|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024 |
- /* Audio Library for Teensy 3.X
- * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
- *
- * Development of this audio library was funded by PJRC.COM, LLC by sales of
- * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
- * open source software by purchasing Teensy or other PJRC products.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice, development funding notice, and this permission
- * notice shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include <Arduino.h>
- #include "control_sgtl5000.h"
- #include "Wire.h"
-
- #define CHIP_ID 0x0000
- // 15:8 PARTID 0xA0 - 8 bit identifier for SGTL5000
- // 7:0 REVID 0x00 - revision number for SGTL5000.
-
- #define CHIP_DIG_POWER 0x0002
- // 6 ADC_POWERUP 1=Enable, 0=disable the ADC block, both digital & analog,
- // 5 DAC_POWERUP 1=Enable, 0=disable the DAC block, both analog and digital
- // 4 DAP_POWERUP 1=Enable, 0=disable the DAP block
- // 1 I2S_OUT_POWERUP 1=Enable, 0=disable the I2S data output
- // 0 I2S_IN_POWERUP 1=Enable, 0=disable the I2S data input
-
- #define CHIP_CLK_CTRL 0x0004
- // 5:4 RATE_MODE Sets the sample rate mode. MCLK_FREQ is still specified
- // relative to the rate in SYS_FS
- // 0x0 = SYS_FS specifies the rate
- // 0x1 = Rate is 1/2 of the SYS_FS rate
- // 0x2 = Rate is 1/4 of the SYS_FS rate
- // 0x3 = Rate is 1/6 of the SYS_FS rate
- // 3:2 SYS_FS Sets the internal system sample rate (default=2)
- // 0x0 = 32 kHz
- // 0x1 = 44.1 kHz
- // 0x2 = 48 kHz
- // 0x3 = 96 kHz
- // 1:0 MCLK_FREQ Identifies incoming SYS_MCLK frequency and if the PLL should be used
- // 0x0 = 256*Fs
- // 0x1 = 384*Fs
- // 0x2 = 512*Fs
- // 0x3 = Use PLL
- // The 0x3 (Use PLL) setting must be used if the SYS_MCLK is not
- // a standard multiple of Fs (256, 384, or 512). This setting can
- // also be used if SYS_MCLK is a standard multiple of Fs.
- // Before this field is set to 0x3 (Use PLL), the PLL must be
- // powered up by setting CHIP_ANA_POWER->PLL_POWERUP and
- // CHIP_ANA_POWER->VCOAMP_POWERUP. Also, the PLL dividers must
- // be calculated based on the external MCLK rate and
- // CHIP_PLL_CTRL register must be set (see CHIP_PLL_CTRL register
- // description details on how to calculate the divisors).
-
- #define CHIP_I2S_CTRL 0x0006
- // 8 SCLKFREQ Sets frequency of I2S_SCLK when in master mode (MS=1). When in slave
- // mode (MS=0), this field must be set appropriately to match SCLK input
- // rate.
- // 0x0 = 64Fs
- // 0x1 = 32Fs - Not supported for RJ mode (I2S_MODE = 1)
- // 7 MS Configures master or slave of I2S_LRCLK and I2S_SCLK.
- // 0x0 = Slave: I2S_LRCLK an I2S_SCLK are inputs
- // 0x1 = Master: I2S_LRCLK and I2S_SCLK are outputs
- // NOTE: If the PLL is used (CHIP_CLK_CTRL->MCLK_FREQ==0x3),
- // the SGTL5000 must be a master of the I2S port (MS==1)
- // 6 SCLK_INV Sets the edge that data (input and output) is clocked in on for I2S_SCLK
- // 0x0 = data is valid on rising edge of I2S_SCLK
- // 0x1 = data is valid on falling edge of I2S_SCLK
- // 5:4 DLEN I2S data length (default=1)
- // 0x0 = 32 bits (only valid when SCLKFREQ=0),
- // not valid for Right Justified Mode
- // 0x1 = 24 bits (only valid when SCLKFREQ=0)
- // 0x2 = 20 bits
- // 0x3 = 16 bits
- // 3:2 I2S_MODE Sets the mode for the I2S port
- // 0x0 = I2S mode or Left Justified (Use LRALIGN to select)
- // 0x1 = Right Justified Mode
- // 0x2 = PCM Format A/B
- // 0x3 = RESERVED
- // 1 LRALIGN I2S_LRCLK Alignment to data word. Not used for Right Justified mode
- // 0x0 = Data word starts 1 I2S_SCLK delay after I2S_LRCLK
- // transition (I2S format, PCM format A)
- // 0x1 = Data word starts after I2S_LRCLK transition (left
- // justified format, PCM format B)
- // 0 LRPOL I2S_LRCLK Polarity when data is presented.
- // 0x0 = I2S_LRCLK = 0 - Left, 1 - Right
- // 1x0 = I2S_LRCLK = 0 - Right, 1 - Left
- // The left subframe should be presented first regardless of
- // the setting of LRPOL.
-
- #define CHIP_SSS_CTRL 0x000A
- // 14 DAP_MIX_LRSWAP DAP Mixer Input Swap
- // 0x0 = Normal Operation
- // 0x1 = Left and Right channels for the DAP MIXER Input are swapped.
