Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
9 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
9 роки тому
8 роки тому
10 роки тому
8 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
9 роки тому
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * Copyright (c) 2014 by Paul Stoffregen <paul@pjrc.com> (Transaction API)
  4. * Copyright (c) 2014 by Matthijs Kooijman <matthijs@stdin.nl> (SPISettings AVR)
  5. * SPI Master library for arduino.
  6. *
  7. * This file is free software; you can redistribute it and/or modify
  8. * it under the terms of either the GNU General Public License version 2
  9. * or the GNU Lesser General Public License version 2.1, both as
  10. * published by the Free Software Foundation.
  11. */
  12. #ifndef _SPI_H_INCLUDED
  13. #define _SPI_H_INCLUDED
  14. #include <Arduino.h>
  15. // SPI_HAS_TRANSACTION means SPI has beginTransaction(), endTransaction(),
  16. // usingInterrupt(), and SPISetting(clock, bitOrder, dataMode)
  17. #define SPI_HAS_TRANSACTION 1
  18. // Uncomment this line to add detection of mismatched begin/end transactions.
  19. // A mismatch occurs if other libraries fail to use SPI.endTransaction() for
  20. // each SPI.beginTransaction(). Connect a LED to this pin. The LED will turn
  21. // on if any mismatch is ever detected.
  22. //#define SPI_TRANSACTION_MISMATCH_LED 5
  23. #ifndef __SAM3X8E__
  24. #ifndef LSBFIRST
  25. #define LSBFIRST 0
  26. #endif
  27. #ifndef MSBFIRST
  28. #define MSBFIRST 1
  29. #endif
  30. #endif
  31. #define SPI_MODE0 0x00
  32. #define SPI_MODE1 0x04
  33. #define SPI_MODE2 0x08
  34. #define SPI_MODE3 0x0C
  35. #define SPI_CLOCK_DIV4 0x00
  36. #define SPI_CLOCK_DIV16 0x01
  37. #define SPI_CLOCK_DIV64 0x02
  38. #define SPI_CLOCK_DIV128 0x03
  39. #define SPI_CLOCK_DIV2 0x04
  40. #define SPI_CLOCK_DIV8 0x05
  41. #define SPI_CLOCK_DIV32 0x06
  42. #define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
  43. #define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
  44. #define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
  45. /**********************************************************/
  46. /* 8 bit AVR-based boards */
  47. /**********************************************************/
  48. #if defined(__AVR__)
  49. // define SPI_AVR_EIMSK for AVR boards with external interrupt pins
  50. #if defined(EIMSK)
  51. #define SPI_AVR_EIMSK EIMSK
  52. #elif defined(GICR)
  53. #define SPI_AVR_EIMSK GICR
  54. #elif defined(GIMSK)
  55. #define SPI_AVR_EIMSK GIMSK
  56. #endif
  57. class SPISettings {
  58. public:
  59. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  60. if (__builtin_constant_p(clock)) {
  61. init_AlwaysInline(clock, bitOrder, dataMode);
  62. } else {
  63. init_MightInline(clock, bitOrder, dataMode);
  64. }
  65. }
  66. SPISettings() {
  67. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  68. }
  69. private:
  70. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  71. init_AlwaysInline(clock, bitOrder, dataMode);
  72. }
  73. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  74. __attribute__((__always_inline__)) {
  75. // Clock settings are defined as follows. Note that this shows SPI2X
  76. // inverted, so the bits form increasing numbers. Also note that
  77. // fosc/64 appears twice
  78. // SPR1 SPR0 ~SPI2X Freq
  79. // 0 0 0 fosc/2
  80. // 0 0 1 fosc/4
  81. // 0 1 0 fosc/8
  82. // 0 1 1 fosc/16
  83. // 1 0 0 fosc/32
  84. // 1 0 1 fosc/64
  85. // 1 1 0 fosc/64
  86. // 1 1 1 fosc/128
  87. // We find the fastest clock that is less than or equal to the
  88. // given clock rate. The clock divider that results in clock_setting
  89. // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
  90. // slowest (128 == 2 ^^ 7, so clock_div = 6).
  91. uint8_t clockDiv;
  92. // When the clock is known at compiletime, use this if-then-else
  93. // cascade, which the compiler knows how to completely optimize
  94. // away. When clock is not known, use a loop instead, which generates
  95. // shorter code.
  96. if (__builtin_constant_p(clock)) {
  97. if (clock >= F_CPU / 2) {
  98. clockDiv = 0;
  99. } else if (clock >= F_CPU / 4) {
  100. clockDiv = 1;
  101. } else if (clock >= F_CPU / 8) {
  102. clockDiv = 2;
  103. } else if (clock >= F_CPU / 16) {
  104. clockDiv = 3;
  105. } else if (clock >= F_CPU / 32) {
  106. clockDiv = 4;
  107. } else if (clock >= F_CPU / 64) {
  108. clockDiv = 5;
  109. } else {
  110. clockDiv = 6;
  111. }
  112. } else {
  113. uint32_t clockSetting = F_CPU / 2;
  114. clockDiv = 0;
  115. while (clockDiv < 6 && clock < clockSetting) {
  116. clockSetting /= 2;
  117. clockDiv++;
  118. }
  119. }
  120. // Compensate for the duplicate fosc/64
  121. if (clockDiv == 6)
  122. clockDiv = 7;
  123. // Invert the SPI2X bit
  124. clockDiv ^= 0x1;
  125. // Pack into the SPISettings class
  126. spcr = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
  127. (dataMode & SPI_MODE_MASK) | ((clockDiv >> 1) & SPI_CLOCK_MASK);
  128. spsr = clockDiv & SPI_2XCLOCK_MASK;
  129. }
  130. uint8_t spcr;
  131. uint8_t spsr;
  132. friend class SPIClass;
  133. };
  134. class SPIClass {
  135. public:
  136. // Initialize the SPI library
  137. static void begin();
  138. // If SPI is used from within an interrupt, this function registers
  139. // that interrupt with the SPI library, so beginTransaction() can
  140. // prevent conflicts. The input interruptNumber is the number used
  141. // with attachInterrupt. If SPI is used from a different interrupt
  142. // (eg, a timer), interruptNumber should be 255.
  143. static void usingInterrupt(uint8_t interruptNumber);
  144. // Before using SPI.transfer() or asserting chip select pins,
  145. // this function is used to gain exclusive access to the SPI bus
  146. // and configure the correct settings.
  147. inline static void beginTransaction(SPISettings settings) {
  148. if (interruptMode > 0) {
  149. #ifdef SPI_AVR_EIMSK
  150. if (interruptMode == 1) {
  151. interruptSave = SPI_AVR_EIMSK;
  152. SPI_AVR_EIMSK &= ~interruptMask;
  153. } else
  154. #endif
  155. {
  156. uint8_t tmp = SREG;
  157. cli();
  158. interruptSave = tmp;
  159. }
  160. }
  161. #ifdef SPI_TRANSACTION_MISMATCH_LED
  162. if (inTransactionFlag) {
  163. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  164. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  165. }
  166. inTransactionFlag = 1;
  167. #endif
  168. SPCR = settings.spcr;
  169. SPSR = settings.spsr;
  170. }
  171. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  172. inline static uint8_t transfer(uint8_t data) {
  173. SPDR = data;
  174. asm volatile("nop");
  175. while (!(SPSR & _BV(SPIF))) ; // wait
  176. return SPDR;
  177. }
  178. inline static uint16_t transfer16(uint16_t data) {
  179. union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } in, out;
  180. in.val = data;
  181. if ((SPCR & _BV(DORD))) {
  182. SPDR = in.lsb;
  183. asm volatile("nop");
  184. while (!(SPSR & _BV(SPIF))) ;
  185. out.lsb = SPDR;
  186. SPDR = in.msb;
  187. asm volatile("nop");
  188. while (!(SPSR & _BV(SPIF))) ;
  189. out.msb = SPDR;
  190. } else {
  191. SPDR = in.msb;
  192. asm volatile("nop");
  193. while (!(SPSR & _BV(SPIF))) ;
  194. out.msb = SPDR;
  195. SPDR = in.lsb;
  196. asm volatile("nop");
  197. while (!(SPSR & _BV(SPIF))) ;
  198. out.lsb = SPDR;
  199. }
  200. return out.val;
  201. }
  202. inline static void transfer(void *buf, size_t count) {
  203. if (count == 0) return;
  204. uint8_t *p = (uint8_t *)buf;
  205. SPDR = *p;
  206. while (--count > 0) {
  207. uint8_t out = *(p + 1);
  208. while (!(SPSR & _BV(SPIF))) ;
  209. uint8_t in = SPDR;
  210. SPDR = out;
  211. *p++ = in;
  212. }
  213. while (!(SPSR & _BV(SPIF))) ;
  214. *p = SPDR;
  215. }
  216. // After performing a group of transfers and releasing the chip select
  217. // signal, this function allows others to access the SPI bus
  218. inline static void endTransaction(void) {
  219. #ifdef SPI_TRANSACTION_MISMATCH_LED
  220. if (!inTransactionFlag) {
  221. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  222. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  223. }
  224. inTransactionFlag = 0;
  225. #endif
  226. if (interruptMode > 0) {
  227. #ifdef SPI_AVR_EIMSK
  228. if (interruptMode == 1) {
  229. SPI_AVR_EIMSK = interruptSave;
  230. } else
  231. #endif
  232. {
  233. SREG = interruptSave;
  234. }
  235. }
  236. }
  237. // Disable the SPI bus
  238. static void end();
  239. // This function is deprecated. New applications should use
  240. // beginTransaction() to configure SPI settings.
