@@ -58,45 +58,22 @@ void AudioTuner::update( void ) { | |||
end = p + AUDIO_BLOCK_SAMPLES; | |||
/* | |||
* Set the number of cycles to processed per receiving block. | |||
* | |||
*/ | |||
uint16_t cycles; | |||
const uint16_t usage_max = cpu_usage_max; | |||
if ( AudioProcessorUsage( ) > usage_max ) { | |||
#if NUM_SAMPLES >= 8192 | |||
cycles = tau_global + 2; | |||
#elif NUM_SAMPLES == 4096 | |||
cycles = tau_global + 4; | |||
#elif NUM_SAMPLES == 2048 | |||
cycles = tau_global + 8; | |||
#elif NUM_SAMPLES <= 1024 | |||
cycles = tau_global + 16; | |||
#endif | |||
* Double buffering, one fills while the other is processed | |||
* 2x the throughput. | |||
*/ | |||
uint16_t *dst; | |||
bool next = next_buffer; | |||
if ( next ) { | |||
//digitalWriteFast(6, HIGH); | |||
dst = ( uint16_t * )buffer; | |||
} | |||
else { | |||
#if NUM_SAMPLES >= 8192 | |||
cycles = tau_global + 8; | |||
#elif NUM_SAMPLES == 4096 | |||
cycles = tau_global + 16; | |||
#elif NUM_SAMPLES == 2048 | |||
cycles = tau_global + 32; | |||
#elif NUM_SAMPLES <= 1024 | |||
cycles = tau_global + 64; | |||
#endif | |||
//digitalWriteFast(6, LOW); | |||
dst = ( uint16_t * )buffer + NUM_SAMPLES; | |||
} | |||
// gather data/and release block | |||
uint16_t count = count_global; | |||
/* | |||
* Double buffering, one fill while the other is processed | |||
* 2x the throughput. | |||
*/ | |||
uint16_t *dst; | |||
if ( next_buffer ) dst = ( uint16_t * )buffer; | |||
else dst = ( uint16_t * )buffer + NUM_SAMPLES; | |||
// gather data | |||
do { | |||
*( dst+count++ ) = *( uint16_t * )p; | |||
p += SAMPLE_RATE; | |||
@@ -109,6 +86,7 @@ void AudioTuner::update( void ) { | |||
*/ | |||
if ( count >= NUM_SAMPLES ) { | |||
//digitalWriteFast(2, !digitalReadFast(2)); | |||
__disable_irq(); | |||
next_buffer = !next_buffer; | |||
process_buffer = true; | |||
count_global = 0; | |||
@@ -116,21 +94,57 @@ void AudioTuner::update( void ) { | |||
yin_idx = 1; | |||
running_sum = 0; | |||
count = 0; | |||
__enable_irq(); | |||
} | |||
count_global = count;// update global count | |||
/* | |||
* Set the number of cycles to be processed per receiving block. | |||
*/ | |||
uint16_t cycles; | |||
const uint16_t usage_max = cpu_usage_max; | |||
if ( AudioProcessorUsage( ) > usage_max ) { | |||
#if NUM_SAMPLES >= 8192 | |||
cycles = tau_global + 2; | |||
#elif NUM_SAMPLES == 4096 | |||
cycles = tau_global + 4; | |||
#elif NUM_SAMPLES == 2048 | |||
cycles = tau_global + 8; | |||
#elif NUM_SAMPLES <= 1024 | |||
cycles = tau_global + 32; | |||
#endif | |||
} | |||
else { | |||
#if NUM_SAMPLES >= 8192 | |||
cycles = tau_global + 8; | |||
#elif NUM_SAMPLES == 4096 | |||
cycles = tau_global + 16; | |||
#elif NUM_SAMPLES == 2048 | |||
cycles = tau_global + 32; | |||
#elif NUM_SAMPLES <= 1024 | |||
cycles = tau_global + 64; | |||
#endif | |||
} | |||
if ( process_buffer ) { | |||
//digitalWriteFast(0, HIGH); | |||
uint16_t tau; | |||
uint16_t next; | |||
next = next_buffer; | |||
tau = tau_global; | |||
do { | |||
int64_t sum = 0; | |||
const int16_t *end, *buf; | |||
if ( next ) buf = buffer + NUM_SAMPLES; | |||
else buf = buffer; | |||
if ( next ) { | |||
//digitalWriteFast(4, LOW); | |||
buf = buffer + NUM_SAMPLES; | |||
} | |||
else { | |||
//digitalWriteFast(4, HIGH); | |||
buf = buffer; | |||
} | |||
end = buf + HALF_BUFFER; | |||
// TODO: How to make faster? | |||
do { | |||
int16_t current, lag, delta; | |||
UNROLL( 8, | |||
