|
- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <html>
- <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
-
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover
- Texts being (a) (see below), and with the Back-Cover Texts being (b)
- (see below). A copy of the license is included in the section entitled
- "GNU Free Documentation License".
-
- (a) The FSF's Front-Cover Text is:
-
- A GNU Manual
-
- (b) The FSF's Back-Cover Text is:
-
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise
- funds for GNU development. -->
- <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>MIPS Options (Using the GNU Compiler Collection (GCC))</title>
-
- <meta name="description" content="MIPS Options (Using the GNU Compiler Collection (GCC))">
- <meta name="keywords" content="MIPS Options (Using the GNU Compiler Collection (GCC))">
- <meta name="resource-type" content="document">
- <meta name="distribution" content="global">
- <meta name="Generator" content="makeinfo">
- <link href="index.html#Top" rel="start" title="Top">
- <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
- <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
- <link href="Submodel-Options.html#Submodel-Options" rel="up" title="Submodel Options">
- <link href="MMIX-Options.html#MMIX-Options" rel="next" title="MMIX Options">
- <link href="MicroBlaze-Options.html#MicroBlaze-Options" rel="prev" title="MicroBlaze Options">
- <style type="text/css">
- <!--
- a.summary-letter {text-decoration: none}
- blockquote.indentedblock {margin-right: 0em}
- blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
- blockquote.smallquotation {font-size: smaller}
- div.display {margin-left: 3.2em}
- div.example {margin-left: 3.2em}
- div.lisp {margin-left: 3.2em}
- div.smalldisplay {margin-left: 3.2em}
- div.smallexample {margin-left: 3.2em}
- div.smalllisp {margin-left: 3.2em}
- kbd {font-style: oblique}
- pre.display {font-family: inherit}
- pre.format {font-family: inherit}
- pre.menu-comment {font-family: serif}
- pre.menu-preformatted {font-family: serif}
- pre.smalldisplay {font-family: inherit; font-size: smaller}
- pre.smallexample {font-size: smaller}
- pre.smallformat {font-family: inherit; font-size: smaller}
- pre.smalllisp {font-size: smaller}
- span.nolinebreak {white-space: nowrap}
- span.roman {font-family: initial; font-weight: normal}
- span.sansserif {font-family: sans-serif; font-weight: normal}
- ul.no-bullet {list-style: none}
- -->
- </style>
-
-
- </head>
-
- <body lang="en">
- <a name="MIPS-Options"></a>
- <div class="header">
- <p>
- Next: <a href="MMIX-Options.html#MMIX-Options" accesskey="n" rel="next">MMIX Options</a>, Previous: <a href="MicroBlaze-Options.html#MicroBlaze-Options" accesskey="p" rel="prev">MicroBlaze Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
- <hr>
- <a name="MIPS-Options-1"></a>
- <h4 class="subsection">3.19.29 MIPS Options</h4>
- <a name="index-MIPS-options"></a>
-
- <dl compact="compact">
- <dt><code>-EB</code></dt>
- <dd><a name="index-EB-2"></a>
- <p>Generate big-endian code.
- </p>
- </dd>
- <dt><code>-EL</code></dt>
- <dd><a name="index-EL-2"></a>
- <p>Generate little-endian code. This is the default for ‘<samp>mips*el-*-*</samp>’
- configurations.
- </p>
- </dd>
- <dt><code>-march=<var>arch</var></code></dt>
- <dd><a name="index-march-8"></a>
- <p>Generate code that runs on <var>arch</var>, which can be the name of a
- generic MIPS ISA, or the name of a particular processor.
- The ISA names are:
- ‘<samp>mips1</samp>’, ‘<samp>mips2</samp>’, ‘<samp>mips3</samp>’, ‘<samp>mips4</samp>’,
- ‘<samp>mips32</samp>’, ‘<samp>mips32r2</samp>’, ‘<samp>mips32r3</samp>’, ‘<samp>mips32r5</samp>’,
- ‘<samp>mips32r6</samp>’, ‘<samp>mips64</samp>’, ‘<samp>mips64r2</samp>’, ‘<samp>mips64r3</samp>’,
- ‘<samp>mips64r5</samp>’ and ‘<samp>mips64r6</samp>’.
- The processor names are:
- ‘<samp>4kc</samp>’, ‘<samp>4km</samp>’, ‘<samp>4kp</samp>’, ‘<samp>4ksc</samp>’,
- ‘<samp>4kec</samp>’, ‘<samp>4kem</samp>’, ‘<samp>4kep</samp>’, ‘<samp>4ksd</samp>’,
- ‘<samp>5kc</samp>’, ‘<samp>5kf</samp>’,
- ‘<samp>20kc</samp>’,
- ‘<samp>24kc</samp>’, ‘<samp>24kf2_1</samp>’, ‘<samp>24kf1_1</samp>’,
- ‘<samp>24kec</samp>’, ‘<samp>24kef2_1</samp>’, ‘<samp>24kef1_1</samp>’,
- ‘<samp>34kc</samp>’, ‘<samp>34kf2_1</samp>’, ‘<samp>34kf1_1</samp>’, ‘<samp>34kn</samp>’,
- ‘<samp>74kc</samp>’, ‘<samp>74kf2_1</samp>’, ‘<samp>74kf1_1</samp>’, ‘<samp>74kf3_2</samp>’,
- ‘<samp>1004kc</samp>’, ‘<samp>1004kf2_1</samp>’, ‘<samp>1004kf1_1</samp>’,
- ‘<samp>i6400</samp>’, ‘<samp>i6500</samp>’,
- ‘<samp>interaptiv</samp>’,
- ‘<samp>loongson2e</samp>’, ‘<samp>loongson2f</samp>’, ‘<samp>loongson3a</samp>’, ‘<samp>gs464</samp>’,
- ‘<samp>gs464e</samp>’, ‘<samp>gs264e</samp>’,
- ‘<samp>m4k</samp>’,
- ‘<samp>m14k</samp>’, ‘<samp>m14kc</samp>’, ‘<samp>m14ke</samp>’, ‘<samp>m14kec</samp>’,
- ‘<samp>m5100</samp>’, ‘<samp>m5101</samp>’,
- ‘<samp>octeon</samp>’, ‘<samp>octeon+</samp>’, ‘<samp>octeon2</samp>’, ‘<samp>octeon3</samp>’,
- ‘<samp>orion</samp>’,
- ‘<samp>p5600</samp>’, ‘<samp>p6600</samp>’,
- ‘<samp>r2000</samp>’, ‘<samp>r3000</samp>’, ‘<samp>r3900</samp>’, ‘<samp>r4000</samp>’, ‘<samp>r4400</samp>’,
- ‘<samp>r4600</samp>’, ‘<samp>r4650</samp>’, ‘<samp>r4700</samp>’, ‘<samp>r5900</samp>’,
- ‘<samp>r6000</samp>’, ‘<samp>r8000</samp>’,
- ‘<samp>rm7000</samp>’, ‘<samp>rm9000</samp>’,
- ‘<samp>r10000</samp>’, ‘<samp>r12000</samp>’, ‘<samp>r14000</samp>’, ‘<samp>r16000</samp>’,
- ‘<samp>sb1</samp>’,
- ‘<samp>sr71000</samp>’,
- ‘<samp>vr4100</samp>’, ‘<samp>vr4111</samp>’, ‘<samp>vr4120</samp>’, ‘<samp>vr4130</samp>’, ‘<samp>vr4300</samp>’,
- ‘<samp>vr5000</samp>’, ‘<samp>vr5400</samp>’, ‘<samp>vr5500</samp>’,
- ‘<samp>xlr</samp>’ and ‘<samp>xlp</samp>’.
