You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

10 jaren geleden
10 jaren geleden
10 jaren geleden
10 jaren geleden
10 jaren geleden
10 jaren geleden
10 jaren geleden
10 jaren geleden
10 jaren geleden
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * Copyright (c) 2014 by Paul Stoffregen <paul@pjrc.com> (Transaction API)
  4. * Copyright (c) 2014 by Matthijs Kooijman <matthijs@stdin.nl> (SPISettings AVR)
  5. * SPI Master library for arduino.
  6. *
  7. * This file is free software; you can redistribute it and/or modify
  8. * it under the terms of either the GNU General Public License version 2
  9. * or the GNU Lesser General Public License version 2.1, both as
  10. * published by the Free Software Foundation.
  11. */
  12. #ifndef _SPI_H_INCLUDED
  13. #define _SPI_H_INCLUDED
  14. #include <Arduino.h>
  15. // SPI_HAS_TRANSACTION means SPI has beginTransaction(), endTransaction(),
  16. // usingInterrupt(), and SPISetting(clock, bitOrder, dataMode)
  17. #define SPI_HAS_TRANSACTION 1
  18. #ifndef __SAM3X8E__
  19. #ifndef LSBFIRST
  20. #define LSBFIRST 0
  21. #endif
  22. #ifndef MSBFIRST
  23. #define MSBFIRST 1
  24. #endif
  25. #endif
  26. #define SPI_MODE0 0x00
  27. #define SPI_MODE1 0x04
  28. #define SPI_MODE2 0x08
  29. #define SPI_MODE3 0x0C
  30. #define SPI_CLOCK_DIV4 0x00
  31. #define SPI_CLOCK_DIV16 0x01
  32. #define SPI_CLOCK_DIV64 0x02
  33. #define SPI_CLOCK_DIV128 0x03
  34. #define SPI_CLOCK_DIV2 0x04
  35. #define SPI_CLOCK_DIV8 0x05
  36. #define SPI_CLOCK_DIV32 0x06
  37. #define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
  38. #define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
  39. #define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
  40. /**********************************************************/
  41. /* 8 bit AVR-based boards */
  42. /**********************************************************/
  43. #if defined(__AVR__)
  44. // define SPI_AVR_EIMSK for AVR boards with external interrupt pins
  45. #if defined(EIMSK)
  46. #define SPI_AVR_EIMSK EIMSK
  47. #elif defined(GICR)
  48. #define SPI_AVR_EIMSK GICR
  49. #elif defined(GIMSK)
  50. #define SPI_AVR_EIMSK GIMSK
  51. #endif
  52. class SPISettings {
  53. public:
  54. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  55. if (__builtin_constant_p(clock)) {
  56. init_AlwaysInline(clock, bitOrder, dataMode);
  57. } else {
  58. init_MightInline(clock, bitOrder, dataMode);
  59. }
  60. }
  61. SPISettings() {
  62. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  63. }
  64. private:
  65. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  66. init_AlwaysInline(clock, bitOrder, dataMode);
  67. }
  68. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  69. __attribute__((__always_inline__)) {
  70. // Clock settings are defined as follows. Note that this shows SPI2X
  71. // inverted, so the bits form increasing numbers. Also note that
  72. // fosc/64 appears twice
  73. // SPR1 SPR0 ~SPI2X Freq
  74. // 0 0 0 fosc/2
  75. // 0 0 1 fosc/4
  76. // 0 1 0 fosc/8
  77. // 0 1 1 fosc/16
  78. // 1 0 0 fosc/32
  79. // 1 0 1 fosc/64
  80. // 1 1 0 fosc/64
  81. // 1 1 1 fosc/128
  82. // We find the fastest clock that is less than or equal to the
  83. // given clock rate. The clock divider that results in clock_setting
  84. // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
  85. // slowest (128 == 2 ^^ 7, so clock_div = 6).
  86. uint8_t clockDiv;
  87. // When the clock is known at compiletime, use this if-then-else
  88. // cascade, which the compiler knows how to completely optimize
  89. // away. When clock is not known, use a loop instead, which generates
  90. // shorter code.