@@ -195,9 +209,9 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ | |||
idx2 = ( idx2 >= 5 ) ? 0 : idx2; | |||
float s0, s1, s2; | |||
s0 = ( ( float )*( p+idx0 ) / r[idx0] ); | |||
s1 = ( ( float )*( p+idx1 ) / r[idx1] ); | |||
s2 = ( ( float )*( p+idx2 ) / r[idx2] ); | |||
s0 = ( ( float )*( p+idx0 ) / *( r+idx0 ) ); | |||
s1 = ( ( float )*( p+idx1 ) / *( r+idx1 ) ); | |||
s2 = ( ( float )*( p+idx2 ) / *( r+idx2 ) ); | |||
if ( s1 < yin_threshold && s1 < s2 ) { | |||
uint16_t period = _tau - 3; | |||
@@ -206,8 +220,8 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ | |||
return 0; | |||
} | |||
if ( s1 > 2.4 ) return _tau + 2; | |||
else return _tau + 1; | |||
//if ( s1 > 2.4 ) return _tau + 2; | |||
//else return _tau + 1; | |||
} | |||
return _tau + 1; | |||
} | |||
@@ -218,13 +232,13 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ | |||
* @param threshold Allowed uncertainty | |||
* @param cpu_max How much cpu usage before throttling | |||
*/ | |||
void AudioTuner::initialize( float threshold, uint8_t cpu_max ) { | |||
void AudioTuner::initialize( float threshold, float cpu_max ) { | |||
__disable_irq( ); | |||
cpu_usage_max = cpu_max; | |||
cpu_usage_max = cpu_max*100; | |||
yin_threshold = threshold; | |||
process_buffer = false; | |||
periodicity = 0.0f; | |||
next_buffer = 1; | |||
next_buffer = true; | |||
running_sum = 0; | |||
count_global = 0; | |||
yin_idx = 1; | |||
@@ -255,8 +269,7 @@ float AudioTuner::read( void ) { | |||
__disable_irq( ); | |||
float d = data; | |||
__enable_irq( ); | |||
d = SAMPLE_RATE_EXACT / d; | |||
return d; | |||
return SAMPLE_RATE_EXACT / d; | |||
} | |||
/** |
@@ -66,16 +66,15 @@ public: | |||
* | |||
* @return none | |||
*/ | |||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) { | |||
digitalWriteFast(2, LOW); | |||
} | |||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) {} | |||
/** | |||
* initialize variables and start conversion | |||
* | |||
* @param threshold Allowed uncertainty | |||
* @param cpu_max How much cpu usage before throttling | |||
*/ | |||
void initialize( float threshold, uint8_t cpu_max); | |||
void initialize( float threshold, float cpu_max); | |||
/** | |||
* sets threshold value | |||
@@ -123,12 +122,12 @@ private: | |||
uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | |||
int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | |||
float periodicity, yin_threshold, data; | |||
float periodicity, yin_threshold, data, cpu_usage_max; | |||
int64_t rs_buffer[5], yin_buffer[5]; | |||
uint64_t running_sum; | |||
uint16_t tau_global, count_global, tau_cycles, cpu_usage_max; | |||
uint8_t next_buffer, yin_idx; | |||
bool enabled, process_buffer; | |||
uint16_t tau_global, count_global, tau_cycles; | |||
uint8_t yin_idx; | |||
bool enabled, process_buffer, next_buffer; | |||
volatile bool new_output; | |||
audio_block_t *inputQueueArray[1]; | |||
}; |
@@ -1,6 +1,6 @@ | |||
<p align="center"> | |||
<b>Guitar and Bass Tuner Library</b><br> | |||
<b>Teensy 3.1/2 v2.1</b><br> | |||
<b>Guitar and Bass Tuner Library v2.2</b><br> | |||
<b>Teensy 3.1/2</b><br> | |||
</p> | |||
>Software algorithm ([YIN]) for guitar and bass tuning using a Teensy Audio Library. This audio object's algorithm can be some what memory and processor hungry but will allow you to detect with fairly good accuracy the fundamental frequencies f<sub>o</sub> from electric guitars and basses. |
@@ -15,7 +15,7 @@ | |||
Bass strings are (5th string) B0=30.87Hz, (4th string) E1=41.20Hz, A1=55Hz, D2=73.42Hz, G2=98Hz | |||