- // 13 DAP_LRSWAP DAP Mixer Input Swap
- // 0x0 = Normal Operation
- // 0x1 = Left and Right channels for the DAP Input are swapped
- // 12 DAC_LRSWAP DAC Input Swap
- // 0x0 = Normal Operation
- // 0x1 = Left and Right channels for the DAC are swapped
- // 10 I2S_LRSWAP I2S_DOUT Swap
- // 0x0 = Normal Operation
- // 0x1 = Left and Right channels for the I2S_DOUT are swapped
- // 9:8 DAP_MIX_SELECT Select data source for DAP mixer
- // 0x0 = ADC
- // 0x1 = I2S_IN
- // 0x2 = Reserved
- // 0x3 = Reserved
- // 7:6 DAP_SELECT Select data source for DAP
- // 0x0 = ADC
- // 0x1 = I2S_IN
- // 0x2 = Reserved
- // 0x3 = Reserved
- // 5:4 DAC_SELECT Select data source for DAC (default=1)
- // 0x0 = ADC
- // 0x1 = I2S_IN
- // 0x2 = Reserved
- // 0x3 = DAP
- // 1:0 I2S_SELECT Select data source for I2S_DOUT
- // 0x0 = ADC
- // 0x1 = I2S_IN
- // 0x2 = Reserved
- // 0x3 = DAP
-
- #define CHIP_ADCDAC_CTRL 0x000E
- // 13 VOL_BUSY_DAC_RIGHT Volume Busy DAC Right
- // 0x0 = Ready
- // 0x1 = Busy - This indicates the channel has not reached its
- // programmed volume/mute level
- // 12 VOL_BUSY_DAC_LEFT Volume Busy DAC Left
- // 0x0 = Ready
- // 0x1 = Busy - This indicates the channel has not reached its
- // programmed volume/mute level
- // 9 VOL_RAMP_EN Volume Ramp Enable (default=1)
- // 0x0 = Disables volume ramp. New volume settings take immediate
- // effect without a ramp
- // 0x1 = Enables volume ramp
- // This field affects DAC_VOL. The volume ramp effects both
- // volume settings and mute When set to 1 a soft mute is enabled.
- // 8 VOL_EXPO_RAMP Exponential Volume Ramp Enable
- // 0x0 = Linear ramp over top 4 volume octaves
- // 0x1 = Exponential ramp over full volume range
- // This bit only takes effect if VOL_RAMP_EN is 1.
- // 3 DAC_MUTE_RIGHT DAC Right Mute (default=1)
- // 0x0 = Unmute
- // 0x1 = Muted
- // If VOL_RAMP_EN = 1, this is a soft mute.
- // 2 DAC_MUTE_LEFT DAC Left Mute (default=1)
- // 0x0 = Unmute
- // 0x1 = Muted
- // If VOL_RAMP_EN = 1, this is a soft mute.
- // 1 ADC_HPF_FREEZE ADC High Pass Filter Freeze
- // 0x0 = Normal operation
- // 0x1 = Freeze the ADC high-pass filter offset register. The
- // offset continues to be subtracted from the ADC data stream.
- // 0 ADC_HPF_BYPASS ADC High Pass Filter Bypass
- // 0x0 = Normal operation
- // 0x1 = Bypassed and offset not updated
-
- #define CHIP_DAC_VOL 0x0010
- // 15:8 DAC_VOL_RIGHT DAC Right Channel Volume. Set the Right channel DAC volume
- // with 0.5017 dB steps from 0 to -90 dB
- // 0x3B and less = Reserved
- // 0x3C = 0 dB
- // 0x3D = -0.5 dB
- // 0xF0 = -90 dB
- // 0xFC and greater = Muted
- // If VOL_RAMP_EN = 1, there is an automatic ramp to the
- // new volume setting.
- // 7:0 DAC_VOL_LEFT DAC Left Channel Volume. Set the Left channel DAC volume
- // with 0.5017 dB steps from 0 to -90 dB
- // 0x3B and less = Reserved
- // 0x3C = 0 dB
- // 0x3D = -0.5 dB
- // 0xF0 = -90 dB
- // 0xFC and greater = Muted
- // If VOL_RAMP_EN = 1, there is an automatic ramp to the
- // new volume setting.
-
- #define CHIP_PAD_STRENGTH 0x0014
- // 9:8 I2S_LRCLK I2S LRCLK Pad Drive Strength (default=1)
- // Sets drive strength for output pads per the table below.
- // VDDIO 1.8 V 2.5 V 3.3 V
- // 0x0 = Disable
- // 0x1 = 1.66 mA 2.87 mA 4.02 mA
- // 0x2 = 3.33 mA 5.74 mA 8.03 mA
- // 0x3 = 4.99 mA 8.61 mA 12.05 mA
- // 7:6 I2S_SCLK I2S SCLK Pad Drive Strength (default=1)
- // 5:4 I2S_DOUT I2S DOUT Pad Drive Strength (default=1)
- // 3:2 CTRL_DATA I2C DATA Pad Drive Strength (default=3)
- // 1:0 CTRL_CLK I2C CLK Pad Drive Strength (default=3)
- // (all use same table as I2S_LRCLK)
-
- #define CHIP_ANA_ADC_CTRL 0x0020
- // 8 ADC_VOL_M6DB ADC Volume Range Reduction
- // This bit shifts both right and left analog ADC volume
- // range down by 6.0 dB.
- // 0x0 = No change in ADC range
- // 0x1 = ADC range reduced by 6.0 dB
- // 7:4 ADC_VOL_RIGHT ADC Right Channel Volume
- // Right channel analog ADC volume control in 1.5 dB steps.
- // 0x0 = 0 dB
- // 0x1 = +1.5 dB
- // ...
- // 0xF = +22.5 dB
- // This range is -6.0 dB to +16.5 dB if ADC_VOL_M6DB is set to 1.
- // 3:0 ADC_VOL_LEFT ADC Left Channel Volume
- // (same scale as ADC_VOL_RIGHT)
-
- #define CHIP_ANA_HP_CTRL 0x0022
- // 14:8 HP_VOL_RIGHT Headphone Right Channel Volume (default 0x18)
- // Right channel headphone volume control with 0.5 dB steps.
- // 0x00 = +12 dB
- // 0x01 = +11.5 dB
- // 0x18 = 0 dB
- // ...
- // 0x7F = -51.5 dB
- // 6:0 HP_VOL_LEFT Headphone Left Channel Volume (default 0x18)
- // (same scale as HP_VOL_RIGHT)
-
- #define CHIP_ANA_CTRL 0x0024
- // 8 MUTE_LO LINEOUT Mute, 0 = Unmute, 1 = Mute (default 1)
- // 6 SELECT_HP Select the headphone input, 0 = DAC, 1 = LINEIN
- // 5 EN_ZCD_HP Enable the headphone zero cross detector (ZCD)
- // 0x0 = HP ZCD disabled
- // 0x1 = HP ZCD enabled
- // 4 MUTE_HP Mute the headphone outputs, 0 = Unmute, 1 = Mute (default)
- // 2 SELECT_ADC Select the ADC input, 0 = Microphone, 1 = LINEIN
- // 1 EN_ZCD_ADC Enable the ADC analog zero cross detector (ZCD)
- // 0x0 = ADC ZCD disabled
- // 0x1 = ADC ZCD enabled
- // 0 MUTE_ADC Mute the ADC analog volume, 0 = Unmute, 1 = Mute (default)
-
- #define CHIP_LINREG_CTRL 0x0026
- // 6 VDDC_MAN_ASSN Determines chargepump source when VDDC_ASSN_OVRD is set.