  241. inline static void setBitOrder(uint8_t bitOrder) {
  242. if (bitOrder == LSBFIRST) SPCR |= _BV(DORD);
  243. else SPCR &= ~(_BV(DORD));
  244. }
  245. // This function is deprecated. New applications should use
  246. // beginTransaction() to configure SPI settings.
  247. inline static void setDataMode(uint8_t dataMode) {
  248. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  249. }
  250. // This function is deprecated. New applications should use
  251. // beginTransaction() to configure SPI settings.
  252. inline static void setClockDivider(uint8_t clockDiv) {
  253. SPCR = (SPCR & ~SPI_CLOCK_MASK) | (clockDiv & SPI_CLOCK_MASK);
  254. SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((clockDiv >> 2) & SPI_2XCLOCK_MASK);
  255. }
  256. // These undocumented functions should not be used. SPI.transfer()
  257. // polls the hardware flag which is automatically cleared as the
  258. // AVR responds to SPI's interrupt
  259. inline static void attachInterrupt() { SPCR |= _BV(SPIE); }
  260. inline static void detachInterrupt() { SPCR &= ~_BV(SPIE); }
  261. private:
  262. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  263. static uint8_t interruptMask; // which interrupts to mask
  264. static uint8_t interruptSave; // temp storage, to restore state
  265. #ifdef SPI_TRANSACTION_MISMATCH_LED
  266. static uint8_t inTransactionFlag;
  267. #endif
  268. };
  269. /**********************************************************/
  270. /* 32 bit Teensy 3.0 and 3.1, 3.2, 3.5, 3.6 */
  271. /**********************************************************/
  272. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
  273. #define SPI_HAS_NOTUSINGINTERRUPT 1
  274. class SPISettings {
  275. public:
  276. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  277. if (__builtin_constant_p(clock)) {
  278. init_AlwaysInline(clock, bitOrder, dataMode);
  279. } else {
  280. init_MightInline(clock, bitOrder, dataMode);
  281. }
  282. }
  283. SPISettings() {
  284. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  285. }
  286. private:
  287. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  288. init_AlwaysInline(clock, bitOrder, dataMode);
  289. }
  290. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  291. __attribute__((__always_inline__)) {
  292. uint32_t t, c = SPI_CTAR_FMSZ(7);
  293. if (bitOrder == LSBFIRST) c |= SPI_CTAR_LSBFE;
  294. if (__builtin_constant_p(clock)) {
  295. if (clock >= F_BUS / 2) {
  296. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  297. | SPI_CTAR_CSSCK(0);
  298. } else if (clock >= F_BUS / 3) {
  299. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  300. | SPI_CTAR_CSSCK(0);
  301. } else if (clock >= F_BUS / 4) {
  302. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  303. } else if (clock >= F_BUS / 5) {
  304. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  305. | SPI_CTAR_CSSCK(0);
  306. } else if (clock >= F_BUS / 6) {
  307. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  308. } else if (clock >= F_BUS / 8) {
  309. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  310. } else if (clock >= F_BUS / 10) {
  311. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  312. } else if (clock >= F_BUS / 12) {
  313. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  314. } else if (clock >= F_BUS / 16) {
  315. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  316. } else if (clock >= F_BUS / 20) {
  317. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
  318. } else if (clock >= F_BUS / 24) {
  319. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  320. } else if (clock >= F_BUS / 32) {
  321. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
  322. } else if (clock >= F_BUS / 40) {
  323. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  324. } else if (clock >= F_BUS / 56) {
  325. t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  326. } else if (clock >= F_BUS / 64) {
  327. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  328. } else if (clock >= F_BUS / 96) {
  329. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  330. } else if (clock >= F_BUS / 128) {
  331. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  332. } else if (clock >= F_BUS / 192) {
  333. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  334. } else if (clock >= F_BUS / 256) {
  335. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  336. } else if (clock >= F_BUS / 384) {
  337. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  338. } else if (clock >= F_BUS / 512) {
  339. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  340. } else if (clock >= F_BUS / 640) {
  341. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  342. } else { /* F_BUS / 768 */
  343. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  344. }
  345. } else {
  346. for (uint32_t i=0; i<23; i++) {
  347. t = ctar_clock_table[i];
  348. if (clock >= F_BUS / ctar_div_table[i]) break;
  349. }
  350. }
  351. if (dataMode & 0x08) {
  352. c |= SPI_CTAR_CPOL;
  353. }
  354. if (dataMode & 0x04) {
  355. c |= SPI_CTAR_CPHA;
  356. t = (t & 0xFFFF0FFF) | ((t & 0xF000) >> 4);
  357. }
  358. ctar = c | t;
  359. }
  360. static const uint16_t ctar_div_table[23];
  361. static const uint32_t ctar_clock_table[23];
  362. uint32_t ctar;
  363. friend class SPIClass;
  364. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  365. friend class SPI1Class;
  366. friend class SPI2Class;
  367. #endif
  368. };
  369. class SPIClass {
  370. public:
  371. // Initialize the SPI library
  372. static void begin();
  373. // If SPI is to used from within an interrupt, this function registers
  374. // that interrupt with the SPI library, so beginTransaction() can
  375. // prevent conflicts. The input interruptNumber is the number used
  376. // with attachInterrupt. If SPI is used from a different interrupt
  377. // (eg, a timer), interruptNumber should be 255.
  378. static void usingInterrupt(uint8_t n) {
  379. if (n == 3 || n == 4 || n == 24 || n == 33) {
  380. usingInterrupt(IRQ_PORTA);
  381. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  382. usingInterrupt(IRQ_PORTB);
  383. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  384. || (n >= 27 && n <= 30)) {
  385. usingInterrupt(IRQ_PORTC);
  386. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  387. usingInterrupt(IRQ_PORTD);
  388. } else if (n == 26 || n == 31) {
  389. usingInterrupt(IRQ_PORTE);
  390. }
  391. }
  392. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  393. static void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  394. // Before using SPI.transfer() or asserting chip select pins,
  395. // this function is used to gain exclusive access to the SPI bus
  396. // and configure the correct settings.
  397. inline static void beginTransaction(SPISettings settings) {
  398. if (interruptMasksUsed) {
  399. __disable_irq();
  400. if (interruptMasksUsed & 0x01) {
  401. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  402. NVIC_ICER0 = interruptSave[0];
  403. }
  404. #if NVIC_NUM_INTERRUPTS > 32
  405. if (interruptMasksUsed & 0x02) {
  406. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  407. NVIC_ICER1 = interruptSave[1];
  408. }
  409. #endif
  410. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  411. if (interruptMasksUsed & 0x04) {
  412. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  413. NVIC_ICER2 = interruptSave[2];
  414. }
  415. #endif
  416. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  417. if (interruptMasksUsed & 0x08) {
  418. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  419. NVIC_ICER3 = interruptSave[3];
  420. }
  421. #endif
  422. __enable_irq();
  423. }
  424. #ifdef SPI_TRANSACTION_MISMATCH_LED
  425. if (inTransactionFlag) {
  426. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  427. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  428. }
  429. inTransactionFlag = 1;
  430. #endif
  431. if (SPI0_CTAR0 != settings.ctar) {
  432. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  433. SPI0_CTAR0 = settings.ctar;
  434. SPI0_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  435. SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  436. }
  437. }
  438. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  439. inline static uint8_t transfer(uint8_t data) {
  440. SPI0_SR = SPI_SR_TCF;
  441. SPI0_PUSHR = data;
  442. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  443. return SPI0_POPR;
  444. }
  445. inline static uint16_t transfer16(uint16_t data) {
  446. SPI0_SR = SPI_SR_TCF;
  447. SPI0_PUSHR = data | SPI_PUSHR_CTAS(1);
  448. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  449. return SPI0_POPR;
  450. }
  451. static void transfer(void *buf, size_t count);
  452. // After performing a group of transfers and releasing the chip select
  453. // signal, this function allows others to access the SPI bus
  454. inline static void endTransaction(void) {
  455. #ifdef SPI_TRANSACTION_MISMATCH_LED
  456. if (!inTransactionFlag) {
  457. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  458. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  459. }
  460. inTransactionFlag = 0;
  461. #endif
  462. if (interruptMasksUsed) {
  463. if (interruptMasksUsed & 0x01) {
  464. NVIC_ISER0 = interruptSave[0];
  465. }
  466. #if NVIC_NUM_INTERRUPTS > 32
  467. if (interruptMasksUsed & 0x02) {
  468. NVIC_ISER1 = interruptSave[1];
  469. }
  470. #endif
  471. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  472. if (interruptMasksUsed & 0x04) {
  473. NVIC_ISER2 = interruptSave[2];
  474. }
  475. #endif
  476. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  477. if (interruptMasksUsed & 0x08) {
  478. NVIC_ISER3 = interruptSave[3];
  479. }
  480. #endif
  481. }
  482. }
  483. // Disable the SPI bus
  484. static void end();
  485. // This function is deprecated. New applications should use
  486. // beginTransaction() to configure SPI settings.