This example tests the yin algorithm with actual notes from nylon string guitar recorded | |||
as wav format at 16B @ 44100smpls/sec. Since the decay of the notes will be longer than what | |||
as wav format at 16B @ 44100 samples/sec. Since the decay of the notes will be longer than what | |||
the teensy can store in flash these notes are truncated to ~120,000B or about 1/2 of the whole | |||
signal. | |||
*/ | |||
@@ -59,20 +59,23 @@ void playNote(void) { | |||
void setup() { | |||
AudioMemory(4); | |||
/* | |||
* Intialize the yin algorithm's threshold | |||
* and percent of current cpu usage used | |||
* before slowing the algorithm down. | |||
* Initialize the yin algorithm's absolute | |||
* threshold, this is good number. | |||
* | |||
* Percent of overall current cpu usage used | |||
* before making the search algorithm less | |||
* aggressive (0.0 - 1.0). | |||
*/ | |||
tuner.initialize(.15f, 90); | |||
tuner.initialize(.15, .99); | |||
pinMode(LED_BUILTIN, OUTPUT); | |||
playNoteTimer.begin(playNote, 1000); | |||
} | |||
void loop() { | |||
// read back fundmental frequency | |||
// read back fundamental frequency | |||
if (tuner.available()) { | |||
float note = tuner.read(); | |||
float prob = tuner.probability(); | |||
Serial.printf("Note: %3.2f | Probility: %.2f\n", note, prob); | |||
Serial.printf("Note: %3.2f | Probability: %.2f\n", note, prob); | |||
} | |||
} |
@@ -7,9 +7,9 @@ void handleCmds( String cmd ) { | |||
float t = p.toFloat(); | |||
Serial.print("new frequency: "); | |||
Serial.println(t); | |||
//AudioNoInterrupts(); // disable audio library momentarily | |||
AudioNoInterrupts(); // disable audio library momentarily | |||
sine.frequency(p.toFloat()); | |||
//AudioInterrupts(); // enable, both tones will start together | |||
AudioInterrupts(); // enable, both tones will start together | |||
} | |||
else if (p.startsWith("a ")) { | |||
p.trim(); |
@@ -42,21 +42,25 @@ char buffer[10]; | |||
void setup() { | |||
AudioMemory(4); | |||
/* | |||
* Intialize the yin algorithm's threshold | |||
* and percent of current cpu usage used | |||
* before slowing the algorithm down. | |||
* Initialize the yin algorithm's absolute | |||
* threshold, this is good number. | |||
* | |||
* Percent of overall current cpu usage used | |||
* before making the search algorithm less | |||
* aggressive (0.0 - 1.0). | |||
*/ | |||
tuner.initialize(.15f, 90); | |||
tuner.initialize(.15, .99); | |||
sine.frequency(30.87); | |||
sine.amplitude(1); | |||
} | |||
void loop() { | |||
// read back fundmental frequency | |||
// read back fundamental frequency | |||
if (tuner.available()) { | |||
float note = tuner.read(); | |||
float prob = tuner.probability(); | |||
Serial.printf("Note: %3.2f | Probility: %.2f\n", note, prob); | |||
Serial.printf("Note: %3.2f | Probability: %.2f\n", note, prob); | |||
} | |||
if (Serial.available()) { |
@@ -1,5 +1,5 @@ | |||
name=AudioTuner | |||
version=2.1 | |||
version=2.2 | |||
author=Colin Duffy | |||
maintainer=Colin Duffy | |||
sentence=Yin algorithm |
@@ -1,3 +1,8 @@ | |||
><b>Updated (10/12/15 v2.2)</b><br> | |||
* Fixed yin cpu usage throttling code in update function.<br> | |||
* Function initialize second param takes a float (0.0 - 1.0).<br> | |||
* Fix many spelling and grammar errors. :(<br> | |||
><b>Updated (10/11/15 v2.1)</b><br> | |||
* Made yin implementation faster and more reliable.<br> | |||
* Improved user interface.<br> |