
- //digitalWrite(3, LOW);
- }
-
-
- // Chapter 44: Inter-Integrated Circuit (I2C) - Page 1012
- // I2C0_A1 // I2C Address Register 1
- // I2C0_F // I2C Frequency Divider register
- // I2C0_C1 // I2C Control Register 1
- // I2C0_S // I2C Status register
- // I2C0_D // I2C Data I/O register
- // I2C0_C2 // I2C Control Register 2
- // I2C0_FLT // I2C Programmable Input Glitch Filter register
-
- static uint8_t i2c_status(void)
- {
- static uint32_t p=0xFFFF;
- uint32_t s = I2C0_S;
- if (s != p) {
- //Serial.printf("(%02X)", s);
- p = s;
- }
- return s;
- }
-
- static void i2c_wait(void)
- {
- #if 0
- while (!(I2C0_S & I2C_S_IICIF)) ; // wait
- I2C0_S = I2C_S_IICIF;
- #endif
- //Serial.write('^');
- while (1) {
- if ((i2c_status() & I2C_S_IICIF)) break;
- }
- I2C0_S = I2C_S_IICIF;
- }
-
- size_t TwoWire::write(uint8_t data)
- {
- if (transmitting || slave_mode) {
- if (txBufferLength >= BUFFER_LENGTH+1) {
- setWriteError();
- return 0;
- }
- txBuffer[txBufferLength++] = data;
- return 1;
- }
- return 0;
- }
-
- size_t TwoWire::write(const uint8_t *data, size_t quantity)
- {
- if (transmitting || slave_mode) {
- size_t avail = BUFFER_LENGTH+1 - txBufferLength;
- if (quantity > avail) {
- quantity = avail;
- setWriteError();
- }
- memcpy(txBuffer + txBufferLength, data, quantity);
- txBufferLength += quantity;
- return quantity;
- }
- return 0;
- }
-
-
- uint8_t TwoWire::endTransmission(uint8_t sendStop)
- {
- uint8_t i, status, ret=0;
-
- // clear the status flags
- I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
- // now take control of the bus...
- if (I2C0_C1 & I2C_C1_MST) {
- // we are already the bus master, so send a repeated start
- //Serial.print("rstart:");
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
- } else {
- // we are not currently the bus master, so wait for bus ready
- //Serial.print("busy:");
- uint32_t wait_begin = millis();
- while (i2c_status() & I2C_S_BUSY) {
- //Serial.write('.') ;
- if (millis() - wait_begin > 15) {
- // bus stuck busy too long
- I2C0_C1 = 0;
- I2C0_C1 = I2C_C1_IICEN;
- //Serial.println("abort");
- return 4;
- }
- }
- // become the bus master in transmit mode (send start)
- slave_mode = 0;
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
- }
- // wait until start condition establishes control of the bus
- while (1) {
- status = i2c_status();
- if ((status & I2C_S_BUSY)) break;
- }
- // transmit the address and data
- for (i=0; i < txBufferLength; i++) {
- I2C0_D = txBuffer[i];
- //Serial.write('^');
- while (1) {
- status = i2c_status();
- if ((status & I2C_S_IICIF)) break;
- if (!(status & I2C_S_BUSY)) break;
- }
- I2C0_S = I2C_S_IICIF;
- //Serial.write('$');
- status = i2c_status();
- if ((status & I2C_S_ARBL)) {
- // we lost bus arbitration to another master
- // TODO: what is the proper thing to do here??
- //Serial.printf(" c1=%02X ", I2C0_C1);
- I2C0_C1 = I2C_C1_IICEN;
- ret = 4; // 4:other error
- break;
- }
- if (!(status & I2C_S_BUSY)) {
- // suddenly lost control of the bus!
- I2C0_C1 = I2C_C1_IICEN;
- ret = 4; // 4:other error
- break;
- }
- if (status & I2C_S_RXAK) {
- // the slave device did not acknowledge
- if (i == 0) {
- ret = 2; // 2:received NACK on transmit of address
- } else {
- ret = 3; // 3:received NACK on transmit of data
- }
- sendStop = 1;
- break;
- }
- }
- if (sendStop) {
- // send the stop condition
- I2C0_C1 = I2C_C1_IICEN;
- // TODO: do we wait for this somehow?
- }
- transmitting = 0;
- //Serial.print(" ret=");
- //Serial.println(ret);
- return ret;
- }
-
-
- uint8_t TwoWire::requestFrom(uint8_t address, uint8_t length, uint8_t sendStop)
- {
- uint8_t tmp __attribute__((unused));
- uint8_t status, count=0;
-
- rxBufferIndex = 0;
- rxBufferLength = 0;
- //serial_print("requestFrom\n");
- // clear the status flags
- I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
- // now take control of the bus...
- if (I2C0_C1 & I2C_C1_MST) {
- // we are already the bus master, so send a repeated start
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
- } else {
- // we are not currently the bus master, so wait for bus ready
- while (i2c_status() & I2C_S_BUSY) ;
- // become the bus master in transmit mode (send start)
- slave_mode = 0;
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
- }
- // send the address
- I2C0_D = (address << 1) | 1;
- i2c_wait();
- status = i2c_status();
- if ((status & I2C_S_RXAK) || (status & I2C_S_ARBL)) {
- // the slave device did not acknowledge
- // or we lost bus arbitration to another master
- I2C0_C1 = I2C_C1_IICEN;
- return 0;
- }
- if (length == 0) {
- // TODO: does anybody really do zero length reads?
- // if so, does this code really work?
- I2C0_C1 = I2C_C1_IICEN | (sendStop ? 0 : I2C_C1_MST);
- return 0;
- } else if (length == 1) {
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK;
- } else {
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST;
- }
- tmp = I2C0_D; // initiate the first receive
- while (length > 1) {
- i2c_wait();
- length--;
- if (length == 1) I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TXAK;
- if (count < BUFFER_LENGTH) {
- rxBuffer[count++] = I2C0_D;
- } else {
- tmp = I2C0_D;
- }
- }
- i2c_wait();
- I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
- if (count < BUFFER_LENGTH) {
- rxBuffer[count++] = I2C0_D;
- } else {
- tmp = I2C0_D;
- }
- if (sendStop) I2C0_C1 = I2C_C1_IICEN;
- rxBufferLength = count;
- return count;
- }
-
-
-
- TwoWire Wire;
-
-
-
- #endif // __arm__ && TEENSYDUINO
|