|
|
|
@@ -1,4 +1,4 @@ |
|
|
|
/* Audio Library Guitar and Bass Tuner |
|
|
|
/* Audio Library Note Frequency Detection & Guitar/Bass Tuner |
|
|
|
* Copyright (c) 2015, Colin Duffy |
|
|
|
* |
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|
|
|
@@ -20,27 +20,12 @@ |
|
|
|
* THE SOFTWARE. |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "AudioTuner.h" |
|
|
|
#include "analyze_notefreq_fast.h" |
|
|
|
#include "utility/dspinst.h" |
|
|
|
#include "arm_math.h" |
|
|
|
#include "Arduino.h" |
|
|
|
|
|
|
|
#define HALF_BLOCKS AUDIO_BLOCKS * 64 |
|
|
|
|
|
|
|
#define LOOP1(a) a |
|
|
|
#define LOOP2(a) a LOOP1(a) |
|
|
|
#define LOOP3(a) a LOOP2(a) |
|
|
|
#define LOOP4(a) a LOOP3(a) |
|
|
|
#define LOOP8(a) a LOOP3(a) a LOOP3(a) |
|
|
|
#define LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP3(a) |
|
|
|
#define LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP1(a) a LOOP3(a) |
|
|
|
#define LOOP64(a) a LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP1(a) |
|
|
|
#define UNROLL(n,a) LOOP##n(a) |
|
|
|
|
|
|
|
static void copy_buffer(void *destination, const void *source) { |
|
|
|
const uint16_t *src = (const uint16_t *)source; |
|
|
|
uint16_t *dst = (uint16_t *)destination; |
|
|
|
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) *dst++ = *src++; |
|
|
|
} |
|
|
|
#define NUM_SAMPLES ( AUDIO_GUITARTUNER_BLOCKS << 7 ) |
|
|
|
|
|
|
|
void AudioTuner::update( void ) { |
|
|
|
|
|
|
|
@@ -54,119 +39,122 @@ void AudioTuner::update( void ) { |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
digitalWriteFast(2, HIGH); |
|
|
|
if ( next_buffer ) { |
|
|
|
blocklist1[state++] = block; |
|
|
|
if ( !first_run && process_buffer ) process( ); |
|
|
|
} else { |
|
|
|
blocklist2[state++] = block; |
|
|
|
if ( !first_run && process_buffer ) process( ); |
|
|
|
} |
|
|
|
/** |
|
|
|
* "factor" is the new block size calculatedby |
|
|
|
* the decimated shift to incremnt the buffer |
|
|
|
* address. |
|
|
|
*/ |
|
|
|
const uint8_t factor = AUDIO_BLOCK_SAMPLES >> decimation_shift; |
|
|
|
|
|
|
|
if ( state >= AUDIO_BLOCKS ) { |
|
|
|
if ( next_buffer ) { |
|
|
|
if ( !first_run && process_buffer ) process( ); |
|
|
|
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist1[i]->data ); |
|
|
|
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release(blocklist1[i] ); |
|
|
|
} else { |
|
|
|
if ( !first_run && process_buffer ) process( ); |
|
|
|
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist2[i]->data ); |
|
|
|
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release( blocklist2[i] ); |
|
|
|
} |
|
|
|
process_buffer = true; |
|
|
|
first_run = false; |
|
|
|
state = 0; |
|
|
|
//digitalWriteFast(LED_BUILTIN, !digitalReadFast(LED_BUILTIN)); |
|
|
|
// filter and decimate block by block the incoming signal and store in a buffer. |
|
|
|
arm_fir_decimate_fast_q15( &firDecimateInst, block->data, AudioBuffer + ( state * factor ), AUDIO_BLOCK_SAMPLES ); |
