Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

10 lat temu
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * Copyright (c) 2014 by Paul Stoffregen <paul@pjrc.com> (Transaction API)
  4. * Copyright (c) 2014 by Matthijs Kooijman <matthijs@stdin.nl> (SPISettings AVR)
  5. * SPI Master library for arduino.
  6. *
  7. * This file is free software; you can redistribute it and/or modify
  8. * it under the terms of either the GNU General Public License version 2
  9. * or the GNU Lesser General Public License version 2.1, both as
  10. * published by the Free Software Foundation.
  11. */
  12. #ifndef _SPI_H_INCLUDED
  13. #define _SPI_H_INCLUDED
  14. #include <Arduino.h>
  15. #if defined(__arm__) && defined(TEENSYDUINO)
  16. #if defined(__has_include) && __has_include(<EventResponder.h>)
  17. // SPI_HAS_TRANSFER_ASYNC - Defined to say that the SPI supports an ASYNC version
  18. // of the SPI_HAS_TRANSFER_BUF
  19. #define SPI_HAS_TRANSFER_ASYNC 1
  20. #include <DMAChannel.h>
  21. #include <EventResponder.h>
  22. #endif
  23. #endif
  24. // SPI_HAS_TRANSACTION means SPI has beginTransaction(), endTransaction(),
  25. // usingInterrupt(), and SPISetting(clock, bitOrder, dataMode)
  26. #define SPI_HAS_TRANSACTION 1
  27. // Uncomment this line to add detection of mismatched begin/end transactions.
  28. // A mismatch occurs if other libraries fail to use SPI.endTransaction() for
  29. // each SPI.beginTransaction(). Connect a LED to this pin. The LED will turn
  30. // on if any mismatch is ever detected.
  31. //#define SPI_TRANSACTION_MISMATCH_LED 5
  32. // SPI_HAS_TRANSFER_BUF - is defined to signify that this library supports
  33. // a version of transfer which allows you to pass in both TX and RX buffer
  34. // pointers, either of which could be NULL
  35. #define SPI_HAS_TRANSFER_BUF 1
  36. #ifndef LSBFIRST
  37. #define LSBFIRST 0
  38. #endif
  39. #ifndef MSBFIRST
  40. #define MSBFIRST 1
  41. #endif
  42. #define SPI_MODE0 0x00
  43. #define SPI_MODE1 0x04
  44. #define SPI_MODE2 0x08
  45. #define SPI_MODE3 0x0C
  46. #define SPI_CLOCK_DIV4 0x00
  47. #define SPI_CLOCK_DIV16 0x01
  48. #define SPI_CLOCK_DIV64 0x02
  49. #define SPI_CLOCK_DIV128 0x03
  50. #define SPI_CLOCK_DIV2 0x04
  51. #define SPI_CLOCK_DIV8 0x05
  52. #define SPI_CLOCK_DIV32 0x06
  53. #define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
  54. #define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
  55. #define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
  56. /**********************************************************/
  57. /* 8 bit AVR-based boards */
  58. /**********************************************************/
  59. #if defined(__AVR__)
  60. #define SPI_ATOMIC_VERSION 1
  61. // define SPI_AVR_EIMSK for AVR boards with external interrupt pins
  62. #if defined(EIMSK)
  63. #define SPI_AVR_EIMSK EIMSK
  64. #elif defined(GICR)
  65. #define SPI_AVR_EIMSK GICR
  66. #elif defined(GIMSK)
  67. #define SPI_AVR_EIMSK GIMSK
  68. #endif
  69. class SPISettings {
  70. public:
  71. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  72. if (__builtin_constant_p(clock)) {
  73. init_AlwaysInline(clock, bitOrder, dataMode);
  74. } else {
  75. init_MightInline(clock, bitOrder, dataMode);
  76. }
  77. }
  78. SPISettings() {
  79. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  80. }
  81. private:
  82. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  83. init_AlwaysInline(clock, bitOrder, dataMode);
  84. }
  85. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  86. __attribute__((__always_inline__)) {
  87. // Clock settings are defined as follows. Note that this shows SPI2X
  88. // inverted, so the bits form increasing numbers. Also note that
  89. // fosc/64 appears twice
  90. // SPR1 SPR0 ~SPI2X Freq
  91. // 0 0 0 fosc/2
  92. // 0 0 1 fosc/4
  93. // 0 1 0 fosc/8
  94. // 0 1 1 fosc/16
  95. // 1 0 0 fosc/32
  96. // 1 0 1 fosc/64
  97. // 1 1 0 fosc/64
  98. // 1 1 1 fosc/128
  99. // We find the fastest clock that is less than or equal to the
  100. // given clock rate. The clock divider that results in clock_setting
  101. // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
  102. // slowest (128 == 2 ^^ 7, so clock_div = 6).
  103. uint8_t clockDiv;
  104. // When the clock is known at compiletime, use this if-then-else
  105. // cascade, which the compiler knows how to completely optimize
  106. // away. When clock is not known, use a loop instead, which generates
  107. // shorter code.