- The special value ‘<samp>from-abi</samp>’ selects the
- most compatible architecture for the selected ABI (that is,
- ‘<samp>mips1</samp>’ for 32-bit ABIs and ‘<samp>mips3</samp>’ for 64-bit ABIs).
- </p>
- <p>The native Linux/GNU toolchain also supports the value ‘<samp>native</samp>’,
- which selects the best architecture option for the host processor.
- <samp>-march=native</samp> has no effect if GCC does not recognize
- the processor.
- </p>
- <p>In processor names, a final ‘<samp>000</samp>’ can be abbreviated as ‘<samp>k</samp>’
- (for example, <samp>-march=r2k</samp>). Prefixes are optional, and
- ‘<samp>vr</samp>’ may be written ‘<samp>r</samp>’.
- </p>
- <p>Names of the form ‘<samp><var>n</var>f2_1</samp>’ refer to processors with
- FPUs clocked at half the rate of the core, names of the form
- ‘<samp><var>n</var>f1_1</samp>’ refer to processors with FPUs clocked at the same
- rate as the core, and names of the form ‘<samp><var>n</var>f3_2</samp>’ refer to
- processors with FPUs clocked a ratio of 3:2 with respect to the core.
- For compatibility reasons, ‘<samp><var>n</var>f</samp>’ is accepted as a synonym
- for ‘<samp><var>n</var>f2_1</samp>’ while ‘<samp><var>n</var>x</samp>’ and ‘<samp><var>b</var>fx</samp>’ are
- accepted as synonyms for ‘<samp><var>n</var>f1_1</samp>’.
- </p>
- <p>GCC defines two macros based on the value of this option. The first
- is <code>_MIPS_ARCH</code>, which gives the name of target architecture, as
- a string. The second has the form <code>_MIPS_ARCH_<var>foo</var></code>,
- where <var>foo</var> is the capitalized value of <code>_MIPS_ARCH</code>.
- For example, <samp>-march=r2000</samp> sets <code>_MIPS_ARCH</code>
- to <code>"r2000"</code> and defines the macro <code>_MIPS_ARCH_R2000</code>.
- </p>
- <p>Note that the <code>_MIPS_ARCH</code> macro uses the processor names given
- above. In other words, it has the full prefix and does not
- abbreviate ‘<samp>000</samp>’ as ‘<samp>k</samp>’. In the case of ‘<samp>from-abi</samp>’,
- the macro names the resolved architecture (either <code>"mips1"</code> or
- <code>"mips3"</code>). It names the default architecture when no
- <samp>-march</samp> option is given.
- </p>
- </dd>
- <dt><code>-mtune=<var>arch</var></code></dt>
- <dd><a name="index-mtune-9"></a>
- <p>Optimize for <var>arch</var>. Among other things, this option controls
- the way instructions are scheduled, and the perceived cost of arithmetic
- operations. The list of <var>arch</var> values is the same as for
- <samp>-march</samp>.
- </p>
- <p>When this option is not used, GCC optimizes for the processor
- specified by <samp>-march</samp>. By using <samp>-march</samp> and
- <samp>-mtune</samp> together, it is possible to generate code that
- runs on a family of processors, but optimize the code for one
- particular member of that family.
- </p>
- <p><samp>-mtune</samp> defines the macros <code>_MIPS_TUNE</code> and
- <code>_MIPS_TUNE_<var>foo</var></code>, which work in the same way as the
- <samp>-march</samp> ones described above.
- </p>
- </dd>
- <dt><code>-mips1</code></dt>
- <dd><a name="index-mips1"></a>
- <p>Equivalent to <samp>-march=mips1</samp>.
- </p>
- </dd>
- <dt><code>-mips2</code></dt>
- <dd><a name="index-mips2"></a>
- <p>Equivalent to <samp>-march=mips2</samp>.
- </p>
- </dd>
- <dt><code>-mips3</code></dt>
- <dd><a name="index-mips3"></a>
- <p>Equivalent to <samp>-march=mips3</samp>.
- </p>
- </dd>
- <dt><code>-mips4</code></dt>
- <dd><a name="index-mips4"></a>
- <p>Equivalent to <samp>-march=mips4</samp>.
- </p>
- </dd>
- <dt><code>-mips32</code></dt>
- <dd><a name="index-mips32"></a>
- <p>Equivalent to <samp>-march=mips32</samp>.
- </p>
- </dd>
- <dt><code>-mips32r3</code></dt>
- <dd><a name="index-mips32r3"></a>
- <p>Equivalent to <samp>-march=mips32r3</samp>.
- </p>
- </dd>
- <dt><code>-mips32r5</code></dt>
- <dd><a name="index-mips32r5"></a>
- <p>Equivalent to <samp>-march=mips32r5</samp>.
- </p>
- </dd>
- <dt><code>-mips32r6</code></dt>
- <dd><a name="index-mips32r6"></a>
- <p>Equivalent to <samp>-march=mips32r6</samp>.
- </p>
- </dd>
- <dt><code>-mips64</code></dt>
- <dd><a name="index-mips64"></a>
- <p>Equivalent to <samp>-march=mips64</samp>.
- </p>
- </dd>
- <dt><code>-mips64r2</code></dt>
- <dd><a name="index-mips64r2"></a>
- <p>Equivalent to <samp>-march=mips64r2</samp>.
- </p>
- </dd>
- <dt><code>-mips64r3</code></dt>
- <dd><a name="index-mips64r3"></a>
- <p>Equivalent to <samp>-march=mips64r3</samp>.
- </p>
- </dd>
- <dt><code>-mips64r5</code></dt>
- <dd><a name="index-mips64r5"></a>
- <p>Equivalent to <samp>-march=mips64r5</samp>.
- </p>
- </dd>
- <dt><code>-mips64r6</code></dt>
- <dd><a name="index-mips64r6"></a>
- <p>Equivalent to <samp>-march=mips64r6</samp>.
- </p>
- </dd>
- <dt><code>-mips16</code></dt>
- <dt><code>-mno-mips16</code></dt>
- <dd><a name="index-mips16"></a>
- <a name="index-mno_002dmips16"></a>
- <p>Generate (do not generate) MIPS16 code. If GCC is targeting a
- MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE.
- </p>
- <p>MIPS16 code generation can also be controlled on a per-function basis
- by means of <code>mips16</code> and <code>nomips16</code> attributes.
- See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>, for more information.
- </p>
- </dd>
- <dt><code>-mflip-mips16</code></dt>
- <dd><a name="index-mflip_002dmips16"></a>
- <p>Generate MIPS16 code on alternating functions. This option is provided
- for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
- not intended for ordinary use in compiling user code.
- </p>
- </dd>
- <dt><code>-minterlink-compressed</code></dt>
- <dt><code>-mno-interlink-compressed</code></dt>
- <dd><a name="index-minterlink_002dcompressed"></a>
- <a name="index-mno_002dinterlink_002dcompressed"></a>
- <p>Require (do not require) that code using the standard (uncompressed) MIPS ISA
- be link-compatible with MIPS16 and microMIPS code, and vice versa.
- </p>
- <p>For example, code using the standard ISA encoding cannot jump directly
- to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
- <samp>-minterlink-compressed</samp> therefore disables direct jumps unless GCC
- knows that the target of the jump is not compressed.
- </p>
- </dd>
- <dt><code>-minterlink-mips16</code></dt>
- <dt><code>-mno-interlink-mips16</code></dt>
- <dd><a name="index-minterlink_002dmips16"></a>
- <a name="index-mno_002dinterlink_002dmips16"></a>
- <p>Aliases of <samp>-minterlink-compressed</samp> and
- <samp>-mno-interlink-compressed</samp>. These options predate the microMIPS ASE
- and are retained for backwards compatibility.