  487. static void setBitOrder(uint8_t bitOrder);
  488. // This function is deprecated. New applications should use
  489. // beginTransaction() to configure SPI settings.
  490. static void setDataMode(uint8_t dataMode);
  491. // This function is deprecated. New applications should use
  492. // beginTransaction() to configure SPI settings.
  493. inline static void setClockDivider(uint8_t clockDiv) {
  494. if (clockDiv == SPI_CLOCK_DIV2) {
  495. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  496. } else if (clockDiv == SPI_CLOCK_DIV4) {
  497. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  498. } else if (clockDiv == SPI_CLOCK_DIV8) {
  499. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  500. } else if (clockDiv == SPI_CLOCK_DIV16) {
  501. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  502. } else if (clockDiv == SPI_CLOCK_DIV32) {
  503. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  504. } else if (clockDiv == SPI_CLOCK_DIV64) {
  505. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  506. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  507. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  508. }
  509. }
  510. static void setClockDivider_noInline(uint32_t clk);
  511. // These undocumented functions should not be used. SPI.transfer()
  512. // polls the hardware flag which is automatically cleared as the
  513. // AVR responds to SPI's interrupt
  514. inline static void attachInterrupt() { }
  515. inline static void detachInterrupt() { }
  516. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  517. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  518. SPCR.setMOSI(pin);
  519. }
  520. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  521. SPCR.setMISO(pin);
  522. }
  523. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  524. SPCR.setSCK(pin);
  525. }
  526. // return true if "pin" has special chip select capability
  527. static uint8_t pinIsChipSelect(uint8_t pin);
  528. // return true if both pin1 and pin2 have independent chip select capability
  529. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  530. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  531. // setCS() is a special function, not intended for use from normal Arduino
  532. // programs/sketches. See the ILI3941_t3 library for an example.
  533. static uint8_t setCS(uint8_t pin);
  534. private:
  535. static uint8_t interruptMasksUsed;
  536. static uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  537. static uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  538. #ifdef SPI_TRANSACTION_MISMATCH_LED
  539. static uint8_t inTransactionFlag;
  540. #endif
  541. };
  542. /**********************************************************/
  543. /* Teensy 3.5 and 3.6 have SPI1 as well */
  544. /**********************************************************/
  545. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  546. class SPI1Class {
  547. public:
  548. // Initialize the SPI library
  549. static void begin();
  550. // If SPI is to used from within an interrupt, this function registers
  551. // that interrupt with the SPI library, so beginTransaction() can
  552. // prevent conflicts. The input interruptNumber is the number used
  553. // with attachInterrupt. If SPI is used from a different interrupt
  554. // (eg, a timer), interruptNumber should be 255.
  555. static void usingInterrupt(uint8_t n) {
  556. if (n == 3 || n == 4 || n == 24 || n == 33) {
  557. usingInterrupt(IRQ_PORTA);
  558. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  559. usingInterrupt(IRQ_PORTB);
  560. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  561. || (n >= 27 && n <= 30)) {
  562. usingInterrupt(IRQ_PORTC);
  563. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  564. usingInterrupt(IRQ_PORTD);
  565. } else if (n == 26 || n == 31) {
  566. usingInterrupt(IRQ_PORTE);
  567. }
  568. }
  569. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  570. static void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  571. // Before using SPI.transfer() or asserting chip select pins,
  572. // this function is used to gain exclusive access to the SPI bus
  573. // and configure the correct settings.
  574. inline static void beginTransaction(SPISettings settings) {
  575. if (interruptMasksUsed) {
  576. __disable_irq();
  577. if (interruptMasksUsed & 0x01) {
  578. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  579. NVIC_ICER0 = interruptSave[0];
  580. }
  581. #if NVIC_NUM_INTERRUPTS > 32
  582. if (interruptMasksUsed & 0x02) {
  583. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  584. NVIC_ICER1 = interruptSave[1];
  585. }
  586. #endif
  587. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  588. if (interruptMasksUsed & 0x04) {
  589. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  590. NVIC_ICER2 = interruptSave[2];
  591. }
  592. #endif
  593. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  594. if (interruptMasksUsed & 0x08) {
  595. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  596. NVIC_ICER3 = interruptSave[3];
  597. }
  598. #endif
  599. __enable_irq();
  600. }
  601. #ifdef SPI_TRANSACTION_MISMATCH_LED
  602. if (inTransactionFlag) {
  603. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  604. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  605. }
  606. inTransactionFlag = 1;
  607. #endif
  608. if (SPI1_CTAR0 != settings.ctar) {
  609. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  610. SPI1_CTAR0 = settings.ctar;
  611. SPI1_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  612. SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  613. }
  614. }
  615. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  616. inline static uint8_t transfer(uint8_t data) {
  617. SPI1_SR = SPI_SR_TCF;
  618. SPI1_PUSHR = data;
  619. while (!(SPI1_SR & SPI_SR_TCF)) ; // wait
  620. return SPI1_POPR;
  621. }
  622. inline static uint16_t transfer16(uint16_t data) {
  623. SPI1_SR = SPI_SR_TCF;
  624. SPI1_PUSHR = data | SPI_PUSHR_CTAS(1);
  625. while (!(SPI1_SR & SPI_SR_TCF)) ; // wait
  626. return SPI1_POPR;
  627. }
  628. static void transfer(void *buf, size_t count);
  629. // After performing a group of transfers and releasing the chip select
  630. // signal, this function allows others to access the SPI bus
  631. inline static void endTransaction(void) {
  632. #ifdef SPI_TRANSACTION_MISMATCH_LED
  633. if (!inTransactionFlag) {
  634. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  635. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  636. }
  637. inTransactionFlag = 0;
  638. #endif
  639. if (interruptMasksUsed) {
  640. if (interruptMasksUsed & 0x01) {
  641. NVIC_ISER0 = interruptSave[0];
  642. }
  643. #if NVIC_NUM_INTERRUPTS > 32
  644. if (interruptMasksUsed & 0x02) {
  645. NVIC_ISER1 = interruptSave[1];
  646. }
  647. #endif
  648. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  649. if (interruptMasksUsed & 0x04) {
  650. NVIC_ISER2 = interruptSave[2];
  651. }
  652. #endif
  653. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  654. if (interruptMasksUsed & 0x08) {
  655. NVIC_ISER3 = interruptSave[3];
  656. }
  657. #endif
  658. }
  659. }
  660. // Disable the SPI bus
  661. static void end();
  662. // This function is deprecated. New applications should use
  663. // beginTransaction() to configure SPI settings.
  664. static void setBitOrder(uint8_t bitOrder);
  665. // This function is deprecated. New applications should use
  666. // beginTransaction() to configure SPI settings.
  667. static void setDataMode(uint8_t dataMode);
  668. // This function is deprecated. New applications should use
  669. // beginTransaction() to configure SPI settings.
  670. inline static void setClockDivider(uint8_t clockDiv) {
  671. if (clockDiv == SPI_CLOCK_DIV2) {
  672. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  673. } else if (clockDiv == SPI_CLOCK_DIV4) {
  674. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  675. } else if (clockDiv == SPI_CLOCK_DIV8) {
  676. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  677. } else if (clockDiv == SPI_CLOCK_DIV16) {
  678. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  679. } else if (clockDiv == SPI_CLOCK_DIV32) {
  680. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  681. } else if (clockDiv == SPI_CLOCK_DIV64) {
  682. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  683. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  684. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  685. }
  686. }
  687. static void setClockDivider_noInline(uint32_t clk);
  688. // These undocumented functions should not be used. SPI.transfer()
  689. // polls the hardware flag which is automatically cleared as the
  690. // AVR responds to SPI's interrupt
  691. inline static void attachInterrupt() { }
  692. inline static void detachInterrupt() { }
  693. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  694. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  695. SPCR1.setMOSI(pin);
  696. }
  697. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  698. SPCR1.setMISO(pin);
  699. }
  700. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  701. SPCR1.setSCK(pin);
  702. }
  703. // return true if "pin" has special chip select capability
  704. static uint8_t pinIsChipSelect(uint8_t pin);
  705. // return true if both pin1 and pin2 have independent chip select capability
  706. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  707. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  708. // setCS() is a special function, not intended for use from normal Arduino
  709. // programs/sketches. See the ILI3941_t3 library for an example.
  710. static uint8_t setCS(uint8_t pin);
  711. private:
  712. static uint8_t interruptMasksUsed;
  713. static uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  714. static uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  715. #ifdef SPI_TRANSACTION_MISMATCH_LED
  716. static uint8_t inTransactionFlag;
  717. #endif
  718. };
  719. class SPI2Class {
  720. public:
  721. // Initialize the SPI library
  722. static void begin();
  723. // If SPI is to used from within an interrupt, this function registers
  724. // that interrupt with the SPI library, so beginTransaction() can
  725. // prevent conflicts. The input interruptNumber is the number used
  726. // with attachInterrupt. If SPI is used from a different interrupt
  727. // (eg, a timer), interruptNumber should be 255.