  108. if (__builtin_constant_p(clock)) {
  109. if (clock >= F_CPU / 2) {
  110. clockDiv = 0;
  111. } else if (clock >= F_CPU / 4) {
  112. clockDiv = 1;
  113. } else if (clock >= F_CPU / 8) {
  114. clockDiv = 2;
  115. } else if (clock >= F_CPU / 16) {
  116. clockDiv = 3;
  117. } else if (clock >= F_CPU / 32) {
  118. clockDiv = 4;
  119. } else if (clock >= F_CPU / 64) {
  120. clockDiv = 5;
  121. } else {
  122. clockDiv = 6;
  123. }
  124. } else {
  125. uint32_t clockSetting = F_CPU / 2;
  126. clockDiv = 0;
  127. while (clockDiv < 6 && clock < clockSetting) {
  128. clockSetting /= 2;
  129. clockDiv++;
  130. }
  131. }
  132. // Compensate for the duplicate fosc/64
  133. if (clockDiv == 6)
  134. clockDiv = 7;
  135. // Invert the SPI2X bit
  136. clockDiv ^= 0x1;
  137. // Pack into the SPISettings class
  138. spcr = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
  139. (dataMode & SPI_MODE_MASK) | ((clockDiv >> 1) & SPI_CLOCK_MASK);
  140. spsr = clockDiv & SPI_2XCLOCK_MASK;
  141. }
  142. uint8_t spcr;
  143. uint8_t spsr;
  144. friend class SPIClass;
  145. };
  146. class SPIClass { // AVR
  147. public:
  148. // Initialize the SPI library
  149. static void begin();
  150. // If SPI is used from within an interrupt, this function registers
  151. // that interrupt with the SPI library, so beginTransaction() can
  152. // prevent conflicts. The input interruptNumber is the number used
  153. // with attachInterrupt. If SPI is used from a different interrupt
  154. // (eg, a timer), interruptNumber should be 255.
  155. static void usingInterrupt(uint8_t interruptNumber);
  156. // Before using SPI.transfer() or asserting chip select pins,
  157. // this function is used to gain exclusive access to the SPI bus
  158. // and configure the correct settings.
  159. inline static void beginTransaction(SPISettings settings) {
  160. if (interruptMode > 0) {
  161. #ifdef SPI_AVR_EIMSK
  162. if (interruptMode == 1) {
  163. interruptSave = SPI_AVR_EIMSK;
  164. SPI_AVR_EIMSK &= ~interruptMask;
  165. } else
  166. #endif
  167. {
  168. uint8_t tmp = SREG;
  169. cli();
  170. interruptSave = tmp;
  171. }
  172. }
  173. #ifdef SPI_TRANSACTION_MISMATCH_LED
  174. if (inTransactionFlag) {
  175. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  176. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  177. }
  178. inTransactionFlag = 1;
  179. #endif
  180. SPCR = settings.spcr;
  181. SPSR = settings.spsr;
  182. }
  183. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  184. inline static uint8_t transfer(uint8_t data) {
  185. SPDR = data;
  186. asm volatile("nop");
  187. while (!(SPSR & _BV(SPIF))) ; // wait
  188. return SPDR;
  189. }
  190. inline static uint16_t transfer16(uint16_t data) {
  191. union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } in, out;
  192. in.val = data;
  193. if ((SPCR & _BV(DORD))) {
  194. SPDR = in.lsb;
  195. asm volatile("nop");
  196. while (!(SPSR & _BV(SPIF))) ;
  197. out.lsb = SPDR;
  198. SPDR = in.msb;
  199. asm volatile("nop");
  200. while (!(SPSR & _BV(SPIF))) ;
  201. out.msb = SPDR;
  202. } else {
  203. SPDR = in.msb;
  204. asm volatile("nop");
  205. while (!(SPSR & _BV(SPIF))) ;
  206. out.msb = SPDR;
  207. SPDR = in.lsb;
  208. asm volatile("nop");
  209. while (!(SPSR & _BV(SPIF))) ;
  210. out.lsb = SPDR;
  211. }
  212. return out.val;
  213. }
  214. inline static void transfer(void *buf, size_t count) {
  215. if (count == 0) return;
  216. uint8_t *p = (uint8_t *)buf;
  217. SPDR = *p;
  218. while (--count > 0) {
  219. uint8_t out = *(p + 1);
  220. while (!(SPSR & _BV(SPIF))) ;
  221. uint8_t in = SPDR;
  222. SPDR = out;
  223. *p++ = in;
  224. }
  225. while (!(SPSR & _BV(SPIF))) ;
  226. *p = SPDR;
  227. }
  228. static void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  229. static void transfer(const void * buf, void * retbuf, uint32_t count);
  230. // After performing a group of transfers and releasing the chip select
  231. // signal, this function allows others to access the SPI bus
  232. inline static void endTransaction(void) {
  233. #ifdef SPI_TRANSACTION_MISMATCH_LED
  234. if (!inTransactionFlag) {
  235. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  236. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  237. }
  238. inTransactionFlag = 0;
  239. #endif
  240. if (interruptMode > 0) {
  241. #ifdef SPI_AVR_EIMSK
  242. if (interruptMode == 1) {
  243. SPI_AVR_EIMSK = interruptSave;
  244. } else
  245. #endif
  246. {
  247. SREG = interruptSave;
  248. }
  249. }
  250. }
  251. // Disable the SPI bus
  252. static void end();
  253. // This function is deprecated. New applications should use
  254. // beginTransaction() to configure SPI settings.
  255. inline static void setBitOrder(uint8_t bitOrder) {
  256. if (bitOrder == LSBFIRST) SPCR |= _BV(DORD);
  257. else SPCR &= ~(_BV(DORD));
  258. }
  259. // This function is deprecated. New applications should use
  260. // beginTransaction() to configure SPI settings.
  261. inline static void setDataMode(uint8_t dataMode) {
  262. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  263. }
  264. // This function is deprecated. New applications should use
  265. // beginTransaction() to configure SPI settings.
