| 
							- <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
 - <html>
 - <!-- Copyright (C) 1988-2020 Free Software Foundation, Inc.
 - 
 - Permission is granted to copy, distribute and/or modify this document
 - under the terms of the GNU Free Documentation License, Version 1.3 or
 - any later version published by the Free Software Foundation; with the
 - Invariant Sections being "Funding Free Software", the Front-Cover
 - Texts being (a) (see below), and with the Back-Cover Texts being (b)
 - (see below).  A copy of the license is included in the section entitled
 - "GNU Free Documentation License".
 - 
 - (a) The FSF's Front-Cover Text is:
 - 
 - A GNU Manual
 - 
 - (b) The FSF's Back-Cover Text is:
 - 
 - You have freedom to copy and modify this GNU Manual, like GNU
 -      software.  Copies published by the Free Software Foundation raise
 -      funds for GNU development. -->
 - <!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
 - <head>
 - <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 - <title>Scalar evolutions (GNU Compiler Collection (GCC) Internals)</title>
 - 
 - <meta name="description" content="Scalar evolutions (GNU Compiler Collection (GCC) Internals)">
 - <meta name="keywords" content="Scalar evolutions (GNU Compiler Collection (GCC) Internals)">
 - <meta name="resource-type" content="document">
 - <meta name="distribution" content="global">
 - <meta name="Generator" content="makeinfo">
 - <link href="index.html#Top" rel="start" title="Top">
 - <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
 - <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
 - <link href="Loop-Analysis-and-Representation.html#Loop-Analysis-and-Representation" rel="up" title="Loop Analysis and Representation">
 - <link href="loop_002div.html#loop_002div" rel="next" title="loop-iv">
 - <link href="LCSSA.html#LCSSA" rel="prev" title="LCSSA">
 - <style type="text/css">
 - <!--
 - a.summary-letter {text-decoration: none}
 - blockquote.indentedblock {margin-right: 0em}
 - blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
 - blockquote.smallquotation {font-size: smaller}
 - div.display {margin-left: 3.2em}
 - div.example {margin-left: 3.2em}
 - div.lisp {margin-left: 3.2em}
 - div.smalldisplay {margin-left: 3.2em}
 - div.smallexample {margin-left: 3.2em}
 - div.smalllisp {margin-left: 3.2em}
 - kbd {font-style: oblique}
 - pre.display {font-family: inherit}
 - pre.format {font-family: inherit}
 - pre.menu-comment {font-family: serif}
 - pre.menu-preformatted {font-family: serif}
 - pre.smalldisplay {font-family: inherit; font-size: smaller}
 - pre.smallexample {font-size: smaller}
 - pre.smallformat {font-family: inherit; font-size: smaller}
 - pre.smalllisp {font-size: smaller}
 - span.nolinebreak {white-space: nowrap}
 - span.roman {font-family: initial; font-weight: normal}
 - span.sansserif {font-family: sans-serif; font-weight: normal}
 - ul.no-bullet {list-style: none}
 - -->
 - </style>
 - 
 - 
 - </head>
 - 
 - <body lang="en">
 - <a name="Scalar-evolutions"></a>
 - <div class="header">
 - <p>
 - Next: <a href="loop_002div.html#loop_002div" accesskey="n" rel="next">loop-iv</a>, Previous: <a href="LCSSA.html#LCSSA" accesskey="p" rel="prev">LCSSA</a>, Up: <a href="Loop-Analysis-and-Representation.html#Loop-Analysis-and-Representation" accesskey="u" rel="up">Loop Analysis and Representation</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
 - </div>
 - <hr>
 - <a name="Scalar-evolutions-1"></a>
 - <h3 class="section">16.5 Scalar evolutions</h3>
 - <a name="index-Scalar-evolutions"></a>
 - <a name="index-IV-analysis-on-GIMPLE"></a>
 - 
 - <p>Scalar evolutions (SCEV) are used to represent results of induction
 - variable analysis on GIMPLE.  They enable us to represent variables with
 - complicated behavior in a simple and consistent way (we only use it to
 - express values of polynomial induction variables, but it is possible to
 - extend it).  The interfaces to SCEV analysis are declared in
 - <samp>tree-scalar-evolution.h</samp>.  To use scalar evolutions analysis,
 - <code>scev_initialize</code> must be used.  To stop using SCEV,
 - <code>scev_finalize</code> should be used.  SCEV analysis caches results in
 - order to save time and memory.  This cache however is made invalid by
 - most of the loop transformations, including removal of code.  If such a
 - transformation is performed, <code>scev_reset</code> must be called to clean
 - the caches.
 - </p>
 - <p>Given an SSA name, its behavior in loops can be analyzed using the
 - <code>analyze_scalar_evolution</code> function.  The returned SCEV however
 - does not have to be fully analyzed and it may contain references to
 - other SSA names defined in the loop.  To resolve these (potentially
 - recursive) references, <code>instantiate_parameters</code> or
 - <code>resolve_mixers</code> functions must be used.
 - <code>instantiate_parameters</code> is useful when you use the results of SCEV
 - only for some analysis, and when you work with whole nest of loops at
 - once.  It will try replacing all SSA names by their SCEV in all loops,
 - including the super-loops of the current loop, thus providing a complete
 - information about the behavior of the variable in the loop nest.
 - <code>resolve_mixers</code> is useful if you work with only one loop at a
 - time, and if you possibly need to create code based on the value of the
 - induction variable.  It will only resolve the SSA names defined in the
 - current loop, leaving the SSA names defined outside unchanged, even if
 - their evolution in the outer loops is known.
 - </p>
 - <p>The SCEV is a normal tree expression, except for the fact that it may
 - contain several special tree nodes.  One of them is
 - <code>SCEV_NOT_KNOWN</code>, used for SSA names whose value cannot be
 - expressed.  The other one is <code>POLYNOMIAL_CHREC</code>.  Polynomial chrec
 - has three arguments – base, step and loop (both base and step may
 - contain further polynomial chrecs).  Type of the expression and of base
 - and step must be the same.  A variable has evolution
 - <code>POLYNOMIAL_CHREC(base, step, loop)</code> if it is (in the specified
 - loop) equivalent to <code>x_1</code> in the following example
 - </p>
 - <div class="smallexample">
 - <pre class="smallexample">while (…)
 -   {
 -     x_1 = phi (base, x_2);
 -     x_2 = x_1 + step;
 -   }
 - </pre></div>
 - 
 - <p>Note that this includes the language restrictions on the operations.
 - For example, if we compile C code and <code>x</code> has signed type, then the
 - overflow in addition would cause undefined behavior, and we may assume
 - that this does not happen.  Hence, the value with this SCEV cannot
 - overflow (which restricts the number of iterations of such a loop).
 - </p>
 - <p>In many cases, one wants to restrict the attention just to affine
 - induction variables.  In this case, the extra expressive power of SCEV
 - is not useful, and may complicate the optimizations.  In this case,
 - <code>simple_iv</code> function may be used to analyze a value – the result
 - is a loop-invariant base and step.
 - </p>
 - <hr>
 - <div class="header">
 - <p>
 - Next: <a href="loop_002div.html#loop_002div" accesskey="n" rel="next">loop-iv</a>, Previous: <a href="LCSSA.html#LCSSA" accesskey="p" rel="prev">LCSSA</a>, Up: <a href="Loop-Analysis-and-Representation.html#Loop-Analysis-and-Representation" accesskey="u" rel="up">Loop Analysis and Representation</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
 - </div>
 - 
 - 
 - 
 - </body>
 - </html>
 
 
  |