  91. if (__builtin_constant_p(clock)) {
  92. if (clock >= F_CPU / 2) {
  93. clockDiv = 0;
  94. } else if (clock >= F_CPU / 4) {
  95. clockDiv = 1;
  96. } else if (clock >= F_CPU / 8) {
  97. clockDiv = 2;
  98. } else if (clock >= F_CPU / 16) {
  99. clockDiv = 3;
  100. } else if (clock >= F_CPU / 32) {
  101. clockDiv = 4;
  102. } else if (clock >= F_CPU / 64) {
  103. clockDiv = 5;
  104. } else {
  105. clockDiv = 6;
  106. }
  107. } else {
  108. uint32_t clockSetting = F_CPU / 2;
  109. clockDiv = 0;
  110. while (clockDiv < 6 && clock < clockSetting) {
  111. clockSetting /= 2;
  112. clockDiv++;
  113. }
  114. }
  115. // Compensate for the duplicate fosc/64
  116. if (clockDiv == 6)
  117. clockDiv = 7;
  118. // Invert the SPI2X bit
  119. clockDiv ^= 0x1;
  120. // Pack into the SPISettings class
  121. spcr = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
  122. (dataMode & SPI_MODE_MASK) | ((clockDiv >> 1) & SPI_CLOCK_MASK);
  123. spsr = clockDiv & SPI_2XCLOCK_MASK;
  124. }
  125. uint8_t spcr;
  126. uint8_t spsr;
  127. friend class SPIClass;
  128. };
  129. class SPIClass {
  130. public:
  131. // Initialize the SPI library
  132. static void begin();
  133. // If SPI is to used from within an interrupt, this function registers
  134. // that interrupt with the SPI library, so beginTransaction() can
  135. // prevent conflicts. The input interruptNumber is the number used
  136. // with attachInterrupt. If SPI is used from a different interrupt
  137. // (eg, a timer), interruptNumber should be 255.
  138. static void usingInterrupt(uint8_t interruptNumber);
  139. // Before using SPI.transfer() or asserting chip select pins,
  140. // this function is used to gain exclusive access to the SPI bus
  141. // and configure the correct settings.
  142. inline static void beginTransaction(SPISettings settings) {
  143. if (interruptMode > 0) {
  144. #ifdef SPI_AVR_EIMSK
  145. if (interruptMode == 1) {
  146. interruptSave = SPI_AVR_EIMSK;
  147. SPI_AVR_EIMSK &= ~interruptMask;
  148. } else
  149. #endif
  150. {
  151. interruptSave = SREG;
  152. cli();
  153. }
  154. }
  155. SPCR = settings.spcr;
  156. SPSR = settings.spsr;
  157. }
  158. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  159. inline static uint8_t transfer(uint8_t data) {
  160. SPDR = data;
  161. asm volatile("nop");
  162. while (!(SPSR & _BV(SPIF))) ; // wait
  163. return SPDR;
  164. }
  165. inline static uint16_t transfer16(uint16_t data) {
  166. union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } in, out;
  167. in.val = data;
  168. if (!(SPCR & _BV(DORD))) {
  169. SPDR = in.msb;
  170. while (!(SPSR & _BV(SPIF))) ;
  171. out.msb = SPDR;
  172. SPDR = in.lsb;
  173. while (!(SPSR & _BV(SPIF))) ;
  174. out.lsb = SPDR;
  175. } else {
  176. SPDR = in.lsb;
  177. while (!(SPSR & _BV(SPIF))) ;
  178. out.lsb = SPDR;
  179. SPDR = in.msb;
  180. while (!(SPSR & _BV(SPIF))) ;
  181. out.msb = SPDR;
  182. }
  183. return out.val;
  184. }
  185. inline static void transfer(void *buf, size_t count) {
  186. if (count == 0) return;
  187. uint8_t *p = (uint8_t *)buf;
  188. SPDR = *p;
  189. while (--count > 0) {
  190. uint8_t out = *(p + 1);
  191. while (!(SPSR & _BV(SPIF))) ;
  192. uint8_t in = SPDR;
  193. SPDR = out;
  194. *p++ = in;
  195. }
  196. while (!(SPSR & _BV(SPIF))) ;
  197. *p = SPDR;
  198. }
  199. // After performing a group of transfers and releasing the chip select
  200. // signal, this function allows others to access the SPI bus
  201. inline static void endTransaction(void) {
  202. if (interruptMode > 0) {
  203. #ifdef SPI_AVR_EIMSK
  204. if (interruptMode == 1) {
  205. SPI_AVR_EIMSK = interruptSave;
  206. } else
  207. #endif
  208. {
  209. SREG = interruptSave;
  210. }
  211. }
  212. }
  213. // Disable the SPI bus
  214. static void end();
  215. // This function is deprecated. New applications should use
  216. // beginTransaction() to configure SPI settings.
  217. inline static void setBitOrder(uint8_t bitOrder) {
  218. if (bitOrder == LSBFIRST) SPCR |= _BV(DORD);
  219. else SPCR &= ~(_BV(DORD));
  220. }
  221. // This function is deprecated. New applications should use
  222. // beginTransaction() to configure SPI settings.
  223. inline static void setDataMode(uint8_t dataMode) {
  224. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  225. }
  226. // This function is deprecated. New applications should use
  227. // beginTransaction() to configure SPI settings.