|
|
|
|
|
|
|
/** |
|
|
|
* when half the blocks + 1 of the total |
|
|
|
* blocks have been stored in the buffer |
|
|
|
* start processing the data. |
|
|
|
*/ |
|
|
|
if ( state++ >= AUDIO_GUITARTUNER_BLOCKS >> 1 ) { |
|
|
|
|
|
|
|
if ( process_buffer ) process( AudioBuffer ); |
|
|
|
|
|
|
|
if ( state == 0 ) process_buffer = true; |
|
|
|
} |
|
|
|
|
|
|
|
release( block ); |
|
|
|
} |
|
|
|
|
|
|
|
FASTRUN void AudioTuner::process( void ) { |
|
|
|
//digitalWriteFast(0, HIGH); |
|
|
|
|
|
|
|
const int16_t *p; |
|
|
|
p = AudioBuffer; |
|
|
|
/** |
|
|
|
* Start the Yin algorithm |
|
|
|
* |
|
|
|
* TODO: Significant speed up would be to use spectral domain to find fundamental frequency. |
|
|
|
* This paper explains: https://aubio.org/phd/thesis/brossier06thesis.pdf -> Section 3.2.4 |
|
|
|
* page 79. Might have to downsample for low fundmental frequencies because of fft buffer |
|
|
|
* size limit. |
|
|
|
*/ |
|
|
|
void AudioTuner::process( int16_t *p ) { |
|
|
|
|
|
|
|
uint16_t cycles = 64;; |
|
|
|
const uint16_t inner_cycles = ( NUM_SAMPLES >> decimation_shift ) >> 1; |
|
|
|
uint16_t outer_cycles = inner_cycles / AUDIO_GUITARTUNER_BLOCKS; |
|
|
|
uint16_t tau = tau_global; |
|
|
|
do { |
|
|
|
uint16_t x = 0; |
|
|
|
int64_t sum = 0; |
|
|
|
//uint32_t res; |
|
|
|
do { |
|
|
|
/*int16_t current1, lag1, current2, lag2; |
|
|
|
int32_t val1, val2; |
|
|
|
lag1 = *( ( uint32_t * )p + ( x + tau ) ); |
|
|
|
current1 = *( ( uint32_t * )p + x ); |
|
|
|
x += 32; |
|
|
|
lag2 = *( ( uint32_t * )p + ( x + tau ) ); |
|
|
|
current2 = *( ( uint32_t * )p + x ); |
|
|
|
val1 = __PKHBT(current1, current2, 0x10); |
|
|
|
val2 = __PKHBT(lag1, lag2, 0x10); |
|
|
|
res = __SSUB16( val1, val2 ); |
|
|
|
sum = __SMLALD(res, res, sum); |
|
|
|
//sum = __SMLSLD(delta1, delta2, sum);*/ |
|
|
|
int16_t current, lag, delta; |
|
|
|
//UNROLL(16, |
|
|
|
lag = *( ( int16_t * )p + ( x+tau ) ); |
|
|
|
current = *( ( int16_t * )p+x ); |
|
|
|
delta = ( current-lag ); |
|
|
|
sum += delta * delta; |
|
|
|
#if F_CPU == 144000000 |
|
|
|
x += 8; |
|
|
|
#elif F_CPU == 120000000 |
|
|
|
x += 12; |
|
|
|
#elif F_CPU == 96000000 |
|
|
|
x += 16; |
|
|
|
#elif F_CPU < 96000000 |
|
|
|
x += 32; |
|
|
|
#endif |
|
|
|
//); |
|
|
|
} while ( x <= HALF_BLOCKS ); |
|
|
|
|
|
|
|
running_sum += sum; |
|
|
|
uint64_t sum = 0; |
|
|
|
int32_t a1, a2, b1, b2, c1, c2, d1, d2; |
|
|
|
int32_t out1, out2, out3, out4; |
|
|
|
uint16_t blkCnt; |
|
|
|
int16_t * cur = p; |
|
|
|
int16_t * lag = p + tau; |
|
|
|
// unrolling the inner loop by 8 |
|
|
|
blkCnt = inner_cycles >> 3; |
|
|
|
do |
|
|
|
{ |
|
|
|
// a(n), b(n), c(n), d(n) each hold two samples |
|
|
|
a1 = *__SIMD32( cur )++; |
|
|
|
a2 = *__SIMD32( cur )++; |
|
|
|
b1 = *__SIMD32( lag )++; |
|
|
|
b2 = *__SIMD32( lag )++; |
|
|
|
c1 = *__SIMD32( cur )++; |
|
|
|
c2 = *__SIMD32( cur )++; |
|
|
|
d1 = *__SIMD32( lag )++; |