  728. static void usingInterrupt(uint8_t n) {
  729. if (n == 3 || n == 4 || n == 24 || n == 33) {
  730. usingInterrupt(IRQ_PORTA);
  731. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  732. usingInterrupt(IRQ_PORTB);
  733. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  734. || (n >= 27 && n <= 30)) {
  735. usingInterrupt(IRQ_PORTC);
  736. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  737. usingInterrupt(IRQ_PORTD);
  738. } else if (n == 26 || n == 31) {
  739. usingInterrupt(IRQ_PORTE);
  740. }
  741. }
  742. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  743. static void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  744. // Before using SPI.transfer() or asserting chip select pins,
  745. // this function is used to gain exclusive access to the SPI bus
  746. // and configure the correct settings.
  747. inline static void beginTransaction(SPISettings settings) {
  748. if (interruptMasksUsed) {
  749. __disable_irq();
  750. if (interruptMasksUsed & 0x01) {
  751. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  752. NVIC_ICER0 = interruptSave[0];
  753. }
  754. #if NVIC_NUM_INTERRUPTS > 32
  755. if (interruptMasksUsed & 0x02) {
  756. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  757. NVIC_ICER1 = interruptSave[1];
  758. }
  759. #endif
  760. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  761. if (interruptMasksUsed & 0x04) {
  762. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  763. NVIC_ICER2 = interruptSave[2];
  764. }
  765. #endif
  766. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  767. if (interruptMasksUsed & 0x08) {
  768. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  769. NVIC_ICER3 = interruptSave[3];
  770. }
  771. #endif
  772. __enable_irq();
  773. }
  774. #ifdef SPI_TRANSACTION_MISMATCH_LED
  775. if (inTransactionFlag) {
  776. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  777. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  778. }
  779. inTransactionFlag = 1;
  780. #endif
  781. if (SPI2_CTAR0 != settings.ctar) {
  782. SPI2_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  783. SPI2_CTAR0 = settings.ctar;
  784. SPI2_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  785. SPI2_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  786. }
  787. }
  788. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  789. inline static uint8_t transfer(uint8_t data) {
  790. SPI2_SR = SPI_SR_TCF;
  791. SPI2_PUSHR = data;
  792. while (!(SPI2_SR & SPI_SR_TCF)) ; // wait
  793. return SPI2_POPR;
  794. }
  795. inline static uint16_t transfer16(uint16_t data) {
  796. SPI2_SR = SPI_SR_TCF;
  797. SPI2_PUSHR = data | SPI_PUSHR_CTAS(1);
  798. while (!(SPI2_SR & SPI_SR_TCF)) ; // wait
  799. return SPI2_POPR;
  800. }
  801. static void transfer(void *buf, size_t count);
  802. // After performing a group of transfers and releasing the chip select
  803. // signal, this function allows others to access the SPI bus
  804. inline static void endTransaction(void) {
  805. #ifdef SPI_TRANSACTION_MISMATCH_LED
  806. if (!inTransactionFlag) {
  807. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  808. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  809. }
  810. inTransactionFlag = 0;
  811. #endif
  812. if (interruptMasksUsed) {
  813. if (interruptMasksUsed & 0x01) {
  814. NVIC_ISER0 = interruptSave[0];
  815. }
  816. #if NVIC_NUM_INTERRUPTS > 32
  817. if (interruptMasksUsed & 0x02) {
  818. NVIC_ISER1 = interruptSave[1];
  819. }
  820. #endif
  821. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  822. if (interruptMasksUsed & 0x04) {
  823. NVIC_ISER2 = interruptSave[2];
  824. }
  825. #endif
  826. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  827. if (interruptMasksUsed & 0x08) {
  828. NVIC_ISER3 = interruptSave[3];
  829. }
  830. #endif
  831. }
  832. }
  833. // Disable the SPI bus
  834. static void end();
  835. // This function is deprecated. New applications should use
  836. // beginTransaction() to configure SPI settings.
  837. static void setBitOrder(uint8_t bitOrder);
  838. // This function is deprecated. New applications should use
  839. // beginTransaction() to configure SPI settings.
  840. static void setDataMode(uint8_t dataMode);
  841. // This function is deprecated. New applications should use
  842. // beginTransaction() to configure SPI settings.
  843. inline static void setClockDivider(uint8_t clockDiv) {
  844. if (clockDiv == SPI_CLOCK_DIV2) {
  845. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  846. } else if (clockDiv == SPI_CLOCK_DIV4) {
  847. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  848. } else if (clockDiv == SPI_CLOCK_DIV8) {
  849. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  850. } else if (clockDiv == SPI_CLOCK_DIV16) {
  851. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  852. } else if (clockDiv == SPI_CLOCK_DIV32) {
  853. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  854. } else if (clockDiv == SPI_CLOCK_DIV64) {
  855. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  856. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  857. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  858. }
  859. }
  860. static void setClockDivider_noInline(uint32_t clk);
  861. // These undocumented functions should not be used. SPI.transfer()
  862. // polls the hardware flag which is automatically cleared as the
  863. // AVR responds to SPI's interrupt
  864. inline static void attachInterrupt() { }
  865. inline static void detachInterrupt() { }
  866. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  867. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  868. SPCR2.setMOSI(pin);
  869. }
  870. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  871. SPCR2.setMISO(pin);
  872. }
  873. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  874. SPCR2.setSCK(pin);
  875. }
  876. // return true if "pin" has special chip select capability
  877. static uint8_t pinIsChipSelect(uint8_t pin);
  878. // return true if both pin1 and pin2 have independent chip select capability
  879. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  880. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  881. // setCS() is a special function, not intended for use from normal Arduino
  882. // programs/sketches. See the ILI3941_t3 library for an example.
  883. static uint8_t setCS(uint8_t pin);
  884. private:
  885. static uint8_t interruptMasksUsed;
  886. static uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  887. static uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  888. #ifdef SPI_TRANSACTION_MISMATCH_LED
  889. static uint8_t inTransactionFlag;
  890. #endif
  891. };
  892. #endif
  893. /**********************************************************/
  894. /* 32 bit Teensy-LC */
  895. /**********************************************************/
  896. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  897. class SPISettings {
  898. public:
  899. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  900. if (__builtin_constant_p(clock)) {
  901. init_AlwaysInline(clock, bitOrder, dataMode);
  902. } else {
  903. init_MightInline(clock, bitOrder, dataMode);
  904. }
  905. }
  906. SPISettings() {
  907. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  908. }
  909. private:
  910. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  911. init_AlwaysInline(clock, bitOrder, dataMode);
  912. }
  913. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  914. __attribute__((__always_inline__)) {
  915. uint8_t c = SPI_C1_MSTR | SPI_C1_SPE;
  916. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  917. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  918. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  919. c1 = c;
  920. if (__builtin_constant_p(clock)) {
  921. if (clock >= F_BUS / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  922. } else if (clock >= F_BUS / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  923. } else if (clock >= F_BUS / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  924. } else if (clock >= F_BUS / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  925. } else if (clock >= F_BUS / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  926. } else if (clock >= F_BUS / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  927. } else if (clock >= F_BUS / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  928. } else if (clock >= F_BUS / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  929. } else if (clock >= F_BUS / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  930. } else if (clock >= F_BUS / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  931. } else if (clock >= F_BUS / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  932. } else if (clock >= F_BUS / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  933. } else if (clock >= F_BUS / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  934. } else if (clock >= F_BUS / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  935. } else if (clock >= F_BUS / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  936. } else if (clock >= F_BUS / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  937. } else if (clock >= F_BUS / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  938. } else if (clock >= F_BUS / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  939. } else if (clock >= F_BUS / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  940. } else if (clock >= F_BUS / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  941. } else if (clock >= F_BUS / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  942. } else if (clock >= F_BUS / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  943. } else if (clock >= F_BUS / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  944. } else if (clock >= F_BUS / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  945. } else if (clock >= F_BUS / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  946. } else if (clock >= F_BUS / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  947. } else if (clock >= F_BUS / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  948. } else if (clock >= F_BUS / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  949. } else if (clock >= F_BUS / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  950. } else /* F_BUS / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  951. }
  952. } else {
  953. for (uint32_t i=0; i<30; i++) {
  954. c = br_clock_table[i];
  955. if (clock >= F_BUS / br_div_table[i]) break;
  956. }
  957. }
  958. br0 = c;
  959. if (__builtin_constant_p(clock)) {
  960. if (clock >= (F_PLL/2) / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  961. } else if (clock >= (F_PLL/2) / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  962. } else if (clock >= (F_PLL/2) / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  963. } else if (clock >= (F_PLL/2) / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  964. } else if (clock >= (F_PLL/2) / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  965. } else if (clock >= (F_PLL/2) / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  966. } else if (clock >= (F_PLL/2) / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  967. } else if (clock >= (F_PLL/2) / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  968. } else if (clock >= (F_PLL/2) / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  969. } else if (clock >= (F_PLL/2) / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  970. } else if (clock >= (F_PLL/2) / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  971. } else if (clock >= (F_PLL/2) / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  972. } else if (clock >= (F_PLL/2) / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  973. } else if (clock >= (F_PLL/2) / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  974. } else if (clock >= (F_PLL/2) / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  975. } else if (clock >= (F_PLL/2) / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  976. } else if (clock >= (F_PLL/2) / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  977. } else if (clock >= (F_PLL/2) / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  978. } else if (clock >= (F_PLL/2) / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  979. } else if (clock >= (F_PLL/2) / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  980. } else if (clock >= (F_PLL/2) / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  981. } else if (clock >= (F_PLL/2) / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  982. } else if (clock >= (F_PLL/2) / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  983. } else if (clock >= (F_PLL/2) / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  984. } else if (clock >= (F_PLL/2) / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  985. } else if (clock >= (F_PLL/2) / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  986. } else if (clock >= (F_PLL/2) / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  987. } else if (clock >= (F_PLL/2) / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  988. } else if (clock >= (F_PLL/2) / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  989. } else /* (F_PLL/2) / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  990. }
  991. } else {
  992. for (uint32_t i=0; i<30; i++) {
  993. c = br_clock_table[i];
  994. if (clock >= (F_PLL/2) / br_div_table[i]) break;
  995. }
  996. }
  997. br1 = c;
  998. }
  999. static const uint8_t br_clock_table[30];
  1000. static const uint16_t br_div_table[30];
  1001. uint8_t c1, br0, br1;
  1002. friend class SPIClass;
  1003. friend class SPI1Class;
  1004. };
  1005. class SPIClass {
  1006. public:
  1007. // Initialize the SPI library
  1008. static void begin();
  1009. // If SPI is to used from within an interrupt, this function registers
  1010. // that interrupt with the SPI library, so beginTransaction() can
  1011. // prevent conflicts. The input interruptNumber is the number used
  1012. // with attachInterrupt. If SPI is used from a different interrupt
  1013. // (eg, a timer), interruptNumber should be 255.