  228. inline static void setClockDivider(uint8_t clockDiv) {
  229. SPCR = (SPCR & ~SPI_CLOCK_MASK) | (clockDiv & SPI_CLOCK_MASK);
  230. SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((clockDiv >> 2) & SPI_2XCLOCK_MASK);
  231. }
  232. // These undocumented functions should not be used. SPI.transfer()
  233. // polls the hardware flag which is automatically cleared as the
  234. // AVR responds to SPI's interrupt
  235. inline static void attachInterrupt() { SPCR |= _BV(SPIE); }
  236. inline static void detachInterrupt() { SPCR &= ~_BV(SPIE); }
  237. private:
  238. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  239. static uint8_t interruptMask; // which interrupts to mask
  240. static uint8_t interruptSave; // temp storage, to restore state
  241. };
  242. /**********************************************************/
  243. /* 32 bit Teensy 3.0 and 3.1 */
  244. /**********************************************************/
  245. #elif defined(__arm__) && defined(TEENSYDUINO)
  246. class SPISettings {
  247. public:
  248. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  249. if (__builtin_constant_p(clock)) {
  250. init_AlwaysInline(clock, bitOrder, dataMode);
  251. } else {
  252. init_MightInline(clock, bitOrder, dataMode);
  253. }
  254. }
  255. SPISettings() {
  256. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  257. }
  258. private:
  259. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  260. init_AlwaysInline(clock, bitOrder, dataMode);
  261. }
  262. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  263. __attribute__((__always_inline__)) {
  264. uint32_t t, c = SPI_CTAR_FMSZ(7);
  265. if (bitOrder == LSBFIRST) c |= SPI_CTAR_LSBFE;
  266. if (__builtin_constant_p(clock)) {
  267. if (clock >= F_BUS / 2) {
  268. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  269. | SPI_CTAR_CSSCK(0);
  270. } else if (clock >= F_BUS / 3) {
  271. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  272. | SPI_CTAR_CSSCK(0);
  273. } else if (clock >= F_BUS / 4) {
  274. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  275. } else if (clock >= F_BUS / 5) {
  276. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  277. | SPI_CTAR_CSSCK(0);
  278. } else if (clock >= F_BUS / 6) {
  279. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  280. } else if (clock >= F_BUS / 8) {
  281. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  282. } else if (clock >= F_BUS / 10) {
  283. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  284. } else if (clock >= F_BUS / 12) {
  285. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  286. } else if (clock >= F_BUS / 16) {
  287. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  288. } else if (clock >= F_BUS / 20) {
  289. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
  290. } else if (clock >= F_BUS / 24) {
  291. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  292. } else if (clock >= F_BUS / 32) {
  293. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
  294. } else if (clock >= F_BUS / 40) {
  295. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  296. } else if (clock >= F_BUS / 56) {
  297. t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  298. } else if (clock >= F_BUS / 64) {
  299. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  300. } else if (clock >= F_BUS / 96) {
  301. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  302. } else if (clock >= F_BUS / 128) {
  303. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  304. } else if (clock >= F_BUS / 192) {
  305. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  306. } else if (clock >= F_BUS / 256) {
  307. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  308. } else if (clock >= F_BUS / 384) {
  309. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  310. } else if (clock >= F_BUS / 512) {
  311. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  312. } else if (clock >= F_BUS / 640) {
  313. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  314. } else { /* F_BUS / 768 */
  315. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  316. }
  317. } else {
  318. for (uint32_t i=0; i<23; i++) {
  319. t = ctar_clock_table[i];
  320. if (clock >= F_BUS / ctar_div_table[i]) break;
  321. }
  322. }
  323. if (dataMode & 0x08) {
  324. c |= SPI_CTAR_CPOL;
  325. }
  326. if (dataMode & 0x04) {
  327. c |= SPI_CTAR_CPHA;
  328. t = (t & 0xFFFF0FFF) | ((t & 0xF000) >> 4);
  329. }
  330. ctar = c | t;
  331. }
  332. static const uint16_t ctar_div_table[23];
  333. static const uint32_t ctar_clock_table[23];
  334. uint32_t ctar;
  335. friend class SPIClass;
  336. };
  337. class SPIClass {
  338. public:
  339. // Initialize the SPI library
  340. static void begin();
  341. // If SPI is to used from within an interrupt, this function registers
  342. // that interrupt with the SPI library, so beginTransaction() can
  343. // prevent conflicts. The input interruptNumber is the number used
  344. // with attachInterrupt. If SPI is used from a different interrupt
  345. // (eg, a timer), interruptNumber should be 255.
  346. static void usingInterrupt(uint8_t interruptNumber);
  347. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  348. // Before using SPI.transfer() or asserting chip select pins,
  349. // this function is used to gain exclusive access to the SPI bus
  350. // and configure the correct settings.