- // 0x0 = VDDA
- // 0x1 = VDDIO
- // 5 VDDC_ASSN_OVRD Charge pump Source Assignment Override
- // 0x0 = Charge pump source is automatically assigned based
- // on higher of VDDA and VDDIO
- // 0x1 = the source of charge pump is manually assigned by
- // VDDC_MAN_ASSN If VDDIO and VDDA are both the same
- // and greater than 3.1 V, VDDC_ASSN_OVRD and
- // VDDC_MAN_ASSN should be used to manually assign
- // VDDIO as the source for charge pump.
- // 3:0 D_PROGRAMMING Sets the VDDD linear regulator output voltage in 50 mV steps.
- // Must clear the LINREG_SIMPLE_POWERUP and STARTUP_POWERUP bits
- // in the 0x0030 (CHIP_ANA_POWER) register after power-up, for
- // this setting to produce the proper VDDD voltage.
- // 0x0 = 1.60
- // 0xF = 0.85
-
- #define CHIP_REF_CTRL 0x0028 // bandgap reference bias voltage and currents
- // 8:4 VAG_VAL Analog Ground Voltage Control
- // These bits control the analog ground voltage in 25 mV steps.
- // This should usually be set to VDDA/2 or lower for best
- // performance (maximum output swing at minimum THD). This VAG
- // reference is also used for the DAC and ADC voltage reference.
- // So changing this voltage scales the output swing of the DAC
- // and the output signal of the ADC.
- // 0x00 = 0.800 V
- // 0x1F = 1.575 V
- // 3:1 BIAS_CTRL Bias control
- // These bits adjust the bias currents for all of the analog
- // blocks. By lowering the bias current a lower quiescent power
- // is achieved. It should be noted that this mode can affect
- // performance by 3-4 dB.
- // 0x0 = Nominal
- // 0x1-0x3=+12.5%
- // 0x4=-12.5%
- // 0x5=-25%
- // 0x6=-37.5%
- // 0x7=-50%
- // 0 SMALL_POP VAG Ramp Control
- // Setting this bit slows down the VAG ramp from ~200 to ~400 ms
- // to reduce the startup pop, but increases the turn on/off time.
- // 0x0 = Normal VAG ramp
- // 0x1 = Slow down VAG ramp
-
- #define CHIP_MIC_CTRL 0x002A // microphone gain & internal microphone bias
- // 9:8 BIAS_RESISTOR MIC Bias Output Impedance Adjustment
- // Controls an adjustable output impedance for the microphone bias.
- // If this is set to zero the micbias block is powered off and
- // the output is highZ.
- // 0x0 = Powered off
- // 0x1 = 2.0 kohm
- // 0x2 = 4.0 kohm
- // 0x3 = 8.0 kohm
- // 6:4 BIAS_VOLT MIC Bias Voltage Adjustment
- // Controls an adjustable bias voltage for the microphone bias
- // amp in 250 mV steps. This bias voltage setting should be no
- // more than VDDA-200 mV for adequate power supply rejection.
- // 0x0 = 1.25 V
- // ...
- // 0x7 = 3.00 V
- // 1:0 GAIN MIC Amplifier Gain
- // Sets the microphone amplifier gain. At 0 dB setting the THD
- // can be slightly higher than other paths- typically around
- // ~65 dB. At other gain settings the THD are better.
- // 0x0 = 0 dB
- // 0x1 = +20 dB
- // 0x2 = +30 dB
- // 0x3 = +40 dB
-
- #define CHIP_LINE_OUT_CTRL 0x002C
- // 11:8 OUT_CURRENT Controls the output bias current for the LINEOUT amplifiers. The
- // nominal recommended setting for a 10 kohm load with 1.0 nF load cap
- // is 0x3. There are only 5 valid settings.
- // 0x0=0.18 mA
- // 0x1=0.27 mA
- // 0x3=0.36 mA
- // 0x7=0.45 mA
- // 0xF=0.54 mA
- // 5:0 LO_VAGCNTRL LINEOUT Amplifier Analog Ground Voltage
- // Controls the analog ground voltage for the LINEOUT amplifiers
- // in 25 mV steps. This should usually be set to VDDIO/2.
- // 0x00 = 0.800 V
- // ...
- // 0x1F = 1.575 V
- // ...
- // 0x23 = 1.675 V
- // 0x24-0x3F are invalid
-
- #define CHIP_LINE_OUT_VOL 0x002E
- // 12:8 LO_VOL_RIGHT LINEOUT Right Channel Volume (default=4)
- // Controls the right channel LINEOUT volume in 0.5 dB steps.
- // Higher codes have more attenuation.
- // 4:0 LO_VOL_LEFT LINEOUT Left Channel Output Level (default=4)
- // Used to normalize the output level of the left line output
- // to full scale based on the values used to set
- // LINE_OUT_CTRL->LO_VAGCNTRL and CHIP_REF_CTRL->VAG_VAL.
- // In general this field should be set to:
- // 40*log((VAG_VAL)/(LO_VAGCNTRL)) + 15
- // Suggested values based on typical VDDIO and VDDA voltages.
- // VDDA VAG_VAL VDDIO LO_VAGCNTRL LO_VOL_*
- // 1.8 V 0.9 3.3 V 1.55 0x06
- // 1.8 V 0.9 1.8 V 0.9 0x0F
- // 3.3 V 1.55 1.8 V 0.9 0x19
- // 3.3 V 1.55 3.3 V 1.55 0x0F
- // After setting to the nominal voltage, this field can be used
- // to adjust the output level in +/-0.5 dB increments by using
- // values higher or lower than the nominal setting.