  1014. static void usingInterrupt(uint8_t n) {
  1015. if (n == 3 || n == 4) {
  1016. usingInterrupt(IRQ_PORTA);
  1017. } else if ((n >= 2 && n <= 15) || (n >= 20 && n <= 23)) {
  1018. usingInterrupt(IRQ_PORTCD);
  1019. }
  1020. }
  1021. static void usingInterrupt(IRQ_NUMBER_t interruptName) {
  1022. uint32_t n = (uint32_t)interruptName;
  1023. if (n < NVIC_NUM_INTERRUPTS) interruptMask |= (1 << n);
  1024. }
  1025. static void notUsingInterrupt(IRQ_NUMBER_t interruptName) {
  1026. uint32_t n = (uint32_t)interruptName;
  1027. if (n < NVIC_NUM_INTERRUPTS) interruptMask &= ~(1 << n);
  1028. }
  1029. // Before using SPI.transfer() or asserting chip select pins,
  1030. // this function is used to gain exclusive access to the SPI bus
  1031. // and configure the correct settings.
  1032. inline static void beginTransaction(SPISettings settings) {
  1033. if (interruptMask) {
  1034. __disable_irq();
  1035. interruptSave = NVIC_ICER0 & interruptMask;
  1036. NVIC_ICER0 = interruptSave;
  1037. __enable_irq();
  1038. }
  1039. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1040. if (inTransactionFlag) {
  1041. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1042. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1043. }
  1044. inTransactionFlag = 1;
  1045. #endif
  1046. SPI0_C1 = settings.c1;
  1047. SPI0_BR = settings.br0;
  1048. }
  1049. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  1050. inline static uint8_t transfer(uint8_t data) {
  1051. SPI0_DL = data;
  1052. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  1053. return SPI0_DL;
  1054. }
  1055. inline static uint16_t transfer16(uint16_t data) {
  1056. SPI0_C2 = SPI_C2_SPIMODE;
  1057. SPI0_S;
  1058. SPI0_DL = data;
  1059. SPI0_DH = data >> 8;
  1060. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  1061. uint16_t r = SPI0_DL | (SPI0_DH << 8);
  1062. SPI0_C2 = 0;
  1063. SPI0_S;
  1064. return r;
  1065. }
  1066. inline static void transfer(void *buf, size_t count) {
  1067. if (count == 0) return;
  1068. uint8_t *p = (uint8_t *)buf;
  1069. while (!(SPI0_S & SPI_S_SPTEF)) ; // wait
  1070. SPI0_DL = *p;
  1071. while (--count > 0) {
  1072. uint8_t out = *(p + 1);
  1073. while (!(SPI0_S & SPI_S_SPTEF)) ; // wait
  1074. __disable_irq();
  1075. SPI0_DL = out;
  1076. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  1077. uint8_t in = SPI0_DL;
  1078. __enable_irq();
  1079. *p++ = in;
  1080. }
  1081. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  1082. *p = SPDR;
  1083. }
  1084. // After performing a group of transfers and releasing the chip select
  1085. // signal, this function allows others to access the SPI bus
  1086. inline static void endTransaction(void) {
  1087. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1088. if (!inTransactionFlag) {
  1089. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1090. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1091. }
  1092. inTransactionFlag = 0;
  1093. #endif
  1094. if (interruptMask) {
  1095. NVIC_ISER0 = interruptSave;
  1096. }
  1097. }
  1098. // Disable the SPI bus
  1099. static void end();
  1100. // This function is deprecated. New applications should use
  1101. // beginTransaction() to configure SPI settings.
  1102. static void setBitOrder(uint8_t bitOrder) {
  1103. uint8_t c = SPI0_C1 | SPI_C1_SPE;
  1104. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  1105. else c &= ~SPI_C1_LSBFE;
  1106. SPI0_C1 = c;
  1107. }
  1108. // This function is deprecated. New applications should use
  1109. // beginTransaction() to configure SPI settings.
  1110. static void setDataMode(uint8_t dataMode) {
  1111. uint8_t c = SPI0_C1 | SPI_C1_SPE;
  1112. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  1113. else c &= ~SPI_C1_CPHA;
  1114. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  1115. else c &= ~SPI_C1_CPOL;
  1116. SPI0_C1 = c;
  1117. }
  1118. // This function is deprecated. New applications should use
  1119. // beginTransaction() to configure SPI settings.
  1120. inline static void setClockDivider(uint8_t clockDiv) {
  1121. if (clockDiv == SPI_CLOCK_DIV2) {
  1122. SPI0_BR = (SPISettings(12000000, MSBFIRST, SPI_MODE0).br0);
  1123. } else if (clockDiv == SPI_CLOCK_DIV4) {
  1124. SPI0_BR = (SPISettings(4000000, MSBFIRST, SPI_MODE0).br0);
  1125. } else if (clockDiv == SPI_CLOCK_DIV8) {
  1126. SPI0_BR = (SPISettings(2000000, MSBFIRST, SPI_MODE0).br0);
  1127. } else if (clockDiv == SPI_CLOCK_DIV16) {
  1128. SPI0_BR = (SPISettings(1000000, MSBFIRST, SPI_MODE0).br0);
  1129. } else if (clockDiv == SPI_CLOCK_DIV32) {
  1130. SPI0_BR = (SPISettings(500000, MSBFIRST, SPI_MODE0).br0);
  1131. } else if (clockDiv == SPI_CLOCK_DIV64) {
  1132. SPI0_BR = (SPISettings(250000, MSBFIRST, SPI_MODE0).br0);
  1133. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  1134. SPI0_BR = (SPISettings(125000, MSBFIRST, SPI_MODE0).br0);
  1135. }
  1136. }
  1137. // These undocumented functions should not be used. SPI.transfer()
  1138. // polls the hardware flag which is automatically cleared as the
  1139. // AVR responds to SPI's interrupt
  1140. inline static void attachInterrupt() { }
  1141. inline static void detachInterrupt() { }
  1142. // Teensy LC can use alternate pins for these 3 SPI signals.
  1143. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  1144. SPCR.setMOSI(pin);
  1145. }
  1146. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  1147. SPCR.setMISO(pin);
  1148. }
  1149. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  1150. SPCR.setSCK(pin);
  1151. }
  1152. // return true if "pin" has special chip select capability
  1153. static bool pinIsChipSelect(uint8_t pin) { return (pin == 10 || pin == 2); }
  1154. // return true if both pin1 and pin2 have independent chip select capability
  1155. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2) { return false; }
  1156. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  1157. // setCS() is a special function, not intended for use from normal Arduino
  1158. // programs/sketches. See the ILI3941_t3 library for an example.
  1159. static uint8_t setCS(uint8_t pin);
  1160. private:
  1161. static uint32_t interruptMask;
  1162. static uint32_t interruptSave;
  1163. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1164. static uint8_t inTransactionFlag;
  1165. #endif
  1166. };
  1167. class SPI1Class {
  1168. public:
  1169. // Initialize the SPI library
  1170. static void begin();
  1171. // If SPI is to used from within an interrupt, this function registers
  1172. // that interrupt with the SPI library, so beginTransaction() can
  1173. // prevent conflicts. The input interruptNumber is the number used
  1174. // with attachInterrupt. If SPI is used from a different interrupt
  1175. // (eg, a timer), interruptNumber should be 255.
  1176. static void usingInterrupt(uint8_t n) {
  1177. if (n == 3 || n == 4) {
  1178. usingInterrupt(IRQ_PORTA);
  1179. } else if ((n >= 2 && n <= 15) || (n >= 20 && n <= 23)) {
  1180. usingInterrupt(IRQ_PORTCD);
  1181. }
  1182. }
  1183. static void usingInterrupt(IRQ_NUMBER_t interruptName) {
  1184. uint32_t n = (uint32_t)interruptName;
  1185. if (n < NVIC_NUM_INTERRUPTS) interruptMask |= (1 << n);
  1186. }
  1187. static void notUsingInterrupt(IRQ_NUMBER_t interruptName) {
  1188. uint32_t n = (uint32_t)interruptName;
  1189. if (n < NVIC_NUM_INTERRUPTS) interruptMask &= ~(1 << n);
  1190. }
  1191. // Before using SPI.transfer() or asserting chip select pins,
  1192. // this function is used to gain exclusive access to the SPI bus
  1193. // and configure the correct settings.