  351. inline static void beginTransaction(SPISettings settings) {
  352. if (interruptMode > 0) {
  353. #ifdef SPI_AVR_EIMSK
  354. if (interruptMode == 1) {
  355. interruptSave = SPI_AVR_EIMSK;
  356. SPI_AVR_EIMSK &= ~interruptMask;
  357. } else
  358. #endif
  359. {
  360. interruptSave = SREG;
  361. cli();
  362. }
  363. }
  364. if (SPI0_CTAR0 != settings.ctar) {
  365. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  366. SPI0_CTAR0 = settings.ctar;
  367. SPI0_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  368. SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  369. }
  370. }
  371. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  372. inline static uint8_t transfer(uint8_t data) {
  373. SPI0_SR = SPI_SR_TCF;
  374. SPI0_PUSHR = data;
  375. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  376. return SPI0_POPR;
  377. }
  378. inline static uint8_t transfer16(uint16_t data) {
  379. SPI0_SR = SPI_SR_TCF;
  380. SPI0_PUSHR = data | SPI_PUSHR_CTAS(1);
  381. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  382. return SPI0_POPR;
  383. }
  384. inline static void transfer(void *buf, size_t count) {
  385. if (count == 0) return;
  386. uint8_t *p = (uint8_t *)buf;
  387. SPDR = *p;
  388. while (--count > 0) {
  389. uint8_t out = *(p + 1);
  390. while (!(SPSR & _BV(SPIF))) ;
  391. uint8_t in = SPDR;
  392. SPDR = out;
  393. *p++ = in;
  394. }
  395. while (!(SPSR & _BV(SPIF))) ;
  396. *p = SPDR;
  397. }
  398. // After performing a group of transfers and releasing the chip select
  399. // signal, this function allows others to access the SPI bus
  400. inline static void endTransaction(void) {
  401. if (interruptMode > 0) {
  402. #ifdef SPI_AVR_EIMSK
  403. if (interruptMode == 1) {
  404. SPI_AVR_EIMSK = interruptSave;
  405. } else
  406. #endif
  407. {
  408. SREG = interruptSave;
  409. }
  410. }
  411. }
  412. // Disable the SPI bus
  413. static void end();
  414. // This function is deprecated. New applications should use
  415. // beginTransaction() to configure SPI settings.
  416. static void setBitOrder(uint8_t bitOrder);
  417. // This function is deprecated. New applications should use
  418. // beginTransaction() to configure SPI settings.
  419. static void setDataMode(uint8_t dataMode);
  420. // This function is deprecated. New applications should use
  421. // beginTransaction() to configure SPI settings.
  422. inline static void setClockDivider(uint8_t clockDiv) {
  423. if (clockDiv == SPI_CLOCK_DIV2) {
  424. setClockDivider_noInline(SPISettings(8000000, MSBFIRST, SPI_MODE0).ctar);
  425. } else if (clockDiv == SPI_CLOCK_DIV4) {
  426. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  427. } else if (clockDiv == SPI_CLOCK_DIV8) {
  428. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  429. } else if (clockDiv == SPI_CLOCK_DIV16) {
  430. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  431. } else if (clockDiv == SPI_CLOCK_DIV32) {
  432. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  433. } else if (clockDiv == SPI_CLOCK_DIV64) {
  434. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  435. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  436. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  437. }
  438. }
  439. static void setClockDivider_noInline(uint32_t clk);
  440. // These undocumented functions should not be used. SPI.transfer()
  441. // polls the hardware flag which is automatically cleared as the
  442. // AVR responds to SPI's interrupt
  443. inline static void attachInterrupt() { }
  444. inline static void detachInterrupt() { }
  445. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  446. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  447. SPCR.setMOSI(pin);
  448. }
  449. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  450. SPCR.setMISO(pin);
  451. }
  452. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  453. SPCR.setSCK(pin);
  454. }
  455. // return true if "pin" has special chip select capability
  456. static bool pinIsChipSelect(uint8_t pin);
  457. // return true if both pin1 and pin2 have independent chip select capability