  266. inline static void setClockDivider(uint8_t clockDiv) {
  267. SPCR = (SPCR & ~SPI_CLOCK_MASK) | (clockDiv & SPI_CLOCK_MASK);
  268. SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((clockDiv >> 2) & SPI_2XCLOCK_MASK);
  269. }
  270. // These undocumented functions should not be used. SPI.transfer()
  271. // polls the hardware flag which is automatically cleared as the
  272. // AVR responds to SPI's interrupt
  273. inline static void attachInterrupt() { SPCR |= _BV(SPIE); }
  274. inline static void detachInterrupt() { SPCR &= ~_BV(SPIE); }
  275. private:
  276. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  277. static uint8_t interruptMask; // which interrupts to mask
  278. static uint8_t interruptSave; // temp storage, to restore state
  279. #ifdef SPI_TRANSACTION_MISMATCH_LED
  280. static uint8_t inTransactionFlag;
  281. #endif
  282. static uint8_t _transferWriteFill;
  283. };
  284. /**********************************************************/
  285. /* 32 bit Teensy 3.x */
  286. /**********************************************************/
  287. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
  288. #define SPI_HAS_NOTUSINGINTERRUPT 1
  289. #define SPI_ATOMIC_VERSION 1
  290. class SPISettings {
  291. public:
  292. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  293. if (__builtin_constant_p(clock)) {
  294. init_AlwaysInline(clock, bitOrder, dataMode);
  295. } else {
  296. init_MightInline(clock, bitOrder, dataMode);
  297. }
  298. }
  299. SPISettings() {
  300. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  301. }
  302. private:
  303. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  304. init_AlwaysInline(clock, bitOrder, dataMode);
  305. }
  306. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  307. __attribute__((__always_inline__)) {
  308. uint32_t t, c = SPI_CTAR_FMSZ(7);
  309. if (bitOrder == LSBFIRST) c |= SPI_CTAR_LSBFE;
  310. if (__builtin_constant_p(clock)) {
  311. if (clock >= F_BUS / 2) {
  312. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  313. | SPI_CTAR_CSSCK(0);
  314. } else if (clock >= F_BUS / 3) {
  315. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  316. | SPI_CTAR_CSSCK(0);
  317. } else if (clock >= F_BUS / 4) {
  318. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  319. } else if (clock >= F_BUS / 5) {
  320. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  321. | SPI_CTAR_CSSCK(0);
  322. } else if (clock >= F_BUS / 6) {
  323. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  324. } else if (clock >= F_BUS / 8) {
  325. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  326. } else if (clock >= F_BUS / 10) {
  327. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  328. } else if (clock >= F_BUS / 12) {
  329. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  330. } else if (clock >= F_BUS / 16) {
  331. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  332. } else if (clock >= F_BUS / 20) {
  333. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
  334. } else if (clock >= F_BUS / 24) {
  335. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  336. } else if (clock >= F_BUS / 32) {
  337. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
  338. } else if (clock >= F_BUS / 40) {
  339. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  340. } else if (clock >= F_BUS / 56) {
  341. t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  342. } else if (clock >= F_BUS / 64) {
  343. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  344. } else if (clock >= F_BUS / 96) {
  345. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  346. } else if (clock >= F_BUS / 128) {
  347. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  348. } else if (clock >= F_BUS / 192) {
  349. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  350. } else if (clock >= F_BUS / 256) {
  351. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  352. } else if (clock >= F_BUS / 384) {
  353. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  354. } else if (clock >= F_BUS / 512) {
  355. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  356. } else if (clock >= F_BUS / 640) {
  357. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  358. } else { /* F_BUS / 768 */
  359. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  360. }
  361. } else {
  362. for (uint32_t i=0; i<23; i++) {
  363. t = ctar_clock_table[i];
  364. if (clock >= F_BUS / ctar_div_table[i]) break;
  365. }
  366. }
  367. if (dataMode & 0x08) {
  368. c |= SPI_CTAR_CPOL;
  369. }
  370. if (dataMode & 0x04) {
  371. c |= SPI_CTAR_CPHA;
  372. t = (t & 0xFFFF0FFF) | ((t & 0xF000) >> 4);
  373. }
  374. ctar = c | t;
  375. }
  376. static const uint16_t ctar_div_table[23];
  377. static const uint32_t ctar_clock_table[23];
  378. uint32_t ctar;
  379. friend class SPIClass;
  380. };
  381. class SPIClass { // Teensy 3.x
  382. public:
  383. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  384. static const uint8_t CNT_MISO_PINS = 2;
  385. static const uint8_t CNT_MOSI_PINS = 2;
  386. static const uint8_t CNT_SCK_PINS = 2;
  387. static const uint8_t CNT_CS_PINS = 9;
  388. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  389. static const uint8_t CNT_MISO_PINS = 4;
  390. static const uint8_t CNT_MOSI_PINS = 4;
  391. static const uint8_t CNT_SCK_PINS = 3;
  392. static const uint8_t CNT_CS_PINS = 11;
  393. #endif
  394. typedef struct {
  395. volatile uint32_t &clock_gate_register;
  396. uint32_t clock_gate_mask;
  397. uint8_t queue_size;
  398. uint8_t spi_irq;
  399. uint32_t max_dma_count;
  400. uint8_t tx_dma_channel;
  401. uint8_t rx_dma_channel;
  402. void (*dma_rxisr)();
  403. uint8_t miso_pin[CNT_MISO_PINS];
  404. uint32_t miso_mux[CNT_MISO_PINS];
  405. uint8_t mosi_pin[CNT_MOSI_PINS];
  406. uint32_t mosi_mux[CNT_MOSI_PINS];
  407. uint8_t sck_pin[CNT_SCK_PINS];
  408. uint32_t sck_mux[CNT_SCK_PINS];
  409. uint8_t cs_pin[CNT_CS_PINS];
  410. uint32_t cs_mux[CNT_CS_PINS];
  411. uint8_t cs_mask[CNT_CS_PINS];
  412. } SPI_Hardware_t;
  413. static const SPI_Hardware_t spi0_hardware;
  414. static const SPI_Hardware_t spi1_hardware;
  415. static const SPI_Hardware_t spi2_hardware;
  416. enum DMAState { notAllocated, idle, active, completed};
  417. public:
  418. constexpr SPIClass(uintptr_t myport, uintptr_t myhardware)
  419. : port_addr(myport), hardware_addr(myhardware) {
  420. }
  421. // Initialize the SPI library
  422. void begin();
  423. // If SPI is to used from within an interrupt, this function registers
  424. // that interrupt with the SPI library, so beginTransaction() can
  425. // prevent conflicts. The input interruptNumber is the number used
  426. // with attachInterrupt. If SPI is used from a different interrupt
  427. // (eg, a timer), interruptNumber should be 255.