  1194. inline static void beginTransaction(SPISettings settings) {
  1195. if (interruptMask) {
  1196. __disable_irq();
  1197. interruptSave = NVIC_ICER0 & interruptMask;
  1198. NVIC_ICER0 = interruptSave;
  1199. __enable_irq();
  1200. }
  1201. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1202. if (inTransactionFlag) {
  1203. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1204. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1205. }
  1206. inTransactionFlag = 1;
  1207. #endif
  1208. SPI1_C1 = settings.c1;
  1209. SPI1_BR = settings.br1;
  1210. }
  1211. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  1212. inline static uint8_t transfer(uint8_t data) {
  1213. SPI1_DL = data;
  1214. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1215. return SPI1_DL;
  1216. }
  1217. inline static uint16_t transfer16(uint16_t data) {
  1218. SPI1_C2 = SPI_C2_SPIMODE;
  1219. SPI1_S;
  1220. SPI1_DL = data;
  1221. SPI1_DH = data >> 8;
  1222. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1223. uint16_t r = SPI1_DL | (SPI1_DH << 8);
  1224. SPI1_C2 = 0;
  1225. SPI1_S;
  1226. return r;
  1227. }
  1228. inline static void transfer(void *buf, size_t count) {
  1229. if (count == 0) return;
  1230. uint8_t *p = (uint8_t *)buf;
  1231. while (!(SPI1_S & SPI_S_SPTEF)) ; // wait
  1232. SPI1_DL = *p;
  1233. while (--count > 0) {
  1234. uint8_t out = *(p + 1);
  1235. while (!(SPI1_S & SPI_S_SPTEF)) ; // wait
  1236. __disable_irq();
  1237. SPI1_DL = out;
  1238. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1239. uint8_t in = SPI1_DL;
  1240. __enable_irq();
  1241. *p++ = in;
  1242. }
  1243. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1244. *p = SPDR;
  1245. }
  1246. // After performing a group of transfers and releasing the chip select
  1247. // signal, this function allows others to access the SPI bus
  1248. inline static void endTransaction(void) {
  1249. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1250. if (!inTransactionFlag) {
  1251. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1252. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1253. }
  1254. inTransactionFlag = 0;
  1255. #endif
  1256. if (interruptMask) {
  1257. NVIC_ISER0 = interruptSave;
  1258. }
  1259. }
  1260. // Disable the SPI bus
  1261. static void end();
  1262. // This function is deprecated. New applications should use
  1263. // beginTransaction() to configure SPI settings.
  1264. static void setBitOrder(uint8_t bitOrder) {
  1265. uint8_t c = SPI1_C1 | SPI_C1_SPE;
  1266. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  1267. else c &= ~SPI_C1_LSBFE;
  1268. SPI1_C1 = c;
  1269. }
  1270. // This function is deprecated. New applications should use
  1271. // beginTransaction() to configure SPI settings.
  1272. static void setDataMode(uint8_t dataMode) {
  1273. uint8_t c = SPI1_C1 | SPI_C1_SPE;
  1274. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  1275. else c &= ~SPI_C1_CPHA;
  1276. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  1277. else c &= ~SPI_C1_CPOL;
  1278. SPI1_C1 = c;
  1279. }
  1280. // This function is deprecated. New applications should use
  1281. // beginTransaction() to configure SPI settings.
  1282. inline static void setClockDivider(uint8_t clockDiv) {
  1283. if (clockDiv == SPI_CLOCK_DIV2) {
  1284. SPI1_BR = (SPISettings(12000000, MSBFIRST, SPI_MODE0).br1);
  1285. } else if (clockDiv == SPI_CLOCK_DIV4) {
  1286. SPI1_BR = (SPISettings(4000000, MSBFIRST, SPI_MODE0).br1);
  1287. } else if (clockDiv == SPI_CLOCK_DIV8) {
  1288. SPI1_BR = (SPISettings(2000000, MSBFIRST, SPI_MODE0).br1);
  1289. } else if (clockDiv == SPI_CLOCK_DIV16) {
  1290. SPI1_BR = (SPISettings(1000000, MSBFIRST, SPI_MODE0).br1);
  1291. } else if (clockDiv == SPI_CLOCK_DIV32) {
  1292. SPI1_BR = (SPISettings(500000, MSBFIRST, SPI_MODE0).br1);
  1293. } else if (clockDiv == SPI_CLOCK_DIV64) {
  1294. SPI1_BR = (SPISettings(250000, MSBFIRST, SPI_MODE0).br1);
  1295. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  1296. SPI1_BR = (SPISettings(125000, MSBFIRST, SPI_MODE0).br1);
  1297. }
  1298. }
  1299. // These undocumented functions should not be used. SPI.transfer()
  1300. // polls the hardware flag which is automatically cleared as the
  1301. // AVR responds to SPI's interrupt
  1302. inline static void attachInterrupt() { }
  1303. inline static void detachInterrupt() { }
  1304. // Teensy LC can use alternate pins for these 3 SPI signals.
  1305. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  1306. SPCR1.setMOSI(pin);
  1307. }
  1308. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  1309. SPCR1.setMISO(pin);
  1310. }
  1311. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  1312. SPCR1.setSCK(pin);
  1313. }
  1314. // return true if "pin" has special chip select capability
  1315. static bool pinIsChipSelect(uint8_t pin) { return (pin == 6); }
  1316. // return true if both pin1 and pin2 have independent chip select capability
  1317. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2) { return false; }
  1318. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  1319. // setCS() is a special function, not intended for use from normal Arduino
  1320. // programs/sketches. See the ILI3941_t3 library for an example.
  1321. static uint8_t setCS(uint8_t pin);
  1322. private:
  1323. static uint32_t interruptMask;
  1324. static uint32_t interruptSave;
  1325. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1326. static uint8_t inTransactionFlag;
  1327. #endif
  1328. };
  1329. /**********************************************************/
  1330. /* 32 bit Arduino Due */
  1331. /**********************************************************/
  1332. #elif defined(__arm__) && defined(__SAM3X8E__)
  1333. #undef SPI_MODE0
  1334. #undef SPI_MODE1
  1335. #undef SPI_MODE2
  1336. #undef SPI_MODE3
  1337. #define SPI_MODE0 0x02
  1338. #define SPI_MODE1 0x00
  1339. #define SPI_MODE2 0x03
  1340. #define SPI_MODE3 0x01
  1341. #undef SPI_CLOCK_DIV2
  1342. #undef SPI_CLOCK_DIV4
  1343. #undef SPI_CLOCK_DIV8
  1344. #undef SPI_CLOCK_DIV16
  1345. #undef SPI_CLOCK_DIV32
  1346. #undef SPI_CLOCK_DIV64
  1347. #undef SPI_CLOCK_DIV128
  1348. #define SPI_CLOCK_DIV2 11
  1349. #define SPI_CLOCK_DIV4 21
  1350. #define SPI_CLOCK_DIV8 42
  1351. #define SPI_CLOCK_DIV16 84
  1352. #define SPI_CLOCK_DIV32 168
  1353. #define SPI_CLOCK_DIV64 255
  1354. #define SPI_CLOCK_DIV128 255
  1355. enum SPITransferMode {
  1356. SPI_CONTINUE,
  1357. SPI_LAST
  1358. };
  1359. class SPISettings {
  1360. public:
  1361. SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  1362. if (__builtin_constant_p(clock)) {
  1363. init_AlwaysInline(clock, bitOrder, dataMode);
  1364. } else {
  1365. init_MightInline(clock, bitOrder, dataMode);
  1366. }
  1367. }
  1368. SPISettings() {
  1369. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  1370. }
  1371. private:
  1372. void init_MightInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  1373. init_AlwaysInline(clock, bitOrder, dataMode);
  1374. }
  1375. void init_AlwaysInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode)
  1376. __attribute__((__always_inline__)) {
  1377. uint8_t div;
  1378. border = bitOrder;
  1379. if (__builtin_constant_p(clock)) {
  1380. if (clock >= F_CPU / 2) div = 2;
  1381. else if (clock >= F_CPU / 3) div = 3;
  1382. else if (clock >= F_CPU / 4) div = 4;
  1383. else if (clock >= F_CPU / 5) div = 5;