  458. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  459. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  460. static uint8_t setCS(uint8_t pin);
  461. private:
  462. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  463. static uint8_t interruptMask; // which interrupts to mask
  464. static uint8_t interruptSave; // temp storage, to restore state
  465. };
  466. /**********************************************************/
  467. /* 32 bit Arduino Due */
  468. /**********************************************************/
  469. #elif defined(__arm__) && defined(__SAM3X8E__)
  470. #undef SPI_MODE0
  471. #undef SPI_MODE1
  472. #undef SPI_MODE2
  473. #undef SPI_MODE3
  474. #define SPI_MODE0 0x02
  475. #define SPI_MODE1 0x00
  476. #define SPI_MODE2 0x03
  477. #define SPI_MODE3 0x01
  478. #undef SPI_CLOCK_DIV2
  479. #undef SPI_CLOCK_DIV4
  480. #undef SPI_CLOCK_DIV8
  481. #undef SPI_CLOCK_DIV16
  482. #undef SPI_CLOCK_DIV32
  483. #undef SPI_CLOCK_DIV64
  484. #undef SPI_CLOCK_DIV128
  485. #define SPI_CLOCK_DIV2 11
  486. #define SPI_CLOCK_DIV4 21
  487. #define SPI_CLOCK_DIV8 42
  488. #define SPI_CLOCK_DIV16 84
  489. #define SPI_CLOCK_DIV32 168
  490. #define SPI_CLOCK_DIV64 255
  491. #define SPI_CLOCK_DIV128 255
  492. enum SPITransferMode {
  493. SPI_CONTINUE,
  494. SPI_LAST
  495. };
  496. class SPISettings {
  497. public:
  498. SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  499. if (__builtin_constant_p(clock)) {
  500. init_AlwaysInline(clock, bitOrder, dataMode);
  501. } else {
  502. init_MightInline(clock, bitOrder, dataMode);
  503. }
  504. }
  505. SPISettings() {
  506. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  507. }
  508. private:
  509. void init_MightInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  510. init_AlwaysInline(clock, bitOrder, dataMode);
  511. }
  512. void init_AlwaysInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode)
  513. __attribute__((__always_inline__)) {
  514. uint8_t div;
  515. border = bitOrder;
  516. if (__builtin_constant_p(clock)) {
  517. if (clock >= F_CPU / 2) div = 2;
  518. else if (clock >= F_CPU / 3) div = 3;
  519. else if (clock >= F_CPU / 4) div = 4;
  520. else if (clock >= F_CPU / 5) div = 5;
  521. else if (clock >= F_CPU / 6) div = 6;
  522. else if (clock >= F_CPU / 7) div = 7;
  523. else if (clock >= F_CPU / 8) div = 8;
  524. else if (clock >= F_CPU / 9) div = 9;
  525. else if (clock >= F_CPU / 10) div = 10;
  526. else if (clock >= F_CPU / 11) div = 11;
  527. else if (clock >= F_CPU / 12) div = 12;
  528. else if (clock >= F_CPU / 13) div = 13;
  529. else if (clock >= F_CPU / 14) div = 14;
  530. else if (clock >= F_CPU / 15) div = 15;
  531. else if (clock >= F_CPU / 16) div = 16;
  532. else if (clock >= F_CPU / 17) div = 17;
  533. else if (clock >= F_CPU / 18) div = 18;
  534. else if (clock >= F_CPU / 19) div = 19;
  535. else if (clock >= F_CPU / 20) div = 20;
  536. else if (clock >= F_CPU / 21) div = 21;
  537. else if (clock >= F_CPU / 22) div = 22;
  538. else if (clock >= F_CPU / 23) div = 23;
  539. else if (clock >= F_CPU / 24) div = 24;
  540. else if (clock >= F_CPU / 25) div = 25;
  541. else if (clock >= F_CPU / 26) div = 26;
  542. else if (clock >= F_CPU / 27) div = 27;
  543. else if (clock >= F_CPU / 28) div = 28;
  544. else if (clock >= F_CPU / 29) div = 29;
  545. else if (clock >= F_CPU / 30) div = 30;
  546. else if (clock >= F_CPU / 31) div = 31;
  547. else if (clock >= F_CPU / 32) div = 32;
  548. else if (clock >= F_CPU / 33) div = 33;
  549. else if (clock >= F_CPU / 34) div = 34;
  550. else if (clock >= F_CPU / 35) div = 35;
  551. else if (clock >= F_CPU / 36) div = 36;
  552. else if (clock >= F_CPU / 37) div = 37;
  553. else if (clock >= F_CPU / 38) div = 38;
  554. else if (clock >= F_CPU / 39) div = 39;
  555. else if (clock >= F_CPU / 40) div = 40;
  556. else if (clock >= F_CPU / 41) div = 41;
  557. else if (clock >= F_CPU / 42) div = 42;
  558. else if (clock >= F_CPU / 43) div = 43;
  559. else if (clock >= F_CPU / 44) div = 44;
  560. else if (clock >= F_CPU / 45) div = 45;
  561. else if (clock >= F_CPU / 46) div = 46;
