end = p + AUDIO_BLOCK_SAMPLES; | end = p + AUDIO_BLOCK_SAMPLES; | ||||
/* | /* | ||||
* Set the number of cycles to processed per receiving block. | |||||
* | |||||
*/ | |||||
uint16_t cycles; | |||||
const uint16_t usage_max = cpu_usage_max; | |||||
if ( AudioProcessorUsage( ) > usage_max ) { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 2; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 4; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 16; | |||||
#endif | |||||
* Double buffering, one fills while the other is processed | |||||
* 2x the throughput. | |||||
*/ | |||||
uint16_t *dst; | |||||
bool next = next_buffer; | |||||
if ( next ) { | |||||
//digitalWriteFast(6, HIGH); | |||||
dst = ( uint16_t * )buffer; | |||||
} | } | ||||
else { | else { | ||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 16; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 32; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 64; | |||||
#endif | |||||
//digitalWriteFast(6, LOW); | |||||
dst = ( uint16_t * )buffer + NUM_SAMPLES; | |||||
} | } | ||||
// gather data/and release block | |||||
uint16_t count = count_global; | uint16_t count = count_global; | ||||
/* | |||||
* Double buffering, one fill while the other is processed | |||||
* 2x the throughput. | |||||
*/ | |||||
uint16_t *dst; | |||||
if ( next_buffer ) dst = ( uint16_t * )buffer; | |||||
else dst = ( uint16_t * )buffer + NUM_SAMPLES; | |||||
// gather data | |||||
do { | do { | ||||
*( dst+count++ ) = *( uint16_t * )p; | *( dst+count++ ) = *( uint16_t * )p; | ||||
p += SAMPLE_RATE; | p += SAMPLE_RATE; | ||||
*/ | */ | ||||
if ( count >= NUM_SAMPLES ) { | if ( count >= NUM_SAMPLES ) { | ||||
//digitalWriteFast(2, !digitalReadFast(2)); | //digitalWriteFast(2, !digitalReadFast(2)); | ||||
__disable_irq(); | |||||
next_buffer = !next_buffer; | next_buffer = !next_buffer; | ||||
process_buffer = true; | process_buffer = true; | ||||
count_global = 0; | count_global = 0; | ||||
yin_idx = 1; | yin_idx = 1; | ||||
running_sum = 0; | running_sum = 0; | ||||
count = 0; | count = 0; | ||||
__enable_irq(); | |||||
} | } | ||||
count_global = count;// update global count | count_global = count;// update global count | ||||
/* | |||||
* Set the number of cycles to be processed per receiving block. | |||||
*/ | |||||
uint16_t cycles; | |||||
const uint16_t usage_max = cpu_usage_max; | |||||
if ( AudioProcessorUsage( ) > usage_max ) { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 2; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 4; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 32; | |||||
#endif | |||||
} | |||||
else { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 16; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 32; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 64; | |||||
#endif | |||||
} | |||||
if ( process_buffer ) { | if ( process_buffer ) { | ||||
//digitalWriteFast(0, HIGH); | //digitalWriteFast(0, HIGH); | ||||
uint16_t tau; | uint16_t tau; | ||||
uint16_t next; | |||||
next = next_buffer; | next = next_buffer; | ||||
tau = tau_global; | tau = tau_global; | ||||
do { | do { | ||||
int64_t sum = 0; | int64_t sum = 0; | ||||
const int16_t *end, *buf; | const int16_t *end, *buf; | ||||
if ( next ) buf = buffer + NUM_SAMPLES; | |||||
else buf = buffer; | |||||
if ( next ) { | |||||
//digitalWriteFast(4, LOW); | |||||
buf = buffer + NUM_SAMPLES; | |||||
} | |||||
else { | |||||
//digitalWriteFast(4, HIGH); | |||||
buf = buffer; | |||||
} | |||||
end = buf + HALF_BUFFER; | end = buf + HALF_BUFFER; | ||||
// TODO: How to make faster? | |||||
do { | do { | ||||
int16_t current, lag, delta; | int16_t current, lag, delta; | ||||
UNROLL( 8, | UNROLL( 8, | ||||
idx2 = ( idx2 >= 5 ) ? 0 : idx2; | idx2 = ( idx2 >= 5 ) ? 0 : idx2; | ||||
float s0, s1, s2; | float s0, s1, s2; | ||||
s0 = ( ( float )*( p+idx0 ) / r[idx0] ); | |||||
s1 = ( ( float )*( p+idx1 ) / r[idx1] ); | |||||
s2 = ( ( float )*( p+idx2 ) / r[idx2] ); | |||||
s0 = ( ( float )*( p+idx0 ) / *( r+idx0 ) ); | |||||
s1 = ( ( float )*( p+idx1 ) / *( r+idx1 ) ); | |||||
s2 = ( ( float )*( p+idx2 ) / *( r+idx2 ) ); | |||||
if ( s1 < yin_threshold && s1 < s2 ) { | if ( s1 < yin_threshold && s1 < s2 ) { | ||||