  1384. else if (clock >= F_CPU / 6) div = 6;
  1385. else if (clock >= F_CPU / 7) div = 7;
  1386. else if (clock >= F_CPU / 8) div = 8;
  1387. else if (clock >= F_CPU / 9) div = 9;
  1388. else if (clock >= F_CPU / 10) div = 10;
  1389. else if (clock >= F_CPU / 11) div = 11;
  1390. else if (clock >= F_CPU / 12) div = 12;
  1391. else if (clock >= F_CPU / 13) div = 13;
  1392. else if (clock >= F_CPU / 14) div = 14;
  1393. else if (clock >= F_CPU / 15) div = 15;
  1394. else if (clock >= F_CPU / 16) div = 16;
  1395. else if (clock >= F_CPU / 17) div = 17;
  1396. else if (clock >= F_CPU / 18) div = 18;
  1397. else if (clock >= F_CPU / 19) div = 19;
  1398. else if (clock >= F_CPU / 20) div = 20;
  1399. else if (clock >= F_CPU / 21) div = 21;
  1400. else if (clock >= F_CPU / 22) div = 22;
  1401. else if (clock >= F_CPU / 23) div = 23;
  1402. else if (clock >= F_CPU / 24) div = 24;
  1403. else if (clock >= F_CPU / 25) div = 25;
  1404. else if (clock >= F_CPU / 26) div = 26;
  1405. else if (clock >= F_CPU / 27) div = 27;
  1406. else if (clock >= F_CPU / 28) div = 28;
  1407. else if (clock >= F_CPU / 29) div = 29;
  1408. else if (clock >= F_CPU / 30) div = 30;
  1409. else if (clock >= F_CPU / 31) div = 31;
  1410. else if (clock >= F_CPU / 32) div = 32;
  1411. else if (clock >= F_CPU / 33) div = 33;
  1412. else if (clock >= F_CPU / 34) div = 34;
  1413. else if (clock >= F_CPU / 35) div = 35;
  1414. else if (clock >= F_CPU / 36) div = 36;
  1415. else if (clock >= F_CPU / 37) div = 37;
  1416. else if (clock >= F_CPU / 38) div = 38;
  1417. else if (clock >= F_CPU / 39) div = 39;
  1418. else if (clock >= F_CPU / 40) div = 40;
  1419. else if (clock >= F_CPU / 41) div = 41;
  1420. else if (clock >= F_CPU / 42) div = 42;
  1421. else if (clock >= F_CPU / 43) div = 43;
  1422. else if (clock >= F_CPU / 44) div = 44;
  1423. else if (clock >= F_CPU / 45) div = 45;
  1424. else if (clock >= F_CPU / 46) div = 46;
  1425. else if (clock >= F_CPU / 47) div = 47;
  1426. else if (clock >= F_CPU / 48) div = 48;
  1427. else if (clock >= F_CPU / 49) div = 49;
  1428. else if (clock >= F_CPU / 50) div = 50;
  1429. else if (clock >= F_CPU / 51) div = 51;
  1430. else if (clock >= F_CPU / 52) div = 52;
  1431. else if (clock >= F_CPU / 53) div = 53;
  1432. else if (clock >= F_CPU / 54) div = 54;
  1433. else if (clock >= F_CPU / 55) div = 55;
  1434. else if (clock >= F_CPU / 56) div = 56;
  1435. else if (clock >= F_CPU / 57) div = 57;
  1436. else if (clock >= F_CPU / 58) div = 58;
  1437. else if (clock >= F_CPU / 59) div = 59;
  1438. else if (clock >= F_CPU / 60) div = 60;
  1439. else if (clock >= F_CPU / 61) div = 61;
  1440. else if (clock >= F_CPU / 62) div = 62;
  1441. else if (clock >= F_CPU / 63) div = 63;
  1442. else if (clock >= F_CPU / 64) div = 64;
  1443. else if (clock >= F_CPU / 65) div = 65;
  1444. else if (clock >= F_CPU / 66) div = 66;
  1445. else if (clock >= F_CPU / 67) div = 67;
  1446. else if (clock >= F_CPU / 68) div = 68;
  1447. else if (clock >= F_CPU / 69) div = 69;
  1448. else if (clock >= F_CPU / 70) div = 70;
  1449. else if (clock >= F_CPU / 71) div = 71;
  1450. else if (clock >= F_CPU / 72) div = 72;
  1451. else if (clock >= F_CPU / 73) div = 73;
  1452. else if (clock >= F_CPU / 74) div = 74;
  1453. else if (clock >= F_CPU / 75) div = 75;
  1454. else if (clock >= F_CPU / 76) div = 76;
  1455. else if (clock >= F_CPU / 77) div = 77;
  1456. else if (clock >= F_CPU / 78) div = 78;
  1457. else if (clock >= F_CPU / 79) div = 79;
  1458. else if (clock >= F_CPU / 80) div = 80;
  1459. else if (clock >= F_CPU / 81) div = 81;
  1460. else if (clock >= F_CPU / 82) div = 82;
  1461. else if (clock >= F_CPU / 83) div = 83;
  1462. else if (clock >= F_CPU / 84) div = 84;
  1463. else if (clock >= F_CPU / 85) div = 85;
  1464. else if (clock >= F_CPU / 86) div = 86;
  1465. else if (clock >= F_CPU / 87) div = 87;
  1466. else if (clock >= F_CPU / 88) div = 88;
  1467. else if (clock >= F_CPU / 89) div = 89;
  1468. else if (clock >= F_CPU / 90) div = 90;
  1469. else if (clock >= F_CPU / 91) div = 91;
  1470. else if (clock >= F_CPU / 92) div = 92;
  1471. else if (clock >= F_CPU / 93) div = 93;
  1472. else if (clock >= F_CPU / 94) div = 94;
  1473. else if (clock >= F_CPU / 95) div = 95;
  1474. else if (clock >= F_CPU / 96) div = 96;
  1475. else if (clock >= F_CPU / 97) div = 97;
  1476. else if (clock >= F_CPU / 98) div = 98;
  1477. else if (clock >= F_CPU / 99) div = 99;
  1478. else if (clock >= F_CPU / 100) div = 100;
  1479. else if (clock >= F_CPU / 101) div = 101;
  1480. else if (clock >= F_CPU / 102) div = 102;
  1481. else if (clock >= F_CPU / 103) div = 103;
  1482. else if (clock >= F_CPU / 104) div = 104;
  1483. else if (clock >= F_CPU / 105) div = 105;
  1484. else if (clock >= F_CPU / 106) div = 106;
  1485. else if (clock >= F_CPU / 107) div = 107;
  1486. else if (clock >= F_CPU / 108) div = 108;
  1487. else if (clock >= F_CPU / 109) div = 109;
  1488. else if (clock >= F_CPU / 110) div = 110;
  1489. else if (clock >= F_CPU / 111) div = 111;
  1490. else if (clock >= F_CPU / 112) div = 112;
  1491. else if (clock >= F_CPU / 113) div = 113;
  1492. else if (clock >= F_CPU / 114) div = 114;
  1493. else if (clock >= F_CPU / 115) div = 115;
  1494. else if (clock >= F_CPU / 116) div = 116;
  1495. else if (clock >= F_CPU / 117) div = 117;
  1496. else if (clock >= F_CPU / 118) div = 118;
  1497. else if (clock >= F_CPU / 119) div = 119;
  1498. else if (clock >= F_CPU / 120) div = 120;
  1499. else if (clock >= F_CPU / 121) div = 121;
  1500. else if (clock >= F_CPU / 122) div = 122;
  1501. else if (clock >= F_CPU / 123) div = 123;
  1502. else if (clock >= F_CPU / 124) div = 124;
  1503. else if (clock >= F_CPU / 125) div = 125;
  1504. else if (clock >= F_CPU / 126) div = 126;
  1505. else if (clock >= F_CPU / 127) div = 127;
  1506. else if (clock >= F_CPU / 128) div = 128;
  1507. else if (clock >= F_CPU / 129) div = 129;
  1508. else if (clock >= F_CPU / 130) div = 130;
  1509. else if (clock >= F_CPU / 131) div = 131;
  1510. else if (clock >= F_CPU / 132) div = 132;
  1511. else if (clock >= F_CPU / 133) div = 133;
  1512. else if (clock >= F_CPU / 134) div = 134;
  1513. else if (clock >= F_CPU / 135) div = 135;
  1514. else if (clock >= F_CPU / 136) div = 136;
  1515. else if (clock >= F_CPU / 137) div = 137;
  1516. else if (clock >= F_CPU / 138) div = 138;
  1517. else if (clock >= F_CPU / 139) div = 139;
  1518. else if (clock >= F_CPU / 140) div = 140;
  1519. else if (clock >= F_CPU / 141) div = 141;
  1520. else if (clock >= F_CPU / 142) div = 142;
  1521. else if (clock >= F_CPU / 143) div = 143;
  1522. else if (clock >= F_CPU / 144) div = 144;
  1523. else if (clock >= F_CPU / 145) div = 145;
  1524. else if (clock >= F_CPU / 146) div = 146;
  1525. else if (clock >= F_CPU / 147) div = 147;
  1526. else if (clock >= F_CPU / 148) div = 148;
  1527. else if (clock >= F_CPU / 149) div = 149;
  1528. else if (clock >= F_CPU / 150) div = 150;
  1529. else if (clock >= F_CPU / 151) div = 151;
  1530. else if (clock >= F_CPU / 152) div = 152;
  1531. else if (clock >= F_CPU / 153) div = 153;
  1532. else if (clock >= F_CPU / 154) div = 154;
  1533. else if (clock >= F_CPU / 155) div = 155;
  1534. else if (clock >= F_CPU / 156) div = 156;
  1535. else if (clock >= F_CPU / 157) div = 157;
  1536. else if (clock >= F_CPU / 158) div = 158;
  1537. else if (clock >= F_CPU / 159) div = 159;