  562. else if (clock >= F_CPU / 47) div = 47;
  563. else if (clock >= F_CPU / 48) div = 48;
  564. else if (clock >= F_CPU / 49) div = 49;
  565. else if (clock >= F_CPU / 50) div = 50;
  566. else if (clock >= F_CPU / 51) div = 51;
  567. else if (clock >= F_CPU / 52) div = 52;
  568. else if (clock >= F_CPU / 53) div = 53;
  569. else if (clock >= F_CPU / 54) div = 54;
  570. else if (clock >= F_CPU / 55) div = 55;
  571. else if (clock >= F_CPU / 56) div = 56;
  572. else if (clock >= F_CPU / 57) div = 57;
  573. else if (clock >= F_CPU / 58) div = 58;
  574. else if (clock >= F_CPU / 59) div = 59;
  575. else if (clock >= F_CPU / 60) div = 60;
  576. else if (clock >= F_CPU / 61) div = 61;
  577. else if (clock >= F_CPU / 62) div = 62;
  578. else if (clock >= F_CPU / 63) div = 63;
  579. else if (clock >= F_CPU / 64) div = 64;
  580. else if (clock >= F_CPU / 65) div = 65;
  581. else if (clock >= F_CPU / 66) div = 66;
  582. else if (clock >= F_CPU / 67) div = 67;
  583. else if (clock >= F_CPU / 68) div = 68;
  584. else if (clock >= F_CPU / 69) div = 69;
  585. else if (clock >= F_CPU / 70) div = 70;
  586. else if (clock >= F_CPU / 71) div = 71;
  587. else if (clock >= F_CPU / 72) div = 72;
  588. else if (clock >= F_CPU / 73) div = 73;
  589. else if (clock >= F_CPU / 74) div = 74;
  590. else if (clock >= F_CPU / 75) div = 75;
  591. else if (clock >= F_CPU / 76) div = 76;
  592. else if (clock >= F_CPU / 77) div = 77;
  593. else if (clock >= F_CPU / 78) div = 78;
  594. else if (clock >= F_CPU / 79) div = 79;
  595. else if (clock >= F_CPU / 80) div = 80;
  596. else if (clock >= F_CPU / 81) div = 81;
  597. else if (clock >= F_CPU / 82) div = 82;
  598. else if (clock >= F_CPU / 83) div = 83;
  599. else if (clock >= F_CPU / 84) div = 84;
  600. else if (clock >= F_CPU / 85) div = 85;
  601. else if (clock >= F_CPU / 86) div = 86;
  602. else if (clock >= F_CPU / 87) div = 87;
  603. else if (clock >= F_CPU / 88) div = 88;
  604. else if (clock >= F_CPU / 89) div = 89;
  605. else if (clock >= F_CPU / 90) div = 90;
  606. else if (clock >= F_CPU / 91) div = 91;
  607. else if (clock >= F_CPU / 92) div = 92;
  608. else if (clock >= F_CPU / 93) div = 93;
  609. else if (clock >= F_CPU / 94) div = 94;
  610. else if (clock >= F_CPU / 95) div = 95;
  611. else if (clock >= F_CPU / 96) div = 96;
  612. else if (clock >= F_CPU / 97) div = 97;
  613. else if (clock >= F_CPU / 98) div = 98;
  614. else if (clock >= F_CPU / 99) div = 99;
  615. else if (clock >= F_CPU / 100) div = 100;
  616. else if (clock >= F_CPU / 101) div = 101;
  617. else if (clock >= F_CPU / 102) div = 102;
  618. else if (clock >= F_CPU / 103) div = 103;
  619. else if (clock >= F_CPU / 104) div = 104;
  620. else if (clock >= F_CPU / 105) div = 105;
  621. else if (clock >= F_CPU / 106) div = 106;
  622. else if (clock >= F_CPU / 107) div = 107;
  623. else if (clock >= F_CPU / 108) div = 108;
  624. else if (clock >= F_CPU / 109) div = 109;
  625. else if (clock >= F_CPU / 110) div = 110;
  626. else if (clock >= F_CPU / 111) div = 111;
  627. else if (clock >= F_CPU / 112) div = 112;
  628. else if (clock >= F_CPU / 113) div = 113;
  629. else if (clock >= F_CPU / 114) div = 114;
  630. else if (clock >= F_CPU / 115) div = 115;
  631. else if (clock >= F_CPU / 116) div = 116;
  632. else if (clock >= F_CPU / 117) div = 117;
  633. else if (clock >= F_CPU / 118) div = 118;
  634. else if (clock >= F_CPU / 119) div = 119;
  635. else if (clock >= F_CPU / 120) div = 120;
  636. else if (clock >= F_CPU / 121) div = 121;
  637. else if (clock >= F_CPU / 122) div = 122;
  638. else if (clock >= F_CPU / 123) div = 123;
  639. else if (clock >= F_CPU / 124) div = 124;
  640. else if (clock >= F_CPU / 125) div = 125;
  641. else if (clock >= F_CPU / 126) div = 126;
  642. else if (clock >= F_CPU / 127) div = 127;
  643. else if (clock >= F_CPU / 128) div = 128;
  644. else if (clock >= F_CPU / 129) div = 129;
  645. else if (clock >= F_CPU / 130) div = 130;
  646. else if (clock >= F_CPU / 131) div = 131;
  647. else if (clock >= F_CPU / 132) div = 132;
  648. else if (clock >= F_CPU / 133) div = 133;
  649. else if (clock >= F_CPU / 134) div = 134;