-
- #define CHIP_ANA_POWER 0x0030 // power down controls for the analog blocks.
- // The only other power-down controls are BIAS_RESISTOR in the MIC_CTRL register
- // and the EN_ZCD control bits in ANA_CTRL.
- // 14 DAC_MONO While DAC_POWERUP is set, this allows the DAC to be put into left only
- // mono operation for power savings. 0=mono, 1=stereo (default)
- // 13 LINREG_SIMPLE_POWERUP Power up the simple (low power) digital supply regulator.
- // After reset, this bit can be cleared IF VDDD is driven
- // externally OR the primary digital linreg is enabled with
- // LINREG_D_POWERUP
- // 12 STARTUP_POWERUP Power up the circuitry needed during the power up ramp and reset.
- // After reset this bit can be cleared if VDDD is coming from
- // an external source.
- // 11 VDDC_CHRGPMP_POWERUP Power up the VDDC charge pump block. If neither VDDA or VDDIO
- // is 3.0 V or larger this bit should be cleared before analog
- // blocks are powered up.
- // 10 PLL_POWERUP PLL Power Up, 0 = Power down, 1 = Power up
- // When cleared, the PLL is turned off. This must be set before
- // CHIP_CLK_CTRL->MCLK_FREQ is programmed to 0x3. The
- // CHIP_PLL_CTRL register must be configured correctly before
- // setting this bit.
- // 9 LINREG_D_POWERUP Power up the primary VDDD linear regulator, 0 = Power down, 1 = Power up
- // 8 VCOAMP_POWERUP Power up the PLL VCO amplifier, 0 = Power down, 1 = Power up
- // 7 VAG_POWERUP Power up the VAG reference buffer.
- // Setting this bit starts the power up ramp for the headphone
- // and LINEOUT. The headphone (and/or LINEOUT) powerup should
- // be set BEFORE clearing this bit. When this bit is cleared
- // the power-down ramp is started. The headphone (and/or LINEOUT)
- // powerup should stay set until the VAG is fully ramped down
- // (200 to 400 ms after clearing this bit).
- // 0x0 = Power down, 0x1 = Power up
- // 6 ADC_MONO While ADC_POWERUP is set, this allows the ADC to be put into left only
- // mono operation for power savings. This mode is useful when
- // only using the microphone input.
- // 0x0 = Mono (left only), 0x1 = Stereo
- // 5 REFTOP_POWERUP Power up the reference bias currents
- // 0x0 = Power down, 0x1 = Power up
- // This bit can be cleared when the part is a sleep state
- // to minimize analog power.
- // 4 HEADPHONE_POWERUP Power up the headphone amplifiers
- // 0x0 = Power down, 0x1 = Power up
- // 3 DAC_POWERUP Power up the DACs
- // 0x0 = Power down, 0x1 = Power up
- // 2 CAPLESS_HEADPHONE_POWERUP Power up the capless headphone mode
- // 0x0 = Power down, 0x1 = Power up
- // 1 ADC_POWERUP Power up the ADCs
- // 0x0 = Power down, 0x1 = Power up
- // 0 LINEOUT_POWERUP Power up the LINEOUT amplifiers
- // 0x0 = Power down, 0x1 = Power up
-
- #define CHIP_PLL_CTRL 0x0032
- // 15:11 INT_DIVISOR
- // 10:0 FRAC_DIVISOR
-
- #define CHIP_CLK_TOP_CTRL 0x0034
- // 11 ENABLE_INT_OSC Setting this bit enables an internal oscillator to be used for the
- // zero cross detectors, the short detect recovery, and the
- // charge pump. This allows the I2S clock to be shut off while
- // still operating an analog signal path. This bit can be kept
- // on when the I2S clock is enabled, but the I2S clock is more
- // accurate so it is preferred to clear this bit when I2S is present.
- // 3 INPUT_FREQ_DIV2 SYS_MCLK divider before PLL input
- // 0x0 = pass through
- // 0x1 = SYS_MCLK is divided by 2 before entering PLL
- // This must be set when the input clock is above 17 Mhz. This
- // has no effect when the PLL is powered down.
-
- #define CHIP_ANA_STATUS 0x0036
- // 9 LRSHORT_STS This bit is high whenever a short is detected on the left or right
- // channel headphone drivers.
- // 8 CSHORT_STS This bit is high whenever a short is detected on the capless headphone
- // common/center channel driver.
- // 4 PLL_IS_LOCKED This bit goes high after the PLL is locked.
-
- #define CHIP_ANA_TEST1 0x0038 // intended only for debug.
- #define CHIP_ANA_TEST2 0x003A // intended only for debug.
-
- #define CHIP_SHORT_CTRL 0x003C
- // 14:12 LVLADJR Right channel headphone short detector in 25 mA steps.
- // 0x3=25 mA
- // 0x2=50 mA
- // 0x1=75 mA
- // 0x0=100 mA
- // 0x4=125 mA
- // 0x5=150 mA
- // 0x6=175 mA
- // 0x7=200 mA
- // This trip point can vary by ~30% over process so leave plenty
- // of guard band to avoid false trips. This short detect trip
- // point is also effected by the bias current adjustments made
- // by CHIP_REF_CTRL->BIAS_CTRL and by CHIP_ANA_TEST1->HP_IALL_ADJ.
- // 10:8 LVLADJL Left channel headphone short detector in 25 mA steps.
- // (same scale as LVLADJR)
- // 6:4 LVLADJC Capless headphone center channel short detector in 50 mA steps.