- </p>
- </dd>
- <dt><code>-mabi=32</code></dt>
- <dt><code>-mabi=o64</code></dt>
- <dt><code>-mabi=n32</code></dt>
- <dt><code>-mabi=64</code></dt>
- <dt><code>-mabi=eabi</code></dt>
- <dd><a name="index-mabi_003d32"></a>
- <a name="index-mabi_003do64"></a>
- <a name="index-mabi_003dn32"></a>
- <a name="index-mabi_003d64"></a>
- <a name="index-mabi_003deabi"></a>
- <p>Generate code for the given ABI.
- </p>
- <p>Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
- generates 64-bit code when you select a 64-bit architecture, but you
- can use <samp>-mgp32</samp> to get 32-bit code instead.
- </p>
- <p>For information about the O64 ABI, see
- <a href="http://gcc.gnu.org/projects/mipso64-abi.html">http://gcc.gnu.org/projects/mipso64-abi.html</a>.
- </p>
- <p>GCC supports a variant of the o32 ABI in which floating-point registers
- are 64 rather than 32 bits wide. You can select this combination with
- <samp>-mabi=32</samp> <samp>-mfp64</samp>. This ABI relies on the <code>mthc1</code>
- and <code>mfhc1</code> instructions and is therefore only supported for
- MIPS32R2, MIPS32R3 and MIPS32R5 processors.
- </p>
- <p>The register assignments for arguments and return values remain the
- same, but each scalar value is passed in a single 64-bit register
- rather than a pair of 32-bit registers. For example, scalar
- floating-point values are returned in ‘<samp>$f0</samp>’ only, not a
- ‘<samp>$f0</samp>’/‘<samp>$f1</samp>’ pair. The set of call-saved registers also
- remains the same in that the even-numbered double-precision registers
- are saved.
- </p>
- <p>Two additional variants of the o32 ABI are supported to enable
- a transition from 32-bit to 64-bit registers. These are FPXX
- (<samp>-mfpxx</samp>) and FP64A (<samp>-mfp64</samp> <samp>-mno-odd-spreg</samp>).
- The FPXX extension mandates that all code must execute correctly
- when run using 32-bit or 64-bit registers. The code can be interlinked
- with either FP32 or FP64, but not both.
- The FP64A extension is similar to the FP64 extension but forbids the
- use of odd-numbered single-precision registers. This can be used
- in conjunction with the <code>FRE</code> mode of FPUs in MIPS32R5
- processors and allows both FP32 and FP64A code to interlink and
- run in the same process without changing FPU modes.
- </p>
- </dd>
- <dt><code>-mabicalls</code></dt>
- <dt><code>-mno-abicalls</code></dt>
- <dd><a name="index-mabicalls"></a>
- <a name="index-mno_002dabicalls"></a>
- <p>Generate (do not generate) code that is suitable for SVR4-style
- dynamic objects. <samp>-mabicalls</samp> is the default for SVR4-based
- systems.
- </p>
- </dd>
- <dt><code>-mshared</code></dt>
- <dt><code>-mno-shared</code></dt>
- <dd><p>Generate (do not generate) code that is fully position-independent,
- and that can therefore be linked into shared libraries. This option
- only affects <samp>-mabicalls</samp>.
- </p>
- <p>All <samp>-mabicalls</samp> code has traditionally been position-independent,
- regardless of options like <samp>-fPIC</samp> and <samp>-fpic</samp>. However,
- as an extension, the GNU toolchain allows executables to use absolute
- accesses for locally-binding symbols. It can also use shorter GP
- initialization sequences and generate direct calls to locally-defined
- functions. This mode is selected by <samp>-mno-shared</samp>.
- </p>
- <p><samp>-mno-shared</samp> depends on binutils 2.16 or higher and generates
- objects that can only be linked by the GNU linker. However, the option
- does not affect the ABI of the final executable; it only affects the ABI
- of relocatable objects. Using <samp>-mno-shared</samp> generally makes
- executables both smaller and quicker.
- </p>
- <p><samp>-mshared</samp> is the default.
- </p>
- </dd>
- <dt><code>-mplt</code></dt>
- <dt><code>-mno-plt</code></dt>
- <dd><a name="index-mplt"></a>
- <a name="index-mno_002dplt"></a>
- <p>Assume (do not assume) that the static and dynamic linkers
- support PLTs and copy relocations. This option only affects
- <samp>-mno-shared -mabicalls</samp>. For the n64 ABI, this option
- has no effect without <samp>-msym32</samp>.
- </p>
- <p>You can make <samp>-mplt</samp> the default by configuring
- GCC with <samp>--with-mips-plt</samp>. The default is
- <samp>-mno-plt</samp> otherwise.
- </p>
- </dd>
- <dt><code>-mxgot</code></dt>
- <dt><code>-mno-xgot</code></dt>
- <dd><a name="index-mxgot-1"></a>
- <a name="index-mno_002dxgot-1"></a>
- <p>Lift (do not lift) the usual restrictions on the size of the global
- offset table.
- </p>
- <p>GCC normally uses a single instruction to load values from the GOT.
- While this is relatively efficient, it only works if the GOT
- is smaller than about 64k. Anything larger causes the linker
- to report an error such as:
- </p>
- <a name="index-relocation-truncated-to-fit-_0028MIPS_0029"></a>
- <div class="smallexample">
- <pre class="smallexample">relocation truncated to fit: R_MIPS_GOT16 foobar
- </pre></div>
-
- <p>If this happens, you should recompile your code with <samp>-mxgot</samp>.
- This works with very large GOTs, although the code is also
- less efficient, since it takes three instructions to fetch the
- value of a global symbol.
- </p>
- <p>Note that some linkers can create multiple GOTs. If you have such a
- linker, you should only need to use <samp>-mxgot</samp> when a single object
- file accesses more than 64k’s worth of GOT entries. Very few do.
- </p>
- <p>These options have no effect unless GCC is generating position
- independent code.
- </p>
- </dd>
- <dt><code>-mgp32</code></dt>
- <dd><a name="index-mgp32"></a>
- <p>Assume that general-purpose registers are 32 bits wide.
- </p>
- </dd>
- <dt><code>-mgp64</code></dt>
- <dd><a name="index-mgp64"></a>
- <p>Assume that general-purpose registers are 64 bits wide.
- </p>
- </dd>
- <dt><code>-mfp32</code></dt>
- <dd><a name="index-mfp32"></a>
- <p>Assume that floating-point registers are 32 bits wide.
- </p>
- </dd>
- <dt><code>-mfp64</code></dt>
- <dd><a name="index-mfp64"></a>
- <p>Assume that floating-point registers are 64 bits wide.
- </p>
- </dd>
- <dt><code>-mfpxx</code></dt>
- <dd><a name="index-mfpxx"></a>
- <p>Do not assume the width of floating-point registers.
- </p>
- </dd>
- <dt><code>-mhard-float</code></dt>
- <dd><a name="index-mhard_002dfloat-4"></a>
- <p>Use floating-point coprocessor instructions.
- </p>
- </dd>
- <dt><code>-msoft-float</code></dt>
- <dd><a name="index-msoft_002dfloat-7"></a>
- <p>Do not use floating-point coprocessor instructions. Implement
- floating-point calculations using library calls instead.
- </p>
- </dd>
- <dt><code>-mno-float</code></dt>
- <dd><a name="index-mno_002dfloat"></a>
- <p>Equivalent to <samp>-msoft-float</samp>, but additionally asserts that the
- program being compiled does not perform any floating-point operations.
- This option is presently supported only by some bare-metal MIPS
- configurations, where it may select a special set of libraries
- that lack all floating-point support (including, for example, the
- floating-point <code>printf</code> formats).
- If code compiled with <samp>-mno-float</samp> accidentally contains
- floating-point operations, it is likely to suffer a link-time
- or run-time failure.