|
|
|
d2 = *__SIMD32( lag )++; |
|
|
|
// subract two samples at a time |
|
|
|
out1 = __QSUB16( a1, b1 ); |
|
|
|
out2 = __QSUB16( a2, b2 ); |
|
|
|
out3 = __QSUB16( c1, d1 ); |
|
|
|
out4 = __QSUB16( c2, d2 ); |
|
|
|
// square the difference |
|
|
|
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out1, out1 ); |
|
|
|
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out2, out2 ); |
|
|
|
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out3, out3 ); |
|
|
|
sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out4, out4 ); |
|
|
|
|
|
|
|
} while( --blkCnt ); |
|
|
|
|
|
|
|
uint64_t rs = running_sum; |
|
|
|
rs += sum; |
|
|
|
yin_buffer[yin_idx] = sum*tau; |
|
|
|
rs_buffer[yin_idx] = running_sum; |
|
|
|
rs_buffer[yin_idx] = rs; |
|
|
|
running_sum = rs; |
|
|
|
yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx; |
|
|
|
tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); |
|
|
|
|
|
|
|
|
|
|
|
if ( tau == 0 ) { |
|
|
|
process_buffer = false; |
|
|
|
new_output = true; |
|
|
|
yin_idx = 1; |
|
|
|
running_sum = 0; |
|
|
|
tau_global = 1; |
|
|
|
//digitalWriteFast(2, LOW); |
|
|
|
//digitalWriteFast(0, LOW); |
|
|
|
state = 0; |
|
|
|
return; |
|
|
|
} |
|
|
|
} while ( --cycles ); |
|
|
|
|
|
|
|
} while ( --outer_cycles ); |
|
|
|
|
|
|
|
if ( tau >= HALF_BLOCKS ) { |
|
|
|
process_buffer = false; |
|
|
|
if ( tau >= inner_cycles ) { |
|
|
|
process_buffer = true; |
|
|
|
new_output = false; |
|
|
|
yin_idx = 1; |
|
|
|
running_sum = 0; |
|
|
|
tau_global = 1; |
|
|
|
//digitalWriteFast(0, LOW); |
|
|
|
state = 0; |
|
|
|
return; |
|
|
|
} |
|
|
|
tau_global = tau; |
|
|
|
//digitalWriteFast(0, LOW); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* check the sampled data for fundmental frequency |
|
|
|
* check the sampled data for fundamental frequency |
|
|
|
* |
|
|
|
* @param yin buffer to hold sum*tau value |
|
|
|
* @param rs buffer to hold running sum for sampled window |
|
|
|
* @param head buffer index |
|
|
|
* @param tau lag we are currently working on this gets incremented |
|
|
|
* @param tau lag we are curly working on gets incremented |
|
|
|
* |
|
|
|
* @return tau |
|
|
|
*/ |
|
|
|
uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ) { |
|
|
|
const int64_t *y = ( int64_t * )yin; |
|
|
|
const int64_t *r = ( int64_t * )rs; |
|
|
|
uint16_t AudioTuner::estimate( uint64_t *yin, uint64_t *rs, uint16_t head, uint16_t tau ) { |
|
|
|
const uint64_t *y = ( uint64_t * )yin; |
|
|
|
const uint64_t *r = ( uint64_t * )rs; |
|
|
|
uint16_t _tau, _head; |
|
|
|
const float thresh = yin_threshold; |
|
|
|
_tau = tau; |
|
|
|
@@ -178,13 +166,14 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ |
|
|
|
idx0 = _head; |
|
|
|
idx1 = _head + 1; |
|
|
|
idx1 = ( idx1 >= 5 ) ? 0 : idx1; |
|
|
|
idx2 = head + 2; |
|
|
|
idx2 = ( idx2 >= 5 ) ? 0 : idx2; |
|
|
|
idx2 = _head + 2; |
|
|
|
idx2 = ( idx2 >= 5 ) ? idx2 - 5 : idx2; |