- // 0x3=50 mA
- // 0x2=100 mA
- // 0x1=150 mA
- // 0x0=200 mA
- // 0x4=250 mA
- // 0x5=300 mA
- // 0x6=350 mA
- // 0x7=400 mA
- // 3:2 MODE_LR Behavior of left/right short detection
- // 0x0 = Disable short detector, reset short detect latch,
- // software view non-latched short signal
- // 0x1 = Enable short detector and reset the latch at timeout
- // (every ~50 ms)
- // 0x2 = This mode is not used/invalid
- // 0x3 = Enable short detector with only manual reset (have
- // to return to 0x0 to reset the latch)
- // 1:0 MODE_CM Behavior of capless headphone central short detection
- // (same settings as MODE_LR)
-
- #define DAP_CONTROL 0x0100
- #define DAP_PEQ 0x0102
- #define DAP_BASS_ENHANCE 0x0104
- #define DAP_BASS_ENHANCE_CTRL 0x0106
- #define DAP_AUDIO_EQ 0x0108
- #define DAP_SGTL_SURROUND 0x010A
- #define DAP_FILTER_COEF_ACCESS 0x010C
- #define DAP_COEF_WR_B0_MSB 0x010E
- #define DAP_COEF_WR_B0_LSB 0x0110
- #define DAP_AUDIO_EQ_BASS_BAND0 0x0116 // 115 Hz
- #define DAP_AUDIO_EQ_BAND1 0x0118 // 330 Hz
- #define DAP_AUDIO_EQ_BAND2 0x011A // 990 Hz
- #define DAP_AUDIO_EQ_BAND3 0x011C // 3000 Hz
- #define DAP_AUDIO_EQ_TREBLE_BAND4 0x011E // 9900 Hz
- #define DAP_MAIN_CHAN 0x0120
- #define DAP_MIX_CHAN 0x0122
- #define DAP_AVC_CTRL 0x0124
- #define DAP_AVC_THRESHOLD 0x0126
- #define DAP_AVC_ATTACK 0x0128
- #define DAP_AVC_DECAY 0x012A
- #define DAP_COEF_WR_B1_MSB 0x012C
- #define DAP_COEF_WR_B1_LSB 0x012E
- #define DAP_COEF_WR_B2_MSB 0x0130
- #define DAP_COEF_WR_B2_LSB 0x0132
- #define DAP_COEF_WR_A1_MSB 0x0134
- #define DAP_COEF_WR_A1_LSB 0x0136
- #define DAP_COEF_WR_A2_MSB 0x0138
- #define DAP_COEF_WR_A2_LSB 0x013A
-
- #define SGTL5000_I2C_ADDR_CS_LOW 0x0A // CTRL_ADR0_CS pin low (normal configuration)
- #define SGTL5000_I2C_ADDR_CS_HIGH 0x2A // CTRL_ADR0_CS pin high
-
-
- void AudioControlSGTL5000::setAddress(uint8_t level)
- {
- if (level == LOW) {
- i2c_addr = SGTL5000_I2C_ADDR_CS_LOW;
- } else {
- i2c_addr = SGTL5000_I2C_ADDR_CS_HIGH;
- }
- }
-
- bool AudioControlSGTL5000::enable(void)
- {
- muted = true;
- Wire.begin();
- delay(5);
- //Serial.print("chip ID = ");
- //delay(5);
- //unsigned int n = read(CHIP_ID);
- //Serial.println(n, HEX);
-
- int r = write(CHIP_ANA_POWER, 0x4060); // VDDD is externally driven with 1.8V
- if (!r) return false;
- write(CHIP_LINREG_CTRL, 0x006C); // VDDA & VDDIO both over 3.1V
- write(CHIP_REF_CTRL, 0x01F2); // VAG=1.575, normal ramp, +12.5% bias current
- write(CHIP_LINE_OUT_CTRL, 0x0F22); // LO_VAGCNTRL=1.65V, OUT_CURRENT=0.54mA
- write(CHIP_SHORT_CTRL, 0x4446); // allow up to 125mA
- write(CHIP_ANA_CTRL, 0x0137); // enable zero cross detectors
- write(CHIP_ANA_POWER, 0x40FF); // power up: lineout, hp, adc, dac
- write(CHIP_DIG_POWER, 0x0073); // power up all digital stuff
- delay(400);
- write(CHIP_LINE_OUT_VOL, 0x1D1D); // default approx 1.3 volts peak-to-peak
- write(CHIP_CLK_CTRL, 0x0004); // 44.1 kHz, 256*Fs
- write(CHIP_I2S_CTRL, 0x0030); // SCLK=64*Fs, 16bit, I2S format
- // default signal routing is ok?
- write(CHIP_SSS_CTRL, 0x0010); // ADC->I2S, I2S->DAC
- write(CHIP_ADCDAC_CTRL, 0x0000); // disable dac mute
- write(CHIP_DAC_VOL, 0x3C3C); // digital gain, 0dB
- write(CHIP_ANA_HP_CTRL, 0x7F7F); // set volume (lowest level)
- write(CHIP_ANA_CTRL, 0x0036); // enable zero cross detectors
- //mute = false;
- semi_automated = true;
- return true;
- }
-
- unsigned int AudioControlSGTL5000::read(unsigned int reg)
- {
- unsigned int val;
- Wire.beginTransmission(i2c_addr);
- Wire.write(reg >> 8);
- Wire.write(reg);
- if (Wire.endTransmission(false) != 0) return 0;
- if (Wire.requestFrom((int)i2c_addr, 2) < 2) return 0;
- val = Wire.read() << 8;
- val |= Wire.read();
- return val;
- }
-
- bool AudioControlSGTL5000::write(unsigned int reg, unsigned int val)
- {
- if (reg == CHIP_ANA_CTRL) ana_ctrl = val;
- Wire.beginTransmission(i2c_addr);
- Wire.write(reg >> 8);
- Wire.write(reg);
- Wire.write(val >> 8);
- Wire.write(val);
- if (Wire.endTransmission() == 0) return true;
- return false;
- }
-
- unsigned int AudioControlSGTL5000::modify(unsigned int reg, unsigned int val, unsigned int iMask)
- {
- unsigned int val1 = (read(reg)&(~iMask))|val;
- if(!write(reg,val1)) return 0;
- return val1;
- }
-
- bool AudioControlSGTL5000::volumeInteger(unsigned int n)
- {
- if (n == 0) {
- muted = true;
- write(CHIP_ANA_HP_CTRL, 0x7F7F);
- return muteHeadphone();
- } else if (n > 0x80) {
- n = 0;
- } else {
- n = 0x80 - n;
- }
- if (muted) {
- muted = false;
- unmuteHeadphone();
- }
- n = n | (n << 8);