  428. void usingInterrupt(uint8_t n) {
  429. if (n == 3 || n == 4 || n == 24 || n == 33) {
  430. usingInterrupt(IRQ_PORTA);
  431. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  432. usingInterrupt(IRQ_PORTB);
  433. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  434. || (n >= 27 && n <= 30)) {
  435. usingInterrupt(IRQ_PORTC);
  436. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  437. usingInterrupt(IRQ_PORTD);
  438. } else if (n == 26 || n == 31) {
  439. usingInterrupt(IRQ_PORTE);
  440. }
  441. }
  442. void usingInterrupt(IRQ_NUMBER_t interruptName);
  443. void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  444. // Before using SPI.transfer() or asserting chip select pins,
  445. // this function is used to gain exclusive access to the SPI bus
  446. // and configure the correct settings.
  447. void beginTransaction(SPISettings settings) {
  448. if (interruptMasksUsed) {
  449. __disable_irq();
  450. if (interruptMasksUsed & 0x01) {
  451. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  452. NVIC_ICER0 = interruptSave[0];
  453. }
  454. #if NVIC_NUM_INTERRUPTS > 32
  455. if (interruptMasksUsed & 0x02) {
  456. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  457. NVIC_ICER1 = interruptSave[1];
  458. }
  459. #endif
  460. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  461. if (interruptMasksUsed & 0x04) {
  462. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  463. NVIC_ICER2 = interruptSave[2];
  464. }
  465. #endif
  466. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  467. if (interruptMasksUsed & 0x08) {
  468. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  469. NVIC_ICER3 = interruptSave[3];
  470. }
  471. #endif
  472. __enable_irq();
  473. }
  474. #ifdef SPI_TRANSACTION_MISMATCH_LED
  475. if (inTransactionFlag) {
  476. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  477. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  478. }
  479. inTransactionFlag = 1;
  480. #endif
  481. if (port().CTAR0 != settings.ctar) {
  482. port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x3F);
  483. port().CTAR0 = settings.ctar;
  484. port().CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  485. port().MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x3F);
  486. }
  487. }
  488. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  489. uint8_t transfer(uint8_t data) {
  490. port().SR = SPI_SR_TCF;
  491. port().PUSHR = data;
  492. while (!(port().SR & SPI_SR_TCF)) ; // wait
  493. return port().POPR;
  494. }
  495. uint16_t transfer16(uint16_t data) {
  496. port().SR = SPI_SR_TCF;
  497. port().PUSHR = data | SPI_PUSHR_CTAS(1);
  498. while (!(port().SR & SPI_SR_TCF)) ; // wait
  499. return port().POPR;
  500. }
  501. void inline transfer(void *buf, size_t count) {transfer(buf, buf, count);}
  502. void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  503. void transfer(const void * buf, void * retbuf, size_t count);
  504. // Asynch support (DMA )
  505. #ifdef SPI_HAS_TRANSFER_ASYNC
  506. bool transfer(const void *txBuffer, void *rxBuffer, size_t count, EventResponderRef event_responder);
  507. friend void _spi_dma_rxISR0(void);
  508. friend void _spi_dma_rxISR1(void);
  509. friend void _spi_dma_rxISR2(void);
  510. inline void dma_rxisr(void);
  511. #endif
  512. // After performing a group of transfers and releasing the chip select
  513. // signal, this function allows others to access the SPI bus
  514. void endTransaction(void) {
  515. #ifdef SPI_TRANSACTION_MISMATCH_LED
  516. if (!inTransactionFlag) {
  517. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  518. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  519. }
  520. inTransactionFlag = 0;
  521. #endif
  522. if (interruptMasksUsed) {
  523. if (interruptMasksUsed & 0x01) {
  524. NVIC_ISER0 = interruptSave[0];
  525. }
  526. #if NVIC_NUM_INTERRUPTS > 32
  527. if (interruptMasksUsed & 0x02) {
  528. NVIC_ISER1 = interruptSave[1];
  529. }
  530. #endif
  531. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  532. if (interruptMasksUsed & 0x04) {
  533. NVIC_ISER2 = interruptSave[2];
  534. }
  535. #endif
  536. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  537. if (interruptMasksUsed & 0x08) {
  538. NVIC_ISER3 = interruptSave[3];
  539. }
  540. #endif
  541. }
  542. }
  543. // Disable the SPI bus
  544. void end();
  545. // This function is deprecated. New applications should use
  546. // beginTransaction() to configure SPI settings.