- </p>
- </dd>
- <dt><code>-msingle-float</code></dt>
- <dd><a name="index-msingle_002dfloat"></a>
- <p>Assume that the floating-point coprocessor only supports single-precision
- operations.
- </p>
- </dd>
- <dt><code>-mdouble-float</code></dt>
- <dd><a name="index-mdouble_002dfloat-1"></a>
- <p>Assume that the floating-point coprocessor supports double-precision
- operations. This is the default.
- </p>
- </dd>
- <dt><code>-modd-spreg</code></dt>
- <dt><code>-mno-odd-spreg</code></dt>
- <dd><a name="index-modd_002dspreg"></a>
- <a name="index-mno_002dodd_002dspreg"></a>
- <p>Enable the use of odd-numbered single-precision floating-point registers
- for the o32 ABI. This is the default for processors that are known to
- support these registers. When using the o32 FPXX ABI, <samp>-mno-odd-spreg</samp>
- is set by default.
- </p>
- </dd>
- <dt><code>-mabs=2008</code></dt>
- <dt><code>-mabs=legacy</code></dt>
- <dd><a name="index-mabs_003d2008"></a>
- <a name="index-mabs_003dlegacy"></a>
- <p>These options control the treatment of the special not-a-number (NaN)
- IEEE 754 floating-point data with the <code>abs.<i>fmt</i></code> and
- <code>neg.<i>fmt</i></code> machine instructions.
- </p>
- <p>By default or when <samp>-mabs=legacy</samp> is used the legacy
- treatment is selected. In this case these instructions are considered
- arithmetic and avoided where correct operation is required and the
- input operand might be a NaN. A longer sequence of instructions that
- manipulate the sign bit of floating-point datum manually is used
- instead unless the <samp>-ffinite-math-only</samp> option has also been
- specified.
- </p>
- <p>The <samp>-mabs=2008</samp> option selects the IEEE 754-2008 treatment. In
- this case these instructions are considered non-arithmetic and therefore
- operating correctly in all cases, including in particular where the
- input operand is a NaN. These instructions are therefore always used
- for the respective operations.
- </p>
- </dd>
- <dt><code>-mnan=2008</code></dt>
- <dt><code>-mnan=legacy</code></dt>
- <dd><a name="index-mnan_003d2008"></a>
- <a name="index-mnan_003dlegacy"></a>
- <p>These options control the encoding of the special not-a-number (NaN)
- IEEE 754 floating-point data.
- </p>
- <p>The <samp>-mnan=legacy</samp> option selects the legacy encoding. In this
- case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
- significand field being 0, whereas signaling NaNs (sNaNs) are denoted
- by the first bit of their trailing significand field being 1.
- </p>
- <p>The <samp>-mnan=2008</samp> option selects the IEEE 754-2008 encoding. In
- this case qNaNs are denoted by the first bit of their trailing
- significand field being 1, whereas sNaNs are denoted by the first bit of
- their trailing significand field being 0.
- </p>
- <p>The default is <samp>-mnan=legacy</samp> unless GCC has been configured with
- <samp>--with-nan=2008</samp>.
- </p>
- </dd>
- <dt><code>-mllsc</code></dt>
- <dt><code>-mno-llsc</code></dt>
- <dd><a name="index-mllsc"></a>
- <a name="index-mno_002dllsc"></a>
- <p>Use (do not use) ‘<samp>ll</samp>’, ‘<samp>sc</samp>’, and ‘<samp>sync</samp>’ instructions to
- implement atomic memory built-in functions. When neither option is
- specified, GCC uses the instructions if the target architecture
- supports them.
- </p>
- <p><samp>-mllsc</samp> is useful if the runtime environment can emulate the
- instructions and <samp>-mno-llsc</samp> can be useful when compiling for
- nonstandard ISAs. You can make either option the default by
- configuring GCC with <samp>--with-llsc</samp> and <samp>--without-llsc</samp>
- respectively. <samp>--with-llsc</samp> is the default for some
- configurations; see the installation documentation for details.
- </p>
- </dd>
- <dt><code>-mdsp</code></dt>
- <dt><code>-mno-dsp</code></dt>
- <dd><a name="index-mdsp-1"></a>
- <a name="index-mno_002ddsp"></a>
- <p>Use (do not use) revision 1 of the MIPS DSP ASE.
- See <a href="MIPS-DSP-Built_002din-Functions.html#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the
- preprocessor macro <code>__mips_dsp</code>. It also defines
- <code>__mips_dsp_rev</code> to 1.
- </p>
- </dd>
- <dt><code>-mdspr2</code></dt>
- <dt><code>-mno-dspr2</code></dt>
- <dd><a name="index-mdspr2"></a>
- <a name="index-mno_002ddspr2"></a>
- <p>Use (do not use) revision 2 of the MIPS DSP ASE.
- See <a href="MIPS-DSP-Built_002din-Functions.html#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>. This option defines the
- preprocessor macros <code>__mips_dsp</code> and <code>__mips_dspr2</code>.
- It also defines <code>__mips_dsp_rev</code> to 2.
- </p>
- </dd>
- <dt><code>-msmartmips</code></dt>
- <dt><code>-mno-smartmips</code></dt>
- <dd><a name="index-msmartmips"></a>
- <a name="index-mno_002dsmartmips"></a>
- <p>Use (do not use) the MIPS SmartMIPS ASE.
- </p>
- </dd>
- <dt><code>-mpaired-single</code></dt>
- <dt><code>-mno-paired-single</code></dt>
- <dd><a name="index-mpaired_002dsingle"></a>
- <a name="index-mno_002dpaired_002dsingle"></a>
- <p>Use (do not use) paired-single floating-point instructions.
- See <a href="MIPS-Paired_002dSingle-Support.html#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>. This option requires
- hardware floating-point support to be enabled.
- </p>
- </dd>
- <dt><code>-mdmx</code></dt>
- <dt><code>-mno-mdmx</code></dt>
- <dd><a name="index-mdmx"></a>
- <a name="index-mno_002dmdmx"></a>
- <p>Use (do not use) MIPS Digital Media Extension instructions.
- This option can only be used when generating 64-bit code and requires
- hardware floating-point support to be enabled.
- </p>
- </dd>
- <dt><code>-mips3d</code></dt>
- <dt><code>-mno-mips3d</code></dt>
- <dd><a name="index-mips3d"></a>
- <a name="index-mno_002dmips3d"></a>
- <p>Use (do not use) the MIPS-3D ASE. See <a href="MIPS_002d3D-Built_002din-Functions.html#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>.
- The option <samp>-mips3d</samp> implies <samp>-mpaired-single</samp>.
- </p>
- </dd>
- <dt><code>-mmicromips</code></dt>
- <dt><code>-mno-micromips</code></dt>
- <dd><a name="index-mmicromips"></a>
- <a name="index-mno_002dmmicromips"></a>
- <p>Generate (do not generate) microMIPS code.
- </p>
- <p>MicroMIPS code generation can also be controlled on a per-function basis
- by means of <code>micromips</code> and <code>nomicromips</code> attributes.
- See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>, for more information.
- </p>
- </dd>
- <dt><code>-mmt</code></dt>
- <dt><code>-mno-mt</code></dt>
- <dd><a name="index-mmt"></a>
- <a name="index-mno_002dmt"></a>
- <p>Use (do not use) MT Multithreading instructions.
- </p>
- </dd>
- <dt><code>-mmcu</code></dt>
- <dt><code>-mno-mcu</code></dt>
- <dd><a name="index-mmcu-1"></a>
- <a name="index-mno_002dmcu"></a>
- <p>Use (do not use) the MIPS MCU ASE instructions.