- return write(CHIP_ANA_HP_CTRL, n); // set volume
- }
-
- bool AudioControlSGTL5000::volume(float left, float right)
- {
- unsigned short m=((0x7F-calcVol(right,0x7F))<<8)|(0x7F-calcVol(left,0x7F));
- return write(CHIP_ANA_HP_CTRL, m);
- }
-
- bool AudioControlSGTL5000::micGain(unsigned int dB)
- {
- unsigned int preamp_gain, input_gain;
-
- if (dB >= 40) {
- preamp_gain = 3;
- dB -= 40;
- } else if (dB >= 30) {
- preamp_gain = 2;
- dB -= 30;
- } else if (dB >= 20) {
- preamp_gain = 1;
- dB -= 20;
- } else {
- preamp_gain = 0;
- }
- input_gain = (dB * 2) / 3;
- if (input_gain > 15) input_gain = 15;
-
- return write(CHIP_MIC_CTRL, 0x0170 | preamp_gain)
- && write(CHIP_ANA_ADC_CTRL, (input_gain << 4) | input_gain);
- }
-
- // CHIP_ANA_ADC_CTRL
- // Actual measured full-scale peak-to-peak sine wave input for max signal
- // 0: 3.12 Volts p-p
- // 1: 2.63 Volts p-p
- // 2: 2.22 Volts p-p
- // 3: 1.87 Volts p-p
- // 4: 1.58 Volts p-p
- // 5: 1.33 Volts p-p
- // 6: 1.11 Volts p-p
- // 7: 0.94 Volts p-p
- // 8: 0.79 Volts p-p
- // 9: 0.67 Volts p-p
- // 10: 0.56 Volts p-p
- // 11: 0.48 Volts p-p
- // 12: 0.40 Volts p-p
- // 13: 0.34 Volts p-p
- // 14: 0.29 Volts p-p
- // 15: 0.24 Volts p-p
- bool AudioControlSGTL5000::lineInLevel(uint8_t left, uint8_t right)
- {
- if (left > 15) left = 15;
- if (right > 15) right = 15;
- return write(CHIP_ANA_ADC_CTRL, (left << 4) | right);
- }
-
- // CHIP_LINE_OUT_VOL
- // Actual measured full-scale peak-to-peak sine wave output voltage:
- // 0-12: output has clipping
- // 13: 3.16 Volts p-p
- // 14: 2.98 Volts p-p
- // 15: 2.83 Volts p-p
- // 16: 2.67 Volts p-p
- // 17: 2.53 Volts p-p
- // 18: 2.39 Volts p-p
- // 19: 2.26 Volts p-p
- // 20: 2.14 Volts p-p
- // 21: 2.02 Volts p-p
- // 22: 1.91 Volts p-p
- // 23: 1.80 Volts p-p
- // 24: 1.71 Volts p-p
- // 25: 1.62 Volts p-p
- // 26: 1.53 Volts p-p
- // 27: 1.44 Volts p-p
- // 28: 1.37 Volts p-p
- // 29: 1.29 Volts p-p
- // 30: 1.22 Volts p-p
- // 31: 1.16 Volts p-p
- unsigned short AudioControlSGTL5000::lineOutLevel(uint8_t n)
- {
- if (n > 31) n = 31;
- else if (n < 13) n = 13;
- return modify(CHIP_LINE_OUT_VOL,(n<<8)|n,(31<<8)|31);
- }
-
- unsigned short AudioControlSGTL5000::lineOutLevel(uint8_t left, uint8_t right)
- {
- if (left > 31) left = 31;
- else if (left < 13) left = 13;
- if (right > 31) right = 31;
- else if (right < 13) right = 13;
- return modify(CHIP_LINE_OUT_VOL,(right<<8)|left,(31<<8)|31);
- }
-
- unsigned short AudioControlSGTL5000::dacVolume(float n) // set both directly
- {
- if ((read(CHIP_ADCDAC_CTRL)&(3<<2)) != ((n>0 ? 0:3)<<2)) {
- modify(CHIP_ADCDAC_CTRL,(n>0 ? 0:3)<<2,3<<2);
- }
- unsigned char m=calcVol(n,0xC0);
- return modify(CHIP_DAC_VOL,((0xFC-m)<<8)|(0xFC-m),65535);
- }
- unsigned short AudioControlSGTL5000::dacVolume(float left, float right)
- {
- unsigned short adcdac=((right>0 ? 0:2)|(left>0 ? 0:1))<<2;
- if ((read(CHIP_ADCDAC_CTRL)&(3<<2)) != adcdac) {
- modify(CHIP_ADCDAC_CTRL,adcdac,1<<2);
- }
- unsigned short m=(0xFC-calcVol(right,0xC0))<<8|(0xFC-calcVol(left,0xC0));
- return modify(CHIP_DAC_VOL,m,65535);
- }
-
- bool AudioControlSGTL5000::dacVolumeRamp()
- {
- return modify(CHIP_ADCDAC_CTRL, 0x300, 0x300);
- }
-
- bool AudioControlSGTL5000::dacVolumeRampLinear()
- {
- return modify(CHIP_ADCDAC_CTRL, 0x200, 0x300);
- }
-
- bool AudioControlSGTL5000::dacVolumeRampDisable()
- {
- return modify(CHIP_ADCDAC_CTRL, 0, 0x300);
- }
-
-
-
-
- unsigned short AudioControlSGTL5000::adcHighPassFilterEnable(void)
- {
- return modify(CHIP_ADCDAC_CTRL, 0, 3);
- }
-
- unsigned short AudioControlSGTL5000::adcHighPassFilterFreeze(void)
- {
- return modify(CHIP_ADCDAC_CTRL, 2, 3);
- }
-
- unsigned short AudioControlSGTL5000::adcHighPassFilterDisable(void)
- {
- return modify(CHIP_ADCDAC_CTRL, 1, 3);
- }
-
-
- // DAP_CONTROL
-
- unsigned short AudioControlSGTL5000::audioPreProcessorEnable(void)
- {
- // audio processor used to pre-process analog input before Teensy
- return write(DAP_CONTROL, 1) && write(CHIP_SSS_CTRL, 0x0013);
- }
-
- unsigned short AudioControlSGTL5000::audioPostProcessorEnable(void)
- {
- // audio processor used to post-process Teensy output before headphones/lineout
- return write(DAP_CONTROL, 1) && write(CHIP_SSS_CTRL, 0x0070);
- }
-
- unsigned short AudioControlSGTL5000::audioProcessorDisable(void)
- {
- return write(CHIP_SSS_CTRL, 0x0010) && write(DAP_CONTROL, 0);
- }
-
-
- // DAP_PEQ
- unsigned short AudioControlSGTL5000::eqFilterCount(uint8_t n) // valid to n&7, 0 thru 7 filters enabled.