uint16_t period = _tau - 3; | uint16_t period = _tau - 3; | ||||
return 0; | return 0; | ||||
} | } | ||||
if ( s1 > 2.4 ) return _tau + 2; | |||||
else return _tau + 1; | |||||
//if ( s1 > 2.4 ) return _tau + 2; | |||||
//else return _tau + 1; | |||||
} | } | ||||
return _tau + 1; | return _tau + 1; | ||||
} | } | ||||
* @param threshold Allowed uncertainty | * @param threshold Allowed uncertainty | ||||
* @param cpu_max How much cpu usage before throttling | * @param cpu_max How much cpu usage before throttling | ||||
*/ | */ | ||||
void AudioTuner::initialize( float threshold, uint8_t cpu_max ) { | |||||
void AudioTuner::initialize( float threshold, float cpu_max ) { | |||||
__disable_irq( ); | __disable_irq( ); | ||||
cpu_usage_max = cpu_max; | |||||
cpu_usage_max = cpu_max*100; | |||||
yin_threshold = threshold; | yin_threshold = threshold; | ||||
process_buffer = false; | process_buffer = false; | ||||
periodicity = 0.0f; | periodicity = 0.0f; | ||||
next_buffer = 1; | |||||
next_buffer = true; | |||||
running_sum = 0; | running_sum = 0; | ||||
count_global = 0; | count_global = 0; | ||||
yin_idx = 1; | yin_idx = 1; | ||||
__disable_irq( ); | __disable_irq( ); | ||||
float d = data; | float d = data; | ||||
__enable_irq( ); | __enable_irq( ); | ||||
d = SAMPLE_RATE_EXACT / d; | |||||
return d; | |||||
return SAMPLE_RATE_EXACT / d; | |||||
} | } | ||||
/** | /** |
* | * | ||||
* @return none | * @return none | ||||
*/ | */ | ||||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) { | |||||
digitalWriteFast(2, LOW); | |||||
} | |||||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) {} | |||||
/** | /** | ||||
* initialize variables and start conversion | * initialize variables and start conversion | ||||
* | * | ||||
* @param threshold Allowed uncertainty | * @param threshold Allowed uncertainty | ||||
* @param cpu_max How much cpu usage before throttling | * @param cpu_max How much cpu usage before throttling | ||||
*/ | */ | ||||
void initialize( float threshold, uint8_t cpu_max); | |||||
void initialize( float threshold, float cpu_max); | |||||
/** | /** | ||||
* sets threshold value | * sets threshold value | ||||
uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | ||||
int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | ||||
float periodicity, yin_threshold, data; | |||||
float periodicity, yin_threshold, data, cpu_usage_max; | |||||
int64_t rs_buffer[5], yin_buffer[5]; | int64_t rs_buffer[5], yin_buffer[5]; | ||||
uint64_t running_sum; | uint64_t running_sum; | ||||
uint16_t tau_global, count_global, tau_cycles, cpu_usage_max; | |||||
uint8_t next_buffer, yin_idx; | |||||
bool enabled, process_buffer; | |||||
uint16_t tau_global, count_global, tau_cycles; | |||||
uint8_t yin_idx; | |||||
bool enabled, process_buffer, next_buffer; | |||||
volatile bool new_output; | volatile bool new_output; | ||||
audio_block_t *inputQueueArray[1]; | audio_block_t *inputQueueArray[1]; | ||||
}; | }; |
<p align="center"> | <p align="center"> | ||||
<b>Guitar and Bass Tuner Library</b><br> | |||||
<b>Teensy 3.1/2 v2.1</b><br> | |||||
<b>Guitar and Bass Tuner Library v2.2</b><br> | |||||
<b>Teensy 3.1/2</b><br> | |||||
</p> | </p> | ||||
>Software algorithm ([YIN]) for guitar and bass tuning using a Teensy Audio Library. This audio object's algorithm can be some what memory and processor hungry but will allow you to detect with fairly good accuracy the fundamental frequencies f<sub>o</sub> from electric guitars and basses. | >Software algorithm ([YIN]) for guitar and bass tuning using a Teensy Audio Library. This audio object's algorithm can be some what memory and processor hungry but will allow you to detect with fairly good accuracy the fundamental frequencies f<sub>o</sub> from electric guitars and basses. |
Bass strings are (5th string) B0=30.87Hz, (4th string) E1=41.20Hz, A1=55Hz, D2=73.42Hz, G2=98Hz | Bass strings are (5th string) B0=30.87Hz, (4th string) E1=41.20Hz, A1=55Hz, D2=73.42Hz, G2=98Hz | ||||
This example tests the yin algorithm with actual notes from nylon string guitar recorded | This example tests the yin algorithm with actual notes from nylon string guitar recorded | ||||