- </p>
- </dd>
- <dt><code>-meva</code></dt>
- <dt><code>-mno-eva</code></dt>
- <dd><a name="index-meva"></a>
- <a name="index-mno_002deva"></a>
- <p>Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
- </p>
- </dd>
- <dt><code>-mvirt</code></dt>
- <dt><code>-mno-virt</code></dt>
- <dd><a name="index-mvirt"></a>
- <a name="index-mno_002dvirt"></a>
- <p>Use (do not use) the MIPS Virtualization (VZ) instructions.
- </p>
- </dd>
- <dt><code>-mxpa</code></dt>
- <dt><code>-mno-xpa</code></dt>
- <dd><a name="index-mxpa"></a>
- <a name="index-mno_002dxpa"></a>
- <p>Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
- </p>
- </dd>
- <dt><code>-mcrc</code></dt>
- <dt><code>-mno-crc</code></dt>
- <dd><a name="index-mcrc"></a>
- <a name="index-mno_002dcrc"></a>
- <p>Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
- </p>
- </dd>
- <dt><code>-mginv</code></dt>
- <dt><code>-mno-ginv</code></dt>
- <dd><a name="index-mginv"></a>
- <a name="index-mno_002dginv"></a>
- <p>Use (do not use) the MIPS Global INValidate (GINV) instructions.
- </p>
- </dd>
- <dt><code>-mloongson-mmi</code></dt>
- <dt><code>-mno-loongson-mmi</code></dt>
- <dd><a name="index-mloongson_002dmmi"></a>
- <a name="index-mno_002dloongson_002dmmi"></a>
- <p>Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
- </p>
- </dd>
- <dt><code>-mloongson-ext</code></dt>
- <dt><code>-mno-loongson-ext</code></dt>
- <dd><a name="index-mloongson_002dext"></a>
- <a name="index-mno_002dloongson_002dext"></a>
- <p>Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
- </p>
- </dd>
- <dt><code>-mloongson-ext2</code></dt>
- <dt><code>-mno-loongson-ext2</code></dt>
- <dd><a name="index-mloongson_002dext2"></a>
- <a name="index-mno_002dloongson_002dext2"></a>
- <p>Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
- </p>
- </dd>
- <dt><code>-mlong64</code></dt>
- <dd><a name="index-mlong64"></a>
- <p>Force <code>long</code> types to be 64 bits wide. See <samp>-mlong32</samp> for
- an explanation of the default and the way that the pointer size is
- determined.
- </p>
- </dd>
- <dt><code>-mlong32</code></dt>
- <dd><a name="index-mlong32"></a>
- <p>Force <code>long</code>, <code>int</code>, and pointer types to be 32 bits wide.
- </p>
- <p>The default size of <code>int</code>s, <code>long</code>s and pointers depends on
- the ABI. All the supported ABIs use 32-bit <code>int</code>s. The n64 ABI
- uses 64-bit <code>long</code>s, as does the 64-bit EABI; the others use
- 32-bit <code>long</code>s. Pointers are the same size as <code>long</code>s,
- or the same size as integer registers, whichever is smaller.
- </p>
- </dd>
- <dt><code>-msym32</code></dt>
- <dt><code>-mno-sym32</code></dt>
- <dd><a name="index-msym32"></a>
- <a name="index-mno_002dsym32"></a>
- <p>Assume (do not assume) that all symbols have 32-bit values, regardless
- of the selected ABI. This option is useful in combination with
- <samp>-mabi=64</samp> and <samp>-mno-abicalls</samp> because it allows GCC
- to generate shorter and faster references to symbolic addresses.
- </p>
- </dd>
- <dt><code>-G <var>num</var></code></dt>
- <dd><a name="index-G-2"></a>
- <p>Put definitions of externally-visible data in a small data section
- if that data is no bigger than <var>num</var> bytes. GCC can then generate
- more efficient accesses to the data; see <samp>-mgpopt</samp> for details.
- </p>
- <p>The default <samp>-G</samp> option depends on the configuration.
- </p>
- </dd>
- <dt><code>-mlocal-sdata</code></dt>
- <dt><code>-mno-local-sdata</code></dt>
- <dd><a name="index-mlocal_002dsdata"></a>
- <a name="index-mno_002dlocal_002dsdata"></a>
- <p>Extend (do not extend) the <samp>-G</samp> behavior to local data too,
- such as to static variables in C. <samp>-mlocal-sdata</samp> is the
- default for all configurations.
- </p>
- <p>If the linker complains that an application is using too much small data,
- you might want to try rebuilding the less performance-critical parts with
- <samp>-mno-local-sdata</samp>. You might also want to build large
- libraries with <samp>-mno-local-sdata</samp>, so that the libraries leave
- more room for the main program.
- </p>
- </dd>
- <dt><code>-mextern-sdata</code></dt>
- <dt><code>-mno-extern-sdata</code></dt>
- <dd><a name="index-mextern_002dsdata"></a>
- <a name="index-mno_002dextern_002dsdata"></a>
- <p>Assume (do not assume) that externally-defined data is in
- a small data section if the size of that data is within the <samp>-G</samp> limit.
- <samp>-mextern-sdata</samp> is the default for all configurations.
- </p>
- <p>If you compile a module <var>Mod</var> with <samp>-mextern-sdata</samp> <samp>-G
- <var>num</var></samp> <samp>-mgpopt</samp>, and <var>Mod</var> references a variable <var>Var</var>
- that is no bigger than <var>num</var> bytes, you must make sure that <var>Var</var>
- is placed in a small data section. If <var>Var</var> is defined by another
- module, you must either compile that module with a high-enough
- <samp>-G</samp> setting or attach a <code>section</code> attribute to <var>Var</var>’s
- definition. If <var>Var</var> is common, you must link the application
- with a high-enough <samp>-G</samp> setting.
- </p>
- <p>The easiest way of satisfying these restrictions is to compile
- and link every module with the same <samp>-G</samp> option. However,
- you may wish to build a library that supports several different
- small data limits. You can do this by compiling the library with
- the highest supported <samp>-G</samp> setting and additionally using
- <samp>-mno-extern-sdata</samp> to stop the library from making assumptions
- about externally-defined data.
- </p>
- </dd>
- <dt><code>-mgpopt</code></dt>
- <dt><code>-mno-gpopt</code></dt>
- <dd><a name="index-mgpopt"></a>
- <a name="index-mno_002dgpopt"></a>
- <p>Use (do not use) GP-relative accesses for symbols that are known to be
- in a small data section; see <samp>-G</samp>, <samp>-mlocal-sdata</samp> and
- <samp>-mextern-sdata</samp>. <samp>-mgpopt</samp> is the default for all
- configurations.
- </p>
- <p><samp>-mno-gpopt</samp> is useful for cases where the <code>$gp</code> register
- might not hold the value of <code>_gp</code>. For example, if the code is
- part of a library that might be used in a boot monitor, programs that
- call boot monitor routines pass an unknown value in <code>$gp</code>.
- (In such situations, the boot monitor itself is usually compiled
- with <samp>-G0</samp>.)
- </p>
- <p><samp>-mno-gpopt</samp> implies <samp>-mno-local-sdata</samp> and
- <samp>-mno-extern-sdata</samp>.
- </p>
- </dd>
- <dt><code>-membedded-data</code></dt>
- <dt><code>-mno-embedded-data</code></dt>
- <dd><a name="index-membedded_002ddata"></a>
- <a name="index-mno_002dembedded_002ddata"></a>
- <p>Allocate variables to the read-only data section first if possible, then
- next in the small data section if possible, otherwise in data. This gives
- slightly slower code than the default, but reduces the amount of RAM required
- when executing, and thus may be preferred for some embedded systems.