- {
- return modify(DAP_PEQ,(n&7),7);
- }
-
- // DAP_AUDIO_EQ
- unsigned short AudioControlSGTL5000::eqSelect(uint8_t n) // 0=NONE, 1=PEQ (7 IIR Biquad filters), 2=TONE (tone), 3=GEQ (5 band EQ)
- {
- return modify(DAP_AUDIO_EQ,n&3,3);
- }
-
- unsigned short AudioControlSGTL5000::eqBand(uint8_t bandNum, float n)
- {
- if(semi_automated) automate(1,3);
- return dap_audio_eq_band(bandNum, n);
- }
- void AudioControlSGTL5000::eqBands(float bass, float mid_bass, float midrange, float mid_treble, float treble)
- {
- if(semi_automated) automate(1,3);
- dap_audio_eq_band(0,bass);
- dap_audio_eq_band(1,mid_bass);
- dap_audio_eq_band(2,midrange);
- dap_audio_eq_band(3,mid_treble);
- dap_audio_eq_band(4,treble);
- }
- void AudioControlSGTL5000::eqBands(float bass, float treble) // dap_audio_eq(2);
- {
- if(semi_automated) automate(1,2);
- dap_audio_eq_band(0,bass);
- dap_audio_eq_band(4,treble);
- }
-
- // SGTL5000 PEQ Coefficient loader
- void AudioControlSGTL5000::eqFilter(uint8_t filterNum, int *filterParameters)
- {
- // TODO: add the part that selects 7 PEQ filters.
- if(semi_automated) automate(1,1,filterNum+1);
- modify(DAP_FILTER_COEF_ACCESS,(uint16_t)filterNum,15);
- write(DAP_COEF_WR_B0_MSB,(*filterParameters>>4)&65535);
- write(DAP_COEF_WR_B0_LSB,(*filterParameters++)&15);
- write(DAP_COEF_WR_B1_MSB,(*filterParameters>>4)&65535);
- write(DAP_COEF_WR_B1_LSB,(*filterParameters++)&15);
- write(DAP_COEF_WR_B2_MSB,(*filterParameters>>4)&65535);
- write(DAP_COEF_WR_B2_LSB,(*filterParameters++)&15);
- write(DAP_COEF_WR_A1_MSB,(*filterParameters>>4)&65535);
- write(DAP_COEF_WR_A1_LSB,(*filterParameters++)&15);
- write(DAP_COEF_WR_A2_MSB,(*filterParameters>>4)&65535);
- write(DAP_COEF_WR_A2_LSB,(*filterParameters++)&15);
- write(DAP_FILTER_COEF_ACCESS,(uint16_t)0x100|filterNum);
- }
-
- /* Valid values for dap_avc parameters
-
- maxGain; Maximum gain that can be applied
- 0 - 0 dB
- 1 - 6.0 dB
- 2 - 12 dB
-
- lbiResponse; Integrator Response
- 0 - 0 mS
- 1 - 25 mS
- 2 - 50 mS
- 3 - 100 mS
-
- hardLimit
- 0 - Hard limit disabled. AVC Compressor/Expander enabled.
- 1 - Hard limit enabled. The signal is limited to the programmed threshold (signal saturates at the threshold)
-
- threshold
- floating point in range 0 to -96 dB
-
- attack
- floating point figure is dB/s rate at which gain is increased
-
- decay
- floating point figure is dB/s rate at which gain is reduced
- */
- unsigned short AudioControlSGTL5000::autoVolumeControl(uint8_t maxGain, uint8_t lbiResponse, uint8_t hardLimit, float threshold, float attack, float decay)
- {
- //if(semi_automated&&(!read(DAP_CONTROL)&1)) audioProcessorEnable();
- if(maxGain>2) maxGain=2;
- lbiResponse&=3;
- hardLimit&=1;
- uint8_t thresh=(pow(10,threshold/20)*0.636)*pow(2,15);
- uint8_t att=(1-pow(10,-(attack/(20*44100))))*pow(2,19);
- uint8_t dec=(1-pow(10,-(decay/(20*44100))))*pow(2,23);
- write(DAP_AVC_THRESHOLD,thresh);
- write(DAP_AVC_ATTACK,att);
- write(DAP_AVC_DECAY,dec);
- return modify(DAP_AVC_CTRL,maxGain<<12|lbiResponse<<8|hardLimit<<5,3<<12|3<<8|1<<5);
- }
- unsigned short AudioControlSGTL5000::autoVolumeEnable(void)
- {
- return modify(DAP_AVC_CTRL, 1, 1);
- }
- unsigned short AudioControlSGTL5000::autoVolumeDisable(void)
- {
- return modify(DAP_AVC_CTRL, 0, 1);
- }
-
- unsigned short AudioControlSGTL5000::enhanceBass(float lr_lev, float bass_lev)
- {
- return modify(DAP_BASS_ENHANCE_CTRL,((0x3F-calcVol(lr_lev,0x3F))<<8) | (0x7F-calcVol(bass_lev,0x7F)), (0x3F<<8) | 0x7F);
- }
- unsigned short AudioControlSGTL5000::enhanceBass(float lr_lev, float bass_lev, uint8_t hpf_bypass, uint8_t cutoff)
- {
- modify(DAP_BASS_ENHANCE,(hpf_bypass&1)<<8|(cutoff&7)<<4,1<<8|7<<4);
- return enhanceBass(lr_lev,bass_lev);
- }
- unsigned short AudioControlSGTL5000::enhanceBassEnable(void)
- {
- return modify(DAP_BASS_ENHANCE, 1, 1);
- }
- unsigned short AudioControlSGTL5000::enhanceBassDisable(void)
- {
- return modify(DAP_BASS_ENHANCE, 0, 1);
- }
- unsigned short AudioControlSGTL5000::surroundSound(uint8_t width)
- {
- return modify(DAP_SGTL_SURROUND,(width&7)<<4,7<<4);
- }
- unsigned short AudioControlSGTL5000::surroundSound(uint8_t width, uint8_t select)