  547. void setBitOrder(uint8_t bitOrder);
  548. // This function is deprecated. New applications should use
  549. // beginTransaction() to configure SPI settings.
  550. void setDataMode(uint8_t dataMode);
  551. // This function is deprecated. New applications should use
  552. // beginTransaction() to configure SPI settings.
  553. void setClockDivider(uint8_t clockDiv) {
  554. if (clockDiv == SPI_CLOCK_DIV2) {
  555. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  556. } else if (clockDiv == SPI_CLOCK_DIV4) {
  557. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  558. } else if (clockDiv == SPI_CLOCK_DIV8) {
  559. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  560. } else if (clockDiv == SPI_CLOCK_DIV16) {
  561. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  562. } else if (clockDiv == SPI_CLOCK_DIV32) {
  563. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  564. } else if (clockDiv == SPI_CLOCK_DIV64) {
  565. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  566. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  567. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  568. }
  569. }
  570. void setClockDivider_noInline(uint32_t clk);
  571. // These undocumented functions should not be used. SPI.transfer()
  572. // polls the hardware flag which is automatically cleared as the
  573. // AVR responds to SPI's interrupt
  574. void attachInterrupt() { }
  575. void detachInterrupt() { }
  576. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  577. void setMOSI(uint8_t pin);
  578. void setMISO(uint8_t pin);
  579. void setSCK(uint8_t pin);
  580. // return true if "pin" has special chip select capability
  581. uint8_t pinIsChipSelect(uint8_t pin);
  582. bool pinIsMOSI(uint8_t pin);
  583. bool pinIsMISO(uint8_t pin);
  584. bool pinIsSCK(uint8_t pin);
  585. // return true if both pin1 and pin2 have independent chip select capability
  586. bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  587. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  588. // setCS() is a special function, not intended for use from normal Arduino
  589. // programs/sketches. See the ILI3941_t3 library for an example.
  590. uint8_t setCS(uint8_t pin);
  591. private:
  592. KINETISK_SPI_t & port() { return *(KINETISK_SPI_t *)port_addr; }
  593. const SPI_Hardware_t & hardware() { return *(const SPI_Hardware_t *)hardware_addr; }
  594. void updateCTAR(uint32_t ctar);
  595. uintptr_t port_addr;
  596. uintptr_t hardware_addr;
  597. uint8_t miso_pin_index = 0;
  598. uint8_t mosi_pin_index = 0;
  599. uint8_t sck_pin_index = 0;
  600. uint8_t interruptMasksUsed = 0;
  601. uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  602. uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  603. #ifdef SPI_TRANSACTION_MISMATCH_LED
  604. uint8_t inTransactionFlag = 0;
  605. #endif
  606. uint8_t _transferWriteFill = 0;
  607. // DMA Support
  608. #ifdef SPI_HAS_TRANSFER_ASYNC
  609. bool initDMAChannels();
  610. DMAState _dma_state = DMAState::notAllocated;
  611. uint32_t _dma_count_remaining = 0; // How many bytes left to output after current DMA completes
  612. DMAChannel *_dmaTX = nullptr;
  613. DMAChannel *_dmaRX = nullptr;
  614. EventResponder *_dma_event_responder = nullptr;
  615. #endif
  616. };
  617. /**********************************************************/
  618. /* 32 bit Teensy-LC */
  619. /**********************************************************/
  620. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  621. #define SPI_ATOMIC_VERSION 1
  622. class SPISettings {
  623. public:
  624. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  625. if (__builtin_constant_p(clock)) {
  626. init_AlwaysInline(clock, bitOrder, dataMode);
  627. } else {
  628. init_MightInline(clock, bitOrder, dataMode);
  629. }
  630. }
  631. SPISettings() {
  632. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  633. }
  634. private:
  635. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  636. init_AlwaysInline(clock, bitOrder, dataMode);
  637. }
  638. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  639. __attribute__((__always_inline__)) {
  640. uint8_t c = SPI_C1_MSTR | SPI_C1_SPE;
  641. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  642. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  643. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  644. c1 = c;
  645. if (__builtin_constant_p(clock)) {
  646. if (clock >= F_BUS / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  647. } else if (clock >= F_BUS / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  648. } else if (clock >= F_BUS / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  649. } else if (clock >= F_BUS / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  650. } else if (clock >= F_BUS / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  651. } else if (clock >= F_BUS / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  652. } else if (clock >= F_BUS / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  653. } else if (clock >= F_BUS / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  654. } else if (clock >= F_BUS / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  655. } else if (clock >= F_BUS / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  656. } else if (clock >= F_BUS / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  657. } else if (clock >= F_BUS / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  658. } else if (clock >= F_BUS / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  659. } else if (clock >= F_BUS / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  660. } else if (clock >= F_BUS / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  661. } else if (clock >= F_BUS / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  662. } else if (clock >= F_BUS / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  663. } else if (clock >= F_BUS / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  664. } else if (clock >= F_BUS / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  665. } else if (clock >= F_BUS / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  666. } else if (clock >= F_BUS / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  667. } else if (clock >= F_BUS / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  668. } else if (clock >= F_BUS / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  669. } else if (clock >= F_BUS / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  670. } else if (clock >= F_BUS / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  671. } else if (clock >= F_BUS / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  672. } else if (clock >= F_BUS / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  673. } else if (clock >= F_BUS / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  674. } else if (clock >= F_BUS / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  675. } else /* F_BUS / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  676. }