  650. else if (clock >= F_CPU / 135) div = 135;
  651. else if (clock >= F_CPU / 136) div = 136;
  652. else if (clock >= F_CPU / 137) div = 137;
  653. else if (clock >= F_CPU / 138) div = 138;
  654. else if (clock >= F_CPU / 139) div = 139;
  655. else if (clock >= F_CPU / 140) div = 140;
  656. else if (clock >= F_CPU / 141) div = 141;
  657. else if (clock >= F_CPU / 142) div = 142;
  658. else if (clock >= F_CPU / 143) div = 143;
  659. else if (clock >= F_CPU / 144) div = 144;
  660. else if (clock >= F_CPU / 145) div = 145;
  661. else if (clock >= F_CPU / 146) div = 146;
  662. else if (clock >= F_CPU / 147) div = 147;
  663. else if (clock >= F_CPU / 148) div = 148;
  664. else if (clock >= F_CPU / 149) div = 149;
  665. else if (clock >= F_CPU / 150) div = 150;
  666. else if (clock >= F_CPU / 151) div = 151;
  667. else if (clock >= F_CPU / 152) div = 152;
  668. else if (clock >= F_CPU / 153) div = 153;
  669. else if (clock >= F_CPU / 154) div = 154;
  670. else if (clock >= F_CPU / 155) div = 155;
  671. else if (clock >= F_CPU / 156) div = 156;
  672. else if (clock >= F_CPU / 157) div = 157;
  673. else if (clock >= F_CPU / 158) div = 158;
  674. else if (clock >= F_CPU / 159) div = 159;
  675. else if (clock >= F_CPU / 160) div = 160;
  676. else if (clock >= F_CPU / 161) div = 161;
  677. else if (clock >= F_CPU / 162) div = 162;
  678. else if (clock >= F_CPU / 163) div = 163;
  679. else if (clock >= F_CPU / 164) div = 164;
  680. else if (clock >= F_CPU / 165) div = 165;
  681. else if (clock >= F_CPU / 166) div = 166;
  682. else if (clock >= F_CPU / 167) div = 167;
  683. else if (clock >= F_CPU / 168) div = 168;
  684. else if (clock >= F_CPU / 169) div = 169;
  685. else if (clock >= F_CPU / 170) div = 170;
  686. else if (clock >= F_CPU / 171) div = 171;
  687. else if (clock >= F_CPU / 172) div = 172;
  688. else if (clock >= F_CPU / 173) div = 173;
  689. else if (clock >= F_CPU / 174) div = 174;
  690. else if (clock >= F_CPU / 175) div = 175;
  691. else if (clock >= F_CPU / 176) div = 176;
  692. else if (clock >= F_CPU / 177) div = 177;
  693. else if (clock >= F_CPU / 178) div = 178;
  694. else if (clock >= F_CPU / 179) div = 179;
  695. else if (clock >= F_CPU / 180) div = 180;
  696. else if (clock >= F_CPU / 181) div = 181;
  697. else if (clock >= F_CPU / 182) div = 182;
  698. else if (clock >= F_CPU / 183) div = 183;
  699. else if (clock >= F_CPU / 184) div = 184;
  700. else if (clock >= F_CPU / 185) div = 185;
  701. else if (clock >= F_CPU / 186) div = 186;
  702. else if (clock >= F_CPU / 187) div = 187;
  703. else if (clock >= F_CPU / 188) div = 188;
  704. else if (clock >= F_CPU / 189) div = 189;
  705. else if (clock >= F_CPU / 190) div = 190;
  706. else if (clock >= F_CPU / 191) div = 191;
  707. else if (clock >= F_CPU / 192) div = 192;
  708. else if (clock >= F_CPU / 193) div = 193;
  709. else if (clock >= F_CPU / 194) div = 194;
  710. else if (clock >= F_CPU / 195) div = 195;
  711. else if (clock >= F_CPU / 196) div = 196;
  712. else if (clock >= F_CPU / 197) div = 197;
  713. else if (clock >= F_CPU / 198) div = 198;
  714. else if (clock >= F_CPU / 199) div = 199;
  715. else if (clock >= F_CPU / 200) div = 200;
  716. else if (clock >= F_CPU / 201) div = 201;
  717. else if (clock >= F_CPU / 202) div = 202;
  718. else if (clock >= F_CPU / 203) div = 203;
  719. else if (clock >= F_CPU / 204) div = 204;
  720. else if (clock >= F_CPU / 205) div = 205;
  721. else if (clock >= F_CPU / 206) div = 206;
  722. else if (clock >= F_CPU / 207) div = 207;
  723. else if (clock >= F_CPU / 208) div = 208;
  724. else if (clock >= F_CPU / 209) div = 209;
  725. else if (clock >= F_CPU / 210) div = 210;
  726. else if (clock >= F_CPU / 211) div = 211;
  727. else if (clock >= F_CPU / 212) div = 212;
  728. else if (clock >= F_CPU / 213) div = 213;
  729. else if (clock >= F_CPU / 214) div = 214;
  730. else if (clock >= F_CPU / 215) div = 215;
  731. else if (clock >= F_CPU / 216) div = 216;
  732. else if (clock >= F_CPU / 217) div = 217;
  733. else if (clock >= F_CPU / 218) div = 218;
  734. else if (clock >= F_CPU / 219) div = 219;