- {
- return modify(DAP_SGTL_SURROUND,((width&7)<<4)|(select&3), (7<<4)|3);
- }
- unsigned short AudioControlSGTL5000::surroundSoundEnable(void)
- {
- return modify(DAP_SGTL_SURROUND, 3, 3);
- }
- unsigned short AudioControlSGTL5000::surroundSoundDisable(void)
- {
- return modify(DAP_SGTL_SURROUND, 0, 3);
- }
-
- unsigned char AudioControlSGTL5000::calcVol(float n, unsigned char range)
- {
- // n=(n*(((float)range)/100))+0.499;
- n=(n*(float)range)+0.499;
- if ((unsigned char)n>range) n=range;
- return (unsigned char)n;
- }
-
- // DAP_AUDIO_EQ_BASS_BAND0 & DAP_AUDIO_EQ_BAND1 & DAP_AUDIO_EQ_BAND2 etc etc
- unsigned short AudioControlSGTL5000::dap_audio_eq_band(uint8_t bandNum, float n) // by signed percentage -100/+100; dap_audio_eq(3);
- {
- n=(n*48)+0.499;
- if(n<-47) n=-47;
- if(n>48) n=48;
- n+=47;
- return modify(DAP_AUDIO_EQ_BASS_BAND0+(bandNum*2),(unsigned int)n,127);
- }
-
- void AudioControlSGTL5000::automate(uint8_t dap, uint8_t eq)
- {
- //if((dap!=0)&&(!(read(DAP_CONTROL)&1))) audioProcessorEnable();
- if((read(DAP_AUDIO_EQ)&3) != eq) eqSelect(eq);
- }
-
- void AudioControlSGTL5000::automate(uint8_t dap, uint8_t eq, uint8_t filterCount)
- {
- automate(dap,eq);
- if (filterCount > (read(DAP_PEQ)&7)) eqFilterCount(filterCount);
- }
-
-
- // if(SGTL5000_PEQ) quantization_unit=524288; if(AudioFilterBiquad) quantization_unit=2147483648;
- void calcBiquad(uint8_t filtertype, float fC, float dB_Gain, float Q, uint32_t quantization_unit, uint32_t fS, int *coef)
- {
-
- // I used resources like http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
- // to make this routine, I tested most of the filter types and they worked. Such filters have limits and
- // before calling this routine with varying values the end user should check that those values are limited
- // to valid results.
-
- float A;
- if(filtertype<FILTER_PARAEQ) A=pow(10,dB_Gain/20); else A=pow(10,dB_Gain/40);
- float W0 = 2*3.14159265358979323846*fC/fS;
- float cosw=cosf(W0);
- float sinw=sinf(W0);
- //float alpha = sinw*sinh((log(2)/2)*BW*W0/sinw);
- //float beta = sqrt(2*A);
- float alpha = sinw / (2 * Q);
- float beta = sqrtf(A)/Q;
- float b0,b1,b2,a0,a1,a2;
-
- switch(filtertype) {
- case FILTER_LOPASS:
- b0 = (1.0F - cosw) * 0.5F; // =(1-COS($H$2))/2
- b1 = 1.0F - cosw;
- b2 = (1.0F - cosw) * 0.5F;
- a0 = 1.0F + alpha;
- a1 = 2.0F * cosw;
- a2 = alpha - 1.0F;
- break;
- case FILTER_HIPASS:
- b0 = (1.0F + cosw) * 0.5F;
- b1 = -(cosw + 1.0F);
- b2 = (1.0F + cosw) * 0.5F;
- a0 = 1.0F + alpha;
- a1 = 2.0F * cosw;
- a2 = alpha - 1.0F;
- break;
- case FILTER_BANDPASS:
- b0 = alpha;
- b1 = 0.0F;
- b2 = -alpha;
- a0 = 1.0F + alpha;
- a1 = 2.0F * cosw;
- a2 = alpha - 1.0F;
- break;
- case FILTER_NOTCH:
- b0=1;
- b1=-2*cosw;
- b2=1;
- a0=1+alpha;
- a1=2*cosw;
- a2=-(1-alpha);
- break;
- case FILTER_PARAEQ:
- b0 = 1 + (alpha*A);
- b1 =-2 * cosw;
- b2 = 1 - (alpha*A);
- a0 = 1 + (alpha/A);
- a1 = 2 * cosw;
- a2 =-(1-(alpha/A));
- break;
- case FILTER_LOSHELF:
- b0 = A * ((A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw));
- b1 = 2.0F * A * ((A-1.0F) - ((A+1.0F)*cosw));
- b2 = A * ((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw));
- a0 = (A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw);
- a1 = 2.0F * ((A-1.0F) + ((A+1.0F)*cosw));
- a2 = -((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw));
- break;
- case FILTER_HISHELF:
- b0 = A * ((A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw));
- b1 = -2.0F * A * ((A-1.0F) + ((A+1.0F)*cosw));
- b2 = A * ((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw));
- a0 = (A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw);
- a1 = -2.0F * ((A-1.0F) - ((A+1.0F)*cosw));
- a2 = -((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw));
- default:
- b0 = 0.5;
- b1 = 0.0;
- b2 = 0.0;
- a0 = 1.0;
- a1 = 0.0;
- a2 = 0.0;
- }
-
- a0=(a0*2)/(float)quantization_unit; // once here instead of five times there...
- b0/=a0;
- *coef++=(int)(b0+0.499);
- b1/=a0;
- *coef++=(int)(b1+0.499);
- b2/=a0;
- *coef++=(int)(b2+0.499);
- a1/=a0;
- *coef++=(int)(a1+0.499);
- a2/=a0;
- *coef++=(int)(a2+0.499);
- }
-
|