- </p>
- </dd>
- <dt><code>-muninit-const-in-rodata</code></dt>
- <dt><code>-mno-uninit-const-in-rodata</code></dt>
- <dd><a name="index-muninit_002dconst_002din_002drodata"></a>
- <a name="index-mno_002duninit_002dconst_002din_002drodata"></a>
- <p>Put uninitialized <code>const</code> variables in the read-only data section.
- This option is only meaningful in conjunction with <samp>-membedded-data</samp>.
- </p>
- </dd>
- <dt><code>-mcode-readable=<var>setting</var></code></dt>
- <dd><a name="index-mcode_002dreadable"></a>
- <p>Specify whether GCC may generate code that reads from executable sections.
- There are three possible settings:
- </p>
- <dl compact="compact">
- <dt><code>-mcode-readable=yes</code></dt>
- <dd><p>Instructions may freely access executable sections. This is the
- default setting.
- </p>
- </dd>
- <dt><code>-mcode-readable=pcrel</code></dt>
- <dd><p>MIPS16 PC-relative load instructions can access executable sections,
- but other instructions must not do so. This option is useful on 4KSc
- and 4KSd processors when the code TLBs have the Read Inhibit bit set.
- It is also useful on processors that can be configured to have a dual
- instruction/data SRAM interface and that, like the M4K, automatically
- redirect PC-relative loads to the instruction RAM.
- </p>
- </dd>
- <dt><code>-mcode-readable=no</code></dt>
- <dd><p>Instructions must not access executable sections. This option can be
- useful on targets that are configured to have a dual instruction/data
- SRAM interface but that (unlike the M4K) do not automatically redirect
- PC-relative loads to the instruction RAM.
- </p></dd>
- </dl>
-
- </dd>
- <dt><code>-msplit-addresses</code></dt>
- <dt><code>-mno-split-addresses</code></dt>
- <dd><a name="index-msplit_002daddresses"></a>
- <a name="index-mno_002dsplit_002daddresses"></a>
- <p>Enable (disable) use of the <code>%hi()</code> and <code>%lo()</code> assembler
- relocation operators. This option has been superseded by
- <samp>-mexplicit-relocs</samp> but is retained for backwards compatibility.
- </p>
- </dd>
- <dt><code>-mexplicit-relocs</code></dt>
- <dt><code>-mno-explicit-relocs</code></dt>
- <dd><a name="index-mexplicit_002drelocs-1"></a>
- <a name="index-mno_002dexplicit_002drelocs-1"></a>
- <p>Use (do not use) assembler relocation operators when dealing with symbolic
- addresses. The alternative, selected by <samp>-mno-explicit-relocs</samp>,
- is to use assembler macros instead.
- </p>
- <p><samp>-mexplicit-relocs</samp> is the default if GCC was configured
- to use an assembler that supports relocation operators.
- </p>
- </dd>
- <dt><code>-mcheck-zero-division</code></dt>
- <dt><code>-mno-check-zero-division</code></dt>
- <dd><a name="index-mcheck_002dzero_002ddivision"></a>
- <a name="index-mno_002dcheck_002dzero_002ddivision"></a>
- <p>Trap (do not trap) on integer division by zero.
- </p>
- <p>The default is <samp>-mcheck-zero-division</samp>.
- </p>
- </dd>
- <dt><code>-mdivide-traps</code></dt>
- <dt><code>-mdivide-breaks</code></dt>
- <dd><a name="index-mdivide_002dtraps"></a>
- <a name="index-mdivide_002dbreaks"></a>
- <p>MIPS systems check for division by zero by generating either a
- conditional trap or a break instruction. Using traps results in
- smaller code, but is only supported on MIPS II and later. Also, some
- versions of the Linux kernel have a bug that prevents trap from
- generating the proper signal (<code>SIGFPE</code>). Use <samp>-mdivide-traps</samp> to
- allow conditional traps on architectures that support them and
- <samp>-mdivide-breaks</samp> to force the use of breaks.
- </p>
- <p>The default is usually <samp>-mdivide-traps</samp>, but this can be
- overridden at configure time using <samp>--with-divide=breaks</samp>.
- Divide-by-zero checks can be completely disabled using
- <samp>-mno-check-zero-division</samp>.
- </p>
- </dd>
- <dt><code>-mload-store-pairs</code></dt>
- <dt><code>-mno-load-store-pairs</code></dt>
- <dd><a name="index-mload_002dstore_002dpairs"></a>
- <a name="index-mno_002dload_002dstore_002dpairs"></a>
- <p>Enable (disable) an optimization that pairs consecutive load or store
- instructions to enable load/store bonding. This option is enabled by
- default but only takes effect when the selected architecture is known
- to support bonding.
- </p>
- </dd>
- <dt><code>-mmemcpy</code></dt>
- <dt><code>-mno-memcpy</code></dt>
- <dd><a name="index-mmemcpy-1"></a>
- <a name="index-mno_002dmemcpy"></a>
- <p>Force (do not force) the use of <code>memcpy</code> for non-trivial block
- moves. The default is <samp>-mno-memcpy</samp>, which allows GCC to inline
- most constant-sized copies.
- </p>
- </dd>
- <dt><code>-mlong-calls</code></dt>
- <dt><code>-mno-long-calls</code></dt>
- <dd><a name="index-mlong_002dcalls-6"></a>
- <a name="index-mno_002dlong_002dcalls-3"></a>
- <p>Disable (do not disable) use of the <code>jal</code> instruction. Calling
- functions using <code>jal</code> is more efficient but requires the caller
- and callee to be in the same 256 megabyte segment.
- </p>
- <p>This option has no effect on abicalls code. The default is
- <samp>-mno-long-calls</samp>.
- </p>
- </dd>
- <dt><code>-mmad</code></dt>
- <dt><code>-mno-mad</code></dt>
- <dd><a name="index-mmad"></a>
- <a name="index-mno_002dmad"></a>
- <p>Enable (disable) use of the <code>mad</code>, <code>madu</code> and <code>mul</code>
- instructions, as provided by the R4650 ISA.
- </p>
- </dd>
- <dt><code>-mimadd</code></dt>
- <dt><code>-mno-imadd</code></dt>
- <dd><a name="index-mimadd"></a>
- <a name="index-mno_002dimadd"></a>
- <p>Enable (disable) use of the <code>madd</code> and <code>msub</code> integer
- instructions. The default is <samp>-mimadd</samp> on architectures
- that support <code>madd</code> and <code>msub</code> except for the 74k
- architecture where it was found to generate slower code.
- </p>
- </dd>
- <dt><code>-mfused-madd</code></dt>
- <dt><code>-mno-fused-madd</code></dt>
- <dd><a name="index-mfused_002dmadd-1"></a>
- <a name="index-mno_002dfused_002dmadd-1"></a>
- <p>Enable (disable) use of the floating-point multiply-accumulate
- instructions, when they are available. The default is
- <samp>-mfused-madd</samp>.
- </p>
- <p>On the R8000 CPU when multiply-accumulate instructions are used,
- the intermediate product is calculated to infinite precision
- and is not subject to the FCSR Flush to Zero bit. This may be
- undesirable in some circumstances. On other processors the result
- is numerically identical to the equivalent computation using
- separate multiply, add, subtract and negate instructions.
- </p>
- </dd>
- <dt><code>-nocpp</code></dt>
- <dd><a name="index-nocpp"></a>
- <p>Tell the MIPS assembler to not run its preprocessor over user
- assembler files (with a ‘<samp>.s</samp>’ suffix) when assembling them.
- </p>
- </dd>
- <dt><code>-mfix-24k</code></dt>
- <dt><code>-mno-fix-24k</code></dt>
- <dd><a name="index-mfix_002d24k"></a>
- <a name="index-mno_002dfix_002d24k"></a>
- <p>Work around the 24K E48 (lost data on stores during refill) errata.