  1538. else if (clock >= F_CPU / 160) div = 160;
  1539. else if (clock >= F_CPU / 161) div = 161;
  1540. else if (clock >= F_CPU / 162) div = 162;
  1541. else if (clock >= F_CPU / 163) div = 163;
  1542. else if (clock >= F_CPU / 164) div = 164;
  1543. else if (clock >= F_CPU / 165) div = 165;
  1544. else if (clock >= F_CPU / 166) div = 166;
  1545. else if (clock >= F_CPU / 167) div = 167;
  1546. else if (clock >= F_CPU / 168) div = 168;
  1547. else if (clock >= F_CPU / 169) div = 169;
  1548. else if (clock >= F_CPU / 170) div = 170;
  1549. else if (clock >= F_CPU / 171) div = 171;
  1550. else if (clock >= F_CPU / 172) div = 172;
  1551. else if (clock >= F_CPU / 173) div = 173;
  1552. else if (clock >= F_CPU / 174) div = 174;
  1553. else if (clock >= F_CPU / 175) div = 175;
  1554. else if (clock >= F_CPU / 176) div = 176;
  1555. else if (clock >= F_CPU / 177) div = 177;
  1556. else if (clock >= F_CPU / 178) div = 178;
  1557. else if (clock >= F_CPU / 179) div = 179;
  1558. else if (clock >= F_CPU / 180) div = 180;
  1559. else if (clock >= F_CPU / 181) div = 181;
  1560. else if (clock >= F_CPU / 182) div = 182;
  1561. else if (clock >= F_CPU / 183) div = 183;
  1562. else if (clock >= F_CPU / 184) div = 184;
  1563. else if (clock >= F_CPU / 185) div = 185;
  1564. else if (clock >= F_CPU / 186) div = 186;
  1565. else if (clock >= F_CPU / 187) div = 187;
  1566. else if (clock >= F_CPU / 188) div = 188;
  1567. else if (clock >= F_CPU / 189) div = 189;
  1568. else if (clock >= F_CPU / 190) div = 190;
  1569. else if (clock >= F_CPU / 191) div = 191;
  1570. else if (clock >= F_CPU / 192) div = 192;
  1571. else if (clock >= F_CPU / 193) div = 193;
  1572. else if (clock >= F_CPU / 194) div = 194;
  1573. else if (clock >= F_CPU / 195) div = 195;
  1574. else if (clock >= F_CPU / 196) div = 196;
  1575. else if (clock >= F_CPU / 197) div = 197;
  1576. else if (clock >= F_CPU / 198) div = 198;
  1577. else if (clock >= F_CPU / 199) div = 199;
  1578. else if (clock >= F_CPU / 200) div = 200;
  1579. else if (clock >= F_CPU / 201) div = 201;
  1580. else if (clock >= F_CPU / 202) div = 202;
  1581. else if (clock >= F_CPU / 203) div = 203;
  1582. else if (clock >= F_CPU / 204) div = 204;
  1583. else if (clock >= F_CPU / 205) div = 205;
  1584. else if (clock >= F_CPU / 206) div = 206;
  1585. else if (clock >= F_CPU / 207) div = 207;
  1586. else if (clock >= F_CPU / 208) div = 208;
  1587. else if (clock >= F_CPU / 209) div = 209;
  1588. else if (clock >= F_CPU / 210) div = 210;
  1589. else if (clock >= F_CPU / 211) div = 211;
  1590. else if (clock >= F_CPU / 212) div = 212;
  1591. else if (clock >= F_CPU / 213) div = 213;
  1592. else if (clock >= F_CPU / 214) div = 214;
  1593. else if (clock >= F_CPU / 215) div = 215;
  1594. else if (clock >= F_CPU / 216) div = 216;
  1595. else if (clock >= F_CPU / 217) div = 217;
  1596. else if (clock >= F_CPU / 218) div = 218;
  1597. else if (clock >= F_CPU / 219) div = 219;
  1598. else if (clock >= F_CPU / 220) div = 220;
  1599. else if (clock >= F_CPU / 221) div = 221;
  1600. else if (clock >= F_CPU / 222) div = 222;
  1601. else if (clock >= F_CPU / 223) div = 223;
  1602. else if (clock >= F_CPU / 224) div = 224;
  1603. else if (clock >= F_CPU / 225) div = 225;
  1604. else if (clock >= F_CPU / 226) div = 226;
  1605. else if (clock >= F_CPU / 227) div = 227;
  1606. else if (clock >= F_CPU / 228) div = 228;
  1607. else if (clock >= F_CPU / 229) div = 229;
  1608. else if (clock >= F_CPU / 230) div = 230;
  1609. else if (clock >= F_CPU / 231) div = 231;
  1610. else if (clock >= F_CPU / 232) div = 232;
  1611. else if (clock >= F_CPU / 233) div = 233;
  1612. else if (clock >= F_CPU / 234) div = 234;
  1613. else if (clock >= F_CPU / 235) div = 235;
  1614. else if (clock >= F_CPU / 236) div = 236;
  1615. else if (clock >= F_CPU / 237) div = 237;
  1616. else if (clock >= F_CPU / 238) div = 238;
  1617. else if (clock >= F_CPU / 239) div = 239;
  1618. else if (clock >= F_CPU / 240) div = 240;
  1619. else if (clock >= F_CPU / 241) div = 241;
  1620. else if (clock >= F_CPU / 242) div = 242;
  1621. else if (clock >= F_CPU / 243) div = 243;
  1622. else if (clock >= F_CPU / 244) div = 244;
  1623. else if (clock >= F_CPU / 245) div = 245;
  1624. else if (clock >= F_CPU / 246) div = 246;
  1625. else if (clock >= F_CPU / 247) div = 247;
  1626. else if (clock >= F_CPU / 248) div = 248;
  1627. else if (clock >= F_CPU / 249) div = 249;
  1628. else if (clock >= F_CPU / 250) div = 250;
  1629. else if (clock >= F_CPU / 251) div = 251;
  1630. else if (clock >= F_CPU / 252) div = 252;
  1631. else if (clock >= F_CPU / 253) div = 253;
  1632. else if (clock >= F_CPU / 254) div = 254;
  1633. else /* clock >= F_CPU / 255 */ div = 255;
  1634. /*
  1635. #! /usr/bin/perl
  1636. for ($i=2; $i<256; $i++) {
  1637. printf "\t\t\telse if (clock >= F_CPU / %3d) div = %3d;\n", $i, $i;
  1638. }
  1639. */
  1640. } else {
  1641. for (div=2; div<255; div++) {
  1642. if (clock >= F_CPU / div) break;
  1643. }
  1644. }
  1645. config = (dataMode & 3) | SPI_CSR_CSAAT | SPI_CSR_SCBR(div) | SPI_CSR_DLYBCT(1);
  1646. }
  1647. uint32_t config;
  1648. BitOrder border;
  1649. friend class SPIClass;
  1650. };
  1651. class SPIClass {
  1652. public:
  1653. SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void));
  1654. byte transfer(uint8_t _data, SPITransferMode _mode = SPI_LAST) { return transfer(BOARD_SPI_DEFAULT_SS, _data, _mode); }
  1655. byte transfer(byte _channel, uint8_t _data, SPITransferMode _mode = SPI_LAST);
  1656. // Transaction Functions
  1657. void usingInterrupt(uint8_t interruptNumber);
  1658. void beginTransaction(uint8_t pin, SPISettings settings);
  1659. void beginTransaction(SPISettings settings) {
  1660. beginTransaction(BOARD_SPI_DEFAULT_SS, settings);
  1661. }
  1662. void endTransaction(void);
  1663. // SPI Configuration methods
  1664. void attachInterrupt(void);
  1665. void detachInterrupt(void);
  1666. void begin(void);
  1667. void end(void);
  1668. // Attach/Detach pin to/from SPI controller
  1669. void begin(uint8_t _pin);
  1670. void end(uint8_t _pin);
  1671. // These methods sets a parameter on a single pin
  1672. void setBitOrder(uint8_t _pin, BitOrder);
  1673. void setDataMode(uint8_t _pin, uint8_t);
  1674. void setClockDivider(uint8_t _pin, uint8_t);
  1675. // These methods sets the same parameters but on default pin BOARD_SPI_DEFAULT_SS
  1676. void setBitOrder(BitOrder _order) { setBitOrder(BOARD_SPI_DEFAULT_SS, _order); };
  1677. void setDataMode(uint8_t _mode) { setDataMode(BOARD_SPI_DEFAULT_SS, _mode); };
  1678. void setClockDivider(uint8_t _div) { setClockDivider(BOARD_SPI_DEFAULT_SS, _div); };
  1679. private:
  1680. void init();
  1681. Spi *spi;
  1682. uint32_t id;
  1683. BitOrder bitOrder[SPI_CHANNELS_NUM];
  1684. uint32_t divider[SPI_CHANNELS_NUM];
  1685. uint32_t mode[SPI_CHANNELS_NUM];
  1686. void (*initCb)(void);
  1687. bool initialized;
  1688. uint8_t interruptMode; // 0=none, 1=mask, 2=global
  1689. uint8_t interruptMask; // bits 0:3=pin change
  1690. uint8_t interruptSave; // temp storage, to restore state
  1691. };
  1692. #endif
  1693. extern SPIClass SPI;
  1694. #if defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  1695. extern SPI1Class SPI1;
  1696. #endif
  1697. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  1698. extern SPI1Class SPI1;
  1699. extern SPI2Class SPI2;
  1700. #endif
  1701. #endif