  677. } else {
  678. for (uint32_t i=0; i<30; i++) {
  679. c = br_clock_table[i];
  680. if (clock >= F_BUS / br_div_table[i]) break;
  681. }
  682. }
  683. br[0] = c;
  684. if (__builtin_constant_p(clock)) {
  685. if (clock >= (F_PLL/2) / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  686. } else if (clock >= (F_PLL/2) / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  687. } else if (clock >= (F_PLL/2) / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  688. } else if (clock >= (F_PLL/2) / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  689. } else if (clock >= (F_PLL/2) / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  690. } else if (clock >= (F_PLL/2) / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  691. } else if (clock >= (F_PLL/2) / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  692. } else if (clock >= (F_PLL/2) / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  693. } else if (clock >= (F_PLL/2) / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  694. } else if (clock >= (F_PLL/2) / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  695. } else if (clock >= (F_PLL/2) / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  696. } else if (clock >= (F_PLL/2) / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  697. } else if (clock >= (F_PLL/2) / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  698. } else if (clock >= (F_PLL/2) / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  699. } else if (clock >= (F_PLL/2) / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  700. } else if (clock >= (F_PLL/2) / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  701. } else if (clock >= (F_PLL/2) / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  702. } else if (clock >= (F_PLL/2) / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  703. } else if (clock >= (F_PLL/2) / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  704. } else if (clock >= (F_PLL/2) / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  705. } else if (clock >= (F_PLL/2) / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  706. } else if (clock >= (F_PLL/2) / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  707. } else if (clock >= (F_PLL/2) / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  708. } else if (clock >= (F_PLL/2) / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  709. } else if (clock >= (F_PLL/2) / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  710. } else if (clock >= (F_PLL/2) / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  711. } else if (clock >= (F_PLL/2) / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  712. } else if (clock >= (F_PLL/2) / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  713. } else if (clock >= (F_PLL/2) / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  714. } else /* (F_PLL/2) / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  715. }
  716. } else {
  717. for (uint32_t i=0; i<30; i++) {
  718. c = br_clock_table[i];
  719. if (clock >= (F_PLL/2) / br_div_table[i]) break;
  720. }
  721. }
  722. br[1] = c;
  723. }
  724. static const uint8_t br_clock_table[30];
  725. static const uint16_t br_div_table[30];
  726. uint8_t c1, br[2];
  727. friend class SPIClass;
  728. };
  729. class SPIClass { // Teensy-LC
  730. public:
  731. static const uint8_t CNT_MISO_PINS = 2;
  732. static const uint8_t CNT_MMOSI_PINS = 2;
  733. static const uint8_t CNT_SCK_PINS = 2;
  734. static const uint8_t CNT_CS_PINS = 2;
  735. typedef struct {
  736. volatile uint32_t &clock_gate_register;
  737. uint32_t clock_gate_mask;
  738. uint8_t br_index;
  739. uint8_t tx_dma_channel;
  740. uint8_t rx_dma_channel;
  741. void (*dma_isr)();
  742. uint8_t miso_pin[CNT_MISO_PINS];
  743. uint32_t miso_mux[CNT_MISO_PINS];
  744. uint8_t mosi_pin[CNT_MMOSI_PINS];
  745. uint32_t mosi_mux[CNT_MMOSI_PINS];
  746. uint8_t sck_pin[CNT_SCK_PINS];
  747. uint32_t sck_mux[CNT_SCK_PINS];
  748. uint8_t cs_pin[CNT_CS_PINS];
  749. uint32_t cs_mux[CNT_CS_PINS];
  750. uint8_t cs_mask[CNT_CS_PINS];
  751. } SPI_Hardware_t;
  752. static const SPI_Hardware_t spi0_hardware;
  753. static const SPI_Hardware_t spi1_hardware;
  754. enum DMAState { notAllocated, idle, active, completed};
  755. public:
  756. constexpr SPIClass(uintptr_t myport, uintptr_t myhardware)
  757. : port_addr(myport), hardware_addr(myhardware) {
  758. }
  759. // Initialize the SPI library
  760. void begin();
  761. // If SPI is to used from within an interrupt, this function registers
  762. // that interrupt with the SPI library, so beginTransaction() can
  763. // prevent conflicts. The input interruptNumber is the number used
  764. // with attachInterrupt. If SPI is used from a different interrupt
  765. // (eg, a timer), interruptNumber should be 255.
  766. void usingInterrupt(uint8_t n) {
  767. if (n == 3 || n == 4) {
  768. usingInterrupt(IRQ_PORTA);
  769. } else if ((n >= 2 && n <= 15) || (n >= 20 && n <= 23)) {
  770. usingInterrupt(IRQ_PORTCD);
  771. }
  772. }
  773. void usingInterrupt(IRQ_NUMBER_t interruptName) {
  774. uint32_t n = (uint32_t)interruptName;
  775. if (n < NVIC_NUM_INTERRUPTS) interruptMask |= (1 << n);
  776. }
  777. void notUsingInterrupt(IRQ_NUMBER_t interruptName) {
  778. uint32_t n = (uint32_t)interruptName;
  779. if (n < NVIC_NUM_INTERRUPTS) interruptMask &= ~(1 << n);
  780. }
  781. // Before using SPI.transfer() or asserting chip select pins,
  782. // this function is used to gain exclusive access to the SPI bus
  783. // and configure the correct settings.