  735. else if (clock >= F_CPU / 220) div = 220;
  736. else if (clock >= F_CPU / 221) div = 221;
  737. else if (clock >= F_CPU / 222) div = 222;
  738. else if (clock >= F_CPU / 223) div = 223;
  739. else if (clock >= F_CPU / 224) div = 224;
  740. else if (clock >= F_CPU / 225) div = 225;
  741. else if (clock >= F_CPU / 226) div = 226;
  742. else if (clock >= F_CPU / 227) div = 227;
  743. else if (clock >= F_CPU / 228) div = 228;
  744. else if (clock >= F_CPU / 229) div = 229;
  745. else if (clock >= F_CPU / 230) div = 230;
  746. else if (clock >= F_CPU / 231) div = 231;
  747. else if (clock >= F_CPU / 232) div = 232;
  748. else if (clock >= F_CPU / 233) div = 233;
  749. else if (clock >= F_CPU / 234) div = 234;
  750. else if (clock >= F_CPU / 235) div = 235;
  751. else if (clock >= F_CPU / 236) div = 236;
  752. else if (clock >= F_CPU / 237) div = 237;
  753. else if (clock >= F_CPU / 238) div = 238;
  754. else if (clock >= F_CPU / 239) div = 239;
  755. else if (clock >= F_CPU / 240) div = 240;
  756. else if (clock >= F_CPU / 241) div = 241;
  757. else if (clock >= F_CPU / 242) div = 242;
  758. else if (clock >= F_CPU / 243) div = 243;
  759. else if (clock >= F_CPU / 244) div = 244;
  760. else if (clock >= F_CPU / 245) div = 245;
  761. else if (clock >= F_CPU / 246) div = 246;
  762. else if (clock >= F_CPU / 247) div = 247;
  763. else if (clock >= F_CPU / 248) div = 248;
  764. else if (clock >= F_CPU / 249) div = 249;
  765. else if (clock >= F_CPU / 250) div = 250;
  766. else if (clock >= F_CPU / 251) div = 251;
  767. else if (clock >= F_CPU / 252) div = 252;
  768. else if (clock >= F_CPU / 253) div = 253;
  769. else if (clock >= F_CPU / 254) div = 254;
  770. else /* clock >= F_CPU / 255 */ div = 255;
  771. /*
  772. #! /usr/bin/perl
  773. for ($i=2; $i<256; $i++) {
  774. printf "\t\t\telse if (clock >= F_CPU / %3d) div = %3d;\n", $i, $i;
  775. }
  776. */
  777. } else {
  778. for (div=2; i<255; i++) {
  779. if (clock >= F_CPU / div) break;
  780. }
  781. }
  782. config = (dataMode & 3) | SPI_CSR_CSAAT | SPI_CSR_SCBR(div) | SPI_CSR_DLYBCT(1);
  783. }
  784. uint32_t config;
  785. BitOrder border;
  786. friend class SPIClass;
  787. };
  788. class SPIClass {
  789. public:
  790. SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void));
  791. byte transfer(uint8_t _data, SPITransferMode _mode = SPI_LAST) { return transfer(BOARD_SPI_DEFAULT_SS, _data, _mode); }
  792. byte transfer(byte _channel, uint8_t _data, SPITransferMode _mode = SPI_LAST);
  793. // Transaction Functions
  794. void usingInterrupt(uint8_t interruptNumber);
  795. void beginTransaction(uint8_t pin, SPISettings settings);
  796. void beginTransaction(SPISettings settings) {
  797. beginTransaction(BOARD_SPI_DEFAULT_SS, settings);
  798. }
  799. void endTransaction(void);
  800. // SPI Configuration methods
  801. void attachInterrupt(void);
  802. void detachInterrupt(void);
  803. void begin(void);
  804. void end(void);
  805. // Attach/Detach pin to/from SPI controller
  806. void begin(uint8_t _pin);
  807. void end(uint8_t _pin);
  808. // These methods sets a parameter on a single pin
  809. void setBitOrder(uint8_t _pin, BitOrder);
  810. void setDataMode(uint8_t _pin, uint8_t);
  811. void setClockDivider(uint8_t _pin, uint8_t);
  812. // These methods sets the same parameters but on default pin BOARD_SPI_DEFAULT_SS
  813. void setBitOrder(BitOrder _order) { setBitOrder(BOARD_SPI_DEFAULT_SS, _order); };
  814. void setDataMode(uint8_t _mode) { setDataMode(BOARD_SPI_DEFAULT_SS, _mode); };
  815. void setClockDivider(uint8_t _div) { setClockDivider(BOARD_SPI_DEFAULT_SS, _div); };
  816. private:
  817. void init();
  818. Spi *spi;
  819. uint32_t id;
  820. BitOrder bitOrder[SPI_CHANNELS_NUM];
  821. uint32_t divider[SPI_CHANNELS_NUM];
  822. uint32_t mode[SPI_CHANNELS_NUM];
  823. void (*initCb)(void);
  824. bool initialized;
  825. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  826. static uint8_t interruptMask; // bits 0:3=pin change
  827. static uint8_t interruptSave; // temp storage, to restore state
  828. };
  829. #endif
  830. extern SPIClass SPI;
  831. #endif