- The workarounds are implemented by the assembler rather than by GCC.
- </p>
- </dd>
- <dt><code>-mfix-r4000</code></dt>
- <dt><code>-mno-fix-r4000</code></dt>
- <dd><a name="index-mfix_002dr4000"></a>
- <a name="index-mno_002dfix_002dr4000"></a>
- <p>Work around certain R4000 CPU errata:
- </p><ul class="no-bullet">
- <li>- A double-word or a variable shift may give an incorrect result if executed
- immediately after starting an integer division.
- </li><li>- A double-word or a variable shift may give an incorrect result if executed
- while an integer multiplication is in progress.
- </li><li>- An integer division may give an incorrect result if started in a delay slot
- of a taken branch or a jump.
- </li></ul>
-
- </dd>
- <dt><code>-mfix-r4400</code></dt>
- <dt><code>-mno-fix-r4400</code></dt>
- <dd><a name="index-mfix_002dr4400"></a>
- <a name="index-mno_002dfix_002dr4400"></a>
- <p>Work around certain R4400 CPU errata:
- </p><ul class="no-bullet">
- <li>- A double-word or a variable shift may give an incorrect result if executed
- immediately after starting an integer division.
- </li></ul>
-
- </dd>
- <dt><code>-mfix-r10000</code></dt>
- <dt><code>-mno-fix-r10000</code></dt>
- <dd><a name="index-mfix_002dr10000"></a>
- <a name="index-mno_002dfix_002dr10000"></a>
- <p>Work around certain R10000 errata:
- </p><ul class="no-bullet">
- <li>- <code>ll</code>/<code>sc</code> sequences may not behave atomically on revisions
- prior to 3.0. They may deadlock on revisions 2.6 and earlier.
- </li></ul>
-
- <p>This option can only be used if the target architecture supports
- branch-likely instructions. <samp>-mfix-r10000</samp> is the default when
- <samp>-march=r10000</samp> is used; <samp>-mno-fix-r10000</samp> is the default
- otherwise.
- </p>
- </dd>
- <dt><code>-mfix-r5900</code></dt>
- <dt><code>-mno-fix-r5900</code></dt>
- <dd><a name="index-mfix_002dr5900"></a>
- <p>Do not attempt to schedule the preceding instruction into the delay slot
- of a branch instruction placed at the end of a short loop of six
- instructions or fewer and always schedule a <code>nop</code> instruction there
- instead. The short loop bug under certain conditions causes loops to
- execute only once or twice, due to a hardware bug in the R5900 chip. The
- workaround is implemented by the assembler rather than by GCC.
- </p>
- </dd>
- <dt><code>-mfix-rm7000</code></dt>
- <dt><code>-mno-fix-rm7000</code></dt>
- <dd><a name="index-mfix_002drm7000"></a>
- <p>Work around the RM7000 <code>dmult</code>/<code>dmultu</code> errata. The
- workarounds are implemented by the assembler rather than by GCC.
- </p>
- </dd>
- <dt><code>-mfix-vr4120</code></dt>
- <dt><code>-mno-fix-vr4120</code></dt>
- <dd><a name="index-mfix_002dvr4120"></a>
- <p>Work around certain VR4120 errata:
- </p><ul class="no-bullet">
- <li>- <code>dmultu</code> does not always produce the correct result.
- </li><li>- <code>div</code> and <code>ddiv</code> do not always produce the correct result if one
- of the operands is negative.
- </li></ul>
- <p>The workarounds for the division errata rely on special functions in
- <samp>libgcc.a</samp>. At present, these functions are only provided by
- the <code>mips64vr*-elf</code> configurations.
- </p>
- <p>Other VR4120 errata require a NOP to be inserted between certain pairs of
- instructions. These errata are handled by the assembler, not by GCC itself.
- </p>
- </dd>
- <dt><code>-mfix-vr4130</code></dt>
- <dd><a name="index-mfix_002dvr4130"></a>
- <p>Work around the VR4130 <code>mflo</code>/<code>mfhi</code> errata. The
- workarounds are implemented by the assembler rather than by GCC,
- although GCC avoids using <code>mflo</code> and <code>mfhi</code> if the
- VR4130 <code>macc</code>, <code>macchi</code>, <code>dmacc</code> and <code>dmacchi</code>
- instructions are available instead.
- </p>
- </dd>
- <dt><code>-mfix-sb1</code></dt>
- <dt><code>-mno-fix-sb1</code></dt>
- <dd><a name="index-mfix_002dsb1"></a>
- <p>Work around certain SB-1 CPU core errata.
- (This flag currently works around the SB-1 revision 2
- “F1” and “F2” floating-point errata.)
- </p>
- </dd>
- <dt><code>-mr10k-cache-barrier=<var>setting</var></code></dt>
- <dd><a name="index-mr10k_002dcache_002dbarrier"></a>
- <p>Specify whether GCC should insert cache barriers to avoid the
- side effects of speculation on R10K processors.
- </p>
- <p>In common with many processors, the R10K tries to predict the outcome
- of a conditional branch and speculatively executes instructions from
- the “taken” branch. It later aborts these instructions if the
- predicted outcome is wrong. However, on the R10K, even aborted
- instructions can have side effects.
- </p>
- <p>This problem only affects kernel stores and, depending on the system,
- kernel loads. As an example, a speculatively-executed store may load
- the target memory into cache and mark the cache line as dirty, even if
- the store itself is later aborted. If a DMA operation writes to the
- same area of memory before the “dirty” line is flushed, the cached
- data overwrites the DMA-ed data. See the R10K processor manual
- for a full description, including other potential problems.
- </p>
- <p>One workaround is to insert cache barrier instructions before every memory
- access that might be speculatively executed and that might have side
- effects even if aborted. <samp>-mr10k-cache-barrier=<var>setting</var></samp>
- controls GCC’s implementation of this workaround. It assumes that
- aborted accesses to any byte in the following regions does not have
- side effects:
- </p>
- <ol>
- <li> the memory occupied by the current function’s stack frame;
-
- </li><li> the memory occupied by an incoming stack argument;
-
- </li><li> the memory occupied by an object with a link-time-constant address.
- </li></ol>
-
- <p>It is the kernel’s responsibility to ensure that speculative
- accesses to these regions are indeed safe.
- </p>
- <p>If the input program contains a function declaration such as:
- </p>
- <div class="smallexample">
- <pre class="smallexample">void foo (void);
- </pre></div>
-
- <p>then the implementation of <code>foo</code> must allow <code>j foo</code> and
- <code>jal foo</code> to be executed speculatively. GCC honors this
- restriction for functions it compiles itself. It expects non-GCC
- functions (such as hand-written assembly code) to do the same.
- </p>
- <p>The option has three forms:
- </p>
- <dl compact="compact">
- <dt><code>-mr10k-cache-barrier=load-store</code></dt>
- <dd><p>Insert a cache barrier before a load or store that might be
- speculatively executed and that might have side effects even
- if aborted.
- </p>
- </dd>
- <dt><code>-mr10k-cache-barrier=store</code></dt>
- <dd><p>Insert a cache barrier before a store that might be speculatively
- executed and that might have side effects even if aborted.
- </p>
- </dd>
- <dt><code>-mr10k-cache-barrier=none</code></dt>
- <dd><p>Disable the insertion of cache barriers. This is the default setting.
- </p></dd>
- </dl>
-
- </dd>
- <dt><code>-mflush-func=<var>func</var></code></dt>
- <dt><code>-mno-flush-func</code></dt>
- <dd><a name="index-mflush_002dfunc"></a>
- <p>Specifies the function to call to flush the I and D caches, or to not
- call any such function. If called, the function must take the same
- arguments as the common <code>_flush_func</code>, that is, the address of the
- memory range for which the cache is being flushed, the size of the
- memory range, and the number 3 (to flush both caches). The default
- depends on the target GCC was configured for, but commonly is either
- <code>_flush_func</code> or <code>__cpu_flush</code>.