  784. void beginTransaction(SPISettings settings) {
  785. if (interruptMask) {
  786. __disable_irq();
  787. interruptSave = NVIC_ICER0 & interruptMask;
  788. NVIC_ICER0 = interruptSave;
  789. __enable_irq();
  790. }
  791. #ifdef SPI_TRANSACTION_MISMATCH_LED
  792. if (inTransactionFlag) {
  793. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  794. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  795. }
  796. inTransactionFlag = 1;
  797. #endif
  798. port().C1 = settings.c1;
  799. port().BR = settings.br[hardware().br_index];
  800. }
  801. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  802. uint8_t transfer(uint8_t data) {
  803. port().DL = data;
  804. while (!(port().S & SPI_S_SPRF)) ; // wait
  805. return port().DL;
  806. }
  807. uint16_t transfer16(uint16_t data) {
  808. port().C2 = SPI_C2_SPIMODE;
  809. port().S;
  810. port().DL = data;
  811. port().DH = data >> 8;
  812. while (!(port().S & SPI_S_SPRF)) ; // wait
  813. uint16_t r = port().DL | (port().DH << 8);
  814. port().C2 = 0;
  815. port().S;
  816. return r;
  817. }
  818. void transfer(void *buf, size_t count) {
  819. if (count == 0) return;
  820. uint8_t *p = (uint8_t *)buf;
  821. while (!(port().S & SPI_S_SPTEF)) ; // wait
  822. port().DL = *p;
  823. while (--count > 0) {
  824. uint8_t out = *(p + 1);
  825. while (!(port().S & SPI_S_SPTEF)) ; // wait
  826. __disable_irq();
  827. port().DL = out;
  828. while (!(port().S & SPI_S_SPRF)) ; // wait
  829. uint8_t in = port().DL;
  830. __enable_irq();
  831. *p++ = in;
  832. }
  833. while (!(port().S & SPI_S_SPRF)) ; // wait
  834. *p = port().DL;
  835. }
  836. void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  837. void transfer(const void * buf, void * retbuf, size_t count);
  838. // Asynch support (DMA )
  839. #ifdef SPI_HAS_TRANSFER_ASYNC
  840. bool transfer(const void *txBuffer, void *rxBuffer, size_t count, EventResponderRef event_responder);
  841. friend void _spi_dma_rxISR0(void);
  842. friend void _spi_dma_rxISR1(void);
  843. inline void dma_isr(void);
  844. #endif
  845. // After performing a group of transfers and releasing the chip select
  846. // signal, this function allows others to access the SPI bus
  847. void endTransaction(void) {
  848. #ifdef SPI_TRANSACTION_MISMATCH_LED
  849. if (!inTransactionFlag) {
  850. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  851. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  852. }
  853. inTransactionFlag = 0;
  854. #endif
  855. if (interruptMask) {
  856. NVIC_ISER0 = interruptSave;
  857. }
  858. }
  859. // Disable the SPI bus
  860. void end();
  861. // This function is deprecated. New applications should use
  862. // beginTransaction() to configure SPI settings.
  863. void setBitOrder(uint8_t bitOrder) {
  864. uint8_t c = port().C1 | SPI_C1_SPE;
  865. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  866. else c &= ~SPI_C1_LSBFE;
  867. port().C1 = c;
  868. }
  869. // This function is deprecated. New applications should use
  870. // beginTransaction() to configure SPI settings.
  871. void setDataMode(uint8_t dataMode) {
  872. uint8_t c = port().C1 | SPI_C1_SPE;
  873. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  874. else c &= ~SPI_C1_CPHA;
  875. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  876. else c &= ~SPI_C1_CPOL;
  877. port().C1 = c;
  878. }
  879. // This function is deprecated. New applications should use
  880. // beginTransaction() to configure SPI settings.
  881. void setClockDivider(uint8_t clockDiv) {
  882. unsigned int i = hardware().br_index;
  883. if (clockDiv == SPI_CLOCK_DIV2) {
  884. port().BR = (SPISettings(12000000, MSBFIRST, SPI_MODE0).br[i]);
  885. } else if (clockDiv == SPI_CLOCK_DIV4) {
  886. port().BR = (SPISettings(4000000, MSBFIRST, SPI_MODE0).br[i]);
  887. } else if (clockDiv == SPI_CLOCK_DIV8) {
  888. port().BR = (SPISettings(2000000, MSBFIRST, SPI_MODE0).br[i]);
  889. } else if (clockDiv == SPI_CLOCK_DIV16) {
  890. port().BR = (SPISettings(1000000, MSBFIRST, SPI_MODE0).br[i]);
  891. } else if (clockDiv == SPI_CLOCK_DIV32) {
  892. port().BR = (SPISettings(500000, MSBFIRST, SPI_MODE0).br[i]);
  893. } else if (clockDiv == SPI_CLOCK_DIV64) {
  894. port().BR = (SPISettings(250000, MSBFIRST, SPI_MODE0).br[i]);
  895. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  896. port().BR = (SPISettings(125000, MSBFIRST, SPI_MODE0).br[i]);
  897. }
  898. }
  899. // These undocumented functions should not be used. SPI.transfer()
  900. // polls the hardware flag which is automatically cleared as the
  901. // AVR responds to SPI's interrupt
  902. void attachInterrupt() { }
  903. void detachInterrupt() { }
  904. // Teensy LC can use alternate pins for these 3 SPI signals.