as wav format at 16B @ 44100smpls/sec. Since the decay of the notes will be longer than what | |||||
as wav format at 16B @ 44100 samples/sec. Since the decay of the notes will be longer than what | |||||
the teensy can store in flash these notes are truncated to ~120,000B or about 1/2 of the whole | the teensy can store in flash these notes are truncated to ~120,000B or about 1/2 of the whole | ||||
signal. | signal. | ||||
*/ | */ | ||||
void setup() { | void setup() { | ||||
AudioMemory(4); | AudioMemory(4); | ||||
/* | /* | ||||
* Intialize the yin algorithm's threshold | |||||
* and percent of current cpu usage used | |||||
* before slowing the algorithm down. | |||||
* Initialize the yin algorithm's absolute | |||||
* threshold, this is good number. | |||||
* | |||||
* Percent of overall current cpu usage used | |||||
* before making the search algorithm less | |||||
* aggressive (0.0 - 1.0). | |||||
*/ | */ | ||||
tuner.initialize(.15f, 90); | |||||
tuner.initialize(.15, .99); | |||||
pinMode(LED_BUILTIN, OUTPUT); | pinMode(LED_BUILTIN, OUTPUT); | ||||
playNoteTimer.begin(playNote, 1000); | playNoteTimer.begin(playNote, 1000); | ||||
} | } | ||||
void loop() { | void loop() { | ||||
// read back fundmental frequency | |||||
// read back fundamental frequency | |||||
if (tuner.available()) { | if (tuner.available()) { | ||||
float note = tuner.read(); | float note = tuner.read(); | ||||
float prob = tuner.probability(); | float prob = tuner.probability(); | ||||
Serial.printf("Note: %3.2f | Probility: %.2f\n", note, prob); | |||||
Serial.printf("Note: %3.2f | Probability: %.2f\n", note, prob); | |||||
} | } | ||||
} | } |
float t = p.toFloat(); | float t = p.toFloat(); | ||||
Serial.print("new frequency: "); | Serial.print("new frequency: "); | ||||
Serial.println(t); | Serial.println(t); | ||||
//AudioNoInterrupts(); // disable audio library momentarily | |||||
AudioNoInterrupts(); // disable audio library momentarily | |||||
sine.frequency(p.toFloat()); | sine.frequency(p.toFloat()); | ||||
//AudioInterrupts(); // enable, both tones will start together | |||||
AudioInterrupts(); // enable, both tones will start together | |||||
} | } | ||||
else if (p.startsWith("a ")) { | else if (p.startsWith("a ")) { | ||||
p.trim(); | p.trim(); |
void setup() { | void setup() { | ||||
AudioMemory(4); | AudioMemory(4); | ||||
/* | /* | ||||
* Intialize the yin algorithm's threshold | |||||
* and percent of current cpu usage used | |||||
* before slowing the algorithm down. | |||||
* Initialize the yin algorithm's absolute | |||||
* threshold, this is good number. | |||||
* | |||||
* Percent of overall current cpu usage used | |||||
* before making the search algorithm less | |||||
* aggressive (0.0 - 1.0). | |||||
*/ | */ | ||||
tuner.initialize(.15f, 90); | |||||
tuner.initialize(.15, .99); | |||||
sine.frequency(30.87); | sine.frequency(30.87); | ||||
sine.amplitude(1); | sine.amplitude(1); | ||||
} | } | ||||
void loop() { | void loop() { | ||||
// read back fundmental frequency | |||||
// read back fundamental frequency | |||||
if (tuner.available()) { | if (tuner.available()) { | ||||
float note = tuner.read(); | float note = tuner.read(); | ||||
float prob = tuner.probability(); | float prob = tuner.probability(); | ||||
Serial.printf("Note: %3.2f | Probility: %.2f\n", note, prob); | |||||
Serial.printf("Note: %3.2f | Probability: %.2f\n", note, prob); | |||||
} | } | ||||
if (Serial.available()) { | if (Serial.available()) { |
name=AudioTuner | name=AudioTuner | ||||
version=2.1 | |||||
version=2.2 | |||||
author=Colin Duffy | author=Colin Duffy | ||||
maintainer=Colin Duffy | maintainer=Colin Duffy | ||||
sentence=Yin algorithm | sentence=Yin algorithm |
><b>Updated (10/12/15 v2.2)</b><br> | |||||
* Fixed yin cpu usage throttling code in update function.<br> | |||||
* Function initialize second param takes a float (0.0 - 1.0).<br> | |||||
* Fix many spelling and grammar errors. :(<br> | |||||
><b>Updated (10/11/15 v2.1)</b><br> | ><b>Updated (10/11/15 v2.1)</b><br> | ||||
* Made yin implementation faster and more reliable.<br> | * Made yin implementation faster and more reliable.<br> | ||||
* Improved user interface.<br> | * Improved user interface.<br> |