- </p>
- </dd>
- <dt><code>mbranch-cost=<var>num</var></code></dt>
- <dd><a name="index-mbranch_002dcost-2"></a>
- <p>Set the cost of branches to roughly <var>num</var> “simple” instructions.
- This cost is only a heuristic and is not guaranteed to produce
- consistent results across releases. A zero cost redundantly selects
- the default, which is based on the <samp>-mtune</samp> setting.
- </p>
- </dd>
- <dt><code>-mbranch-likely</code></dt>
- <dt><code>-mno-branch-likely</code></dt>
- <dd><a name="index-mbranch_002dlikely"></a>
- <a name="index-mno_002dbranch_002dlikely"></a>
- <p>Enable or disable use of Branch Likely instructions, regardless of the
- default for the selected architecture. By default, Branch Likely
- instructions may be generated if they are supported by the selected
- architecture. An exception is for the MIPS32 and MIPS64 architectures
- and processors that implement those architectures; for those, Branch
- Likely instructions are not be generated by default because the MIPS32
- and MIPS64 architectures specifically deprecate their use.
- </p>
- </dd>
- <dt><code>-mcompact-branches=never</code></dt>
- <dt><code>-mcompact-branches=optimal</code></dt>
- <dt><code>-mcompact-branches=always</code></dt>
- <dd><a name="index-mcompact_002dbranches_003dnever"></a>
- <a name="index-mcompact_002dbranches_003doptimal"></a>
- <a name="index-mcompact_002dbranches_003dalways"></a>
- <p>These options control which form of branches will be generated. The
- default is <samp>-mcompact-branches=optimal</samp>.
- </p>
- <p>The <samp>-mcompact-branches=never</samp> option ensures that compact branch
- instructions will never be generated.
- </p>
- <p>The <samp>-mcompact-branches=always</samp> option ensures that a compact
- branch instruction will be generated if available. If a compact branch
- instruction is not available, a delay slot form of the branch will be
- used instead.
- </p>
- <p>This option is supported from MIPS Release 6 onwards.
- </p>
- <p>The <samp>-mcompact-branches=optimal</samp> option will cause a delay slot
- branch to be used if one is available in the current ISA and the delay
- slot is successfully filled. If the delay slot is not filled, a compact
- branch will be chosen if one is available.
- </p>
- </dd>
- <dt><code>-mfp-exceptions</code></dt>
- <dt><code>-mno-fp-exceptions</code></dt>
- <dd><a name="index-mfp_002dexceptions"></a>
- <p>Specifies whether FP exceptions are enabled. This affects how
- FP instructions are scheduled for some processors.
- The default is that FP exceptions are
- enabled.
- </p>
- <p>For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
- 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
- FP pipe.
- </p>
- </dd>
- <dt><code>-mvr4130-align</code></dt>
- <dt><code>-mno-vr4130-align</code></dt>
- <dd><a name="index-mvr4130_002dalign"></a>
- <p>The VR4130 pipeline is two-way superscalar, but can only issue two
- instructions together if the first one is 8-byte aligned. When this
- option is enabled, GCC aligns pairs of instructions that it
- thinks should execute in parallel.
- </p>
- <p>This option only has an effect when optimizing for the VR4130.
- It normally makes code faster, but at the expense of making it bigger.
- It is enabled by default at optimization level <samp>-O3</samp>.
- </p>
- </dd>
- <dt><code>-msynci</code></dt>
- <dt><code>-mno-synci</code></dt>
- <dd><a name="index-msynci"></a>
- <p>Enable (disable) generation of <code>synci</code> instructions on
- architectures that support it. The <code>synci</code> instructions (if
- enabled) are generated when <code>__builtin___clear_cache</code> is
- compiled.
- </p>
- <p>This option defaults to <samp>-mno-synci</samp>, but the default can be
- overridden by configuring GCC with <samp>--with-synci</samp>.
- </p>
- <p>When compiling code for single processor systems, it is generally safe
- to use <code>synci</code>. However, on many multi-core (SMP) systems, it
- does not invalidate the instruction caches on all cores and may lead
- to undefined behavior.
- </p>
- </dd>
- <dt><code>-mrelax-pic-calls</code></dt>
- <dt><code>-mno-relax-pic-calls</code></dt>
- <dd><a name="index-mrelax_002dpic_002dcalls"></a>
- <p>Try to turn PIC calls that are normally dispatched via register
- <code>$25</code> into direct calls. This is only possible if the linker can
- resolve the destination at link time and if the destination is within
- range for a direct call.
- </p>
- <p><samp>-mrelax-pic-calls</samp> is the default if GCC was configured to use
- an assembler and a linker that support the <code>.reloc</code> assembly
- directive and <samp>-mexplicit-relocs</samp> is in effect. With
- <samp>-mno-explicit-relocs</samp>, this optimization can be performed by the
- assembler and the linker alone without help from the compiler.
- </p>
- </dd>
- <dt><code>-mmcount-ra-address</code></dt>
- <dt><code>-mno-mcount-ra-address</code></dt>
- <dd><a name="index-mmcount_002dra_002daddress"></a>
- <a name="index-mno_002dmcount_002dra_002daddress"></a>
- <p>Emit (do not emit) code that allows <code>_mcount</code> to modify the
- calling function’s return address. When enabled, this option extends
- the usual <code>_mcount</code> interface with a new <var>ra-address</var>
- parameter, which has type <code>intptr_t *</code> and is passed in register
- <code>$12</code>. <code>_mcount</code> can then modify the return address by
- doing both of the following:
- </p><ul>
- <li> Returning the new address in register <code>$31</code>.
- </li><li> Storing the new address in <code>*<var>ra-address</var></code>,
- if <var>ra-address</var> is nonnull.
- </li></ul>
-
- <p>The default is <samp>-mno-mcount-ra-address</samp>.
- </p>
- </dd>
- <dt><code>-mframe-header-opt</code></dt>
- <dt><code>-mno-frame-header-opt</code></dt>
- <dd><a name="index-mframe_002dheader_002dopt"></a>
- <p>Enable (disable) frame header optimization in the o32 ABI. When using the
- o32 ABI, calling functions will allocate 16 bytes on the stack for the called
- function to write out register arguments. When enabled, this optimization
- will suppress the allocation of the frame header if it can be determined that
- it is unused.
- </p>
- <p>This optimization is off by default at all optimization levels.
- </p>
- </dd>
- <dt><code>-mlxc1-sxc1</code></dt>
- <dt><code>-mno-lxc1-sxc1</code></dt>
- <dd><a name="index-mlxc1_002dsxc1"></a>
- <p>When applicable, enable (disable) the generation of <code>lwxc1</code>,
- <code>swxc1</code>, <code>ldxc1</code>, <code>sdxc1</code> instructions. Enabled by default.
- </p>
- </dd>
- <dt><code>-mmadd4</code></dt>
- <dt><code>-mno-madd4</code></dt>
- <dd><a name="index-mmadd4"></a>
- <p>When applicable, enable (disable) the generation of 4-operand <code>madd.s</code>,
- <code>madd.d</code> and related instructions. Enabled by default.
- </p>
- </dd>
- </dl>
-
- <hr>
- <div class="header">
- <p>
- Next: <a href="MMIX-Options.html#MMIX-Options" accesskey="n" rel="next">MMIX Options</a>, Previous: <a href="MicroBlaze-Options.html#MicroBlaze-Options" accesskey="p" rel="prev">MicroBlaze Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
- </div>
-
-
-
- </body>
- </html>
|