|
|
|
|
|
|
|
// maybe fixed point would be better here? But how? |
|
|
|
float s0, s1, s2; |
|
|
|
s0 = ( ( float )*( y+idx0 ) / *( r+idx0 ) ); |
|
|
|
s1 = ( ( float )*( y+idx1 ) / *( r+idx1 ) ); |
|
|
|
s2 = ( ( float )*( y+idx2 ) / *( r+idx2 ) ); |
|
|
|
s0 = ( ( float )*( y+idx0 ) / ( float )*( r+idx0 ) ); |
|
|
|
s1 = ( ( float )*( y+idx1 ) / ( float )*( r+idx1 ) ); |
|
|
|
s2 = ( ( float )*( y+idx2 ) / ( float )*( r+idx2 ) ); |
|
|
|
|
|
|
|
if ( s1 < thresh && s1 < s2 ) { |
|
|
|
uint16_t period = _tau - 3; |
|
|
|
@@ -200,21 +189,23 @@ uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_ |
|
|
|
* Initialise |
|
|
|
* |
|
|
|
* @param threshold Allowed uncertainty |
|
|
|
* @param cpu_max How much cpu usage before throttling |
|
|
|
*/ |
|
|
|
void AudioTuner::initialize( float threshold ) { |
|
|
|
void AudioTuner::begin( float threshold, int16_t *coeff, uint8_t taps, uint8_t factor ) { |
|
|
|
__disable_irq( ); |
|
|
|
process_buffer = false; |
|
|
|
yin_threshold = threshold; |
|
|
|
periodicity = 0.0f; |
|
|
|
next_buffer = true; |
|
|
|
running_sum = 0; |
|
|
|
tau_global = 1; |
|
|
|
first_run = true; |
|
|
|
yin_idx = 1; |
|
|
|
enabled = true; |
|
|
|
state = 0; |
|
|
|
data = 0.0f; |
|
|
|
process_buffer = true; |
|
|
|
yin_threshold = threshold; |
|
|
|
periodicity = 0.0f; |
|
|
|
running_sum = 0; |
|
|
|
tau_global = 1; |
|
|
|
yin_idx = 1; |
|
|
|
enabled = true; |
|
|
|
state = 0; |
|
|
|
data = 0.0f; |
|
|
|
decimation_factor = factor; |
|
|
|
decimation_shift = log( factor ) / log( 2 ); |
|
|
|
coeff_size = taps; |
|
|
|
coeff_p = coeff; |
|
|
|
arm_fir_decimate_init_q15( &firDecimateInst, coeff_size, decimation_factor, coeff_p, &coeff_state[0], AUDIO_BLOCK_SAMPLES ); |
|
|
|
__enable_irq( ); |
|
|
|
} |
|
|
|
|
|
|
|
@@ -240,11 +231,11 @@ float AudioTuner::read( void ) { |
|
|
|
__disable_irq( ); |
|
|
|
float d = data; |
|
|
|
__enable_irq( ); |
|
|
|
return AUDIO_SAMPLE_RATE_EXACT / d; |
|
|
|
return ( AUDIO_SAMPLE_RATE_EXACT / decimation_factor ) / d; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Periodicity of the sampled signal from Yin algorithm from read function. |
|
|
|
* Periodicity of the sampled signal. |
|
|
|
* |
|
|
|
* @return periodicity |
|
|
|
*/ |
|
|
|
@@ -255,6 +246,17 @@ float AudioTuner::probability( void ) { |
|
|
|
return p; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Initialise parameters. |
|
|
|
* |
|
|
|
* @param thresh Allowed uncertainty |
|
|
|
*/ |
|
|
|
void AudioTuner::coeff( int16_t *p, int n ) { |
|
|
|
//coeff_size = n; |
|
|
|
//coeff_p = p; |
|
|
|
//arm_fir_decimate_init_q15(&firDecimateInst, coeff_size, 4, coeff_p, coeff_state, 128); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Initialise parameters. |
|
|
|
* |
|
|
|
@@ -264,4 +266,4 @@ void AudioTuner::threshold( float p ) { |
|
|
|
__disable_irq( ); |
|
|
|
yin_threshold = p; |
|
|
|
__enable_irq( ); |
|
|
|
} |
|
|
|
} |