  905. void setMOSI(uint8_t pin);
  906. void setMISO(uint8_t pin);
  907. void setSCK(uint8_t pin);
  908. // return true if "pin" has special chip select capability
  909. bool pinIsChipSelect(uint8_t pin);
  910. bool pinIsMOSI(uint8_t pin);
  911. bool pinIsMISO(uint8_t pin);
  912. bool pinIsSCK(uint8_t pin);
  913. // return true if both pin1 and pin2 have independent chip select capability
  914. bool pinIsChipSelect(uint8_t pin1, uint8_t pin2) { return false; }
  915. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  916. // setCS() is a special function, not intended for use from normal Arduino
  917. // programs/sketches. See the ILI3941_t3 library for an example.
  918. uint8_t setCS(uint8_t pin);
  919. private:
  920. KINETISL_SPI_t & port() { return *(KINETISL_SPI_t *)port_addr; }
  921. const SPI_Hardware_t & hardware() { return *(const SPI_Hardware_t *)hardware_addr; }
  922. uintptr_t port_addr;
  923. uintptr_t hardware_addr;
  924. uint32_t interruptMask = 0;
  925. uint32_t interruptSave = 0;
  926. uint8_t mosi_pin_index = 0;
  927. uint8_t miso_pin_index = 0;
  928. uint8_t sck_pin_index = 0;
  929. #ifdef SPI_TRANSACTION_MISMATCH_LED
  930. uint8_t inTransactionFlag = 0;
  931. #endif
  932. uint8_t _transferWriteFill = 0;
  933. #ifdef SPI_HAS_TRANSFER_ASYNC
  934. // DMA Support
  935. bool initDMAChannels();
  936. DMAState _dma_state = DMAState::notAllocated;
  937. uint32_t _dma_count_remaining = 0; // How many bytes left to output after current DMA completes
  938. DMAChannel *_dmaTX = nullptr;
  939. DMAChannel *_dmaRX = nullptr;
  940. EventResponder *_dma_event_responder = nullptr;
  941. #endif
  942. };
  943. /**********************************************************/
  944. /* 32 bit Teensy 4.x */
  945. /**********************************************************/
  946. #elif defined(__arm__) && defined(TEENSYDUINO) && (defined(__IMXRT1052__) || defined(__IMXRT1062__))
  947. #define SPI_ATOMIC_VERSION 1
  948. //#include "debug/printf.h"
  949. class SPISettings {
  950. public:
  951. SPISettings(uint32_t clockIn, uint8_t bitOrderIn, uint8_t dataModeIn) : _clock(clockIn) {
  952. init_AlwaysInline(bitOrderIn, dataModeIn);
  953. }
  954. SPISettings() : _clock(4000000) {
  955. init_AlwaysInline(MSBFIRST, SPI_MODE0);
  956. }
  957. private:
  958. void init_AlwaysInline(uint8_t bitOrder, uint8_t dataMode)
  959. __attribute__((__always_inline__)) {
  960. tcr = LPSPI_TCR_FRAMESZ(7); // TCR has polarity and bit order too
  961. // handle LSB setup
  962. if (bitOrder == LSBFIRST) tcr |= LPSPI_TCR_LSBF;
  963. // Handle Data Mode
  964. if (dataMode & 0x08) tcr |= LPSPI_TCR_CPOL;
  965. // Note: On T3.2 when we set CPHA it also updated the timing. It moved the
  966. // PCS to SCK Delay Prescaler into the After SCK Delay Prescaler
  967. if (dataMode & 0x04) tcr |= LPSPI_TCR_CPHA;
  968. }
  969. inline uint32_t clock() {return _clock;}
  970. uint32_t _clock;
  971. uint32_t tcr; // transmit command, pg 2664 (RT1050 ref, rev 2)
  972. friend class SPIClass;
  973. };
  974. class SPIClass { // Teensy 4
  975. public:
  976. static const uint8_t CNT_MISO_PINS = 1;
  977. static const uint8_t CNT_MOSI_PINS = 1;
  978. static const uint8_t CNT_SCK_PINS = 1;
  979. static const uint8_t CNT_CS_PINS = 1;
  980. typedef struct {
  981. volatile uint32_t &clock_gate_register;
  982. const uint32_t clock_gate_mask;
  983. uint8_t tx_dma_channel;
  984. uint8_t rx_dma_channel;
  985. void (*dma_rxisr)();
  986. const uint8_t miso_pin[CNT_MISO_PINS];
  987. const uint32_t miso_mux[CNT_MISO_PINS];
  988. const uint8_t mosi_pin[CNT_MOSI_PINS];
  989. const uint32_t mosi_mux[CNT_MOSI_PINS];
  990. const uint8_t sck_pin[CNT_SCK_PINS];
  991. const uint32_t sck_mux[CNT_SCK_PINS];
  992. const uint8_t cs_pin[CNT_CS_PINS];
  993. const uint32_t cs_mux[CNT_CS_PINS];
  994. volatile uint32_t &sck_select_input_register;
  995. volatile uint32_t &sdi_select_input_register;
  996. volatile uint32_t &sdo_select_input_register;
  997. volatile uint32_t &pcs0_select_input_register;
  998. const uint8_t sck_select_val;
  999. const uint8_t sdi_select_val;
  1000. const uint8_t sdo_select_val;
  1001. const uint8_t pcs0_select_val;
  1002. } SPI_Hardware_t;
  1003. static const SPI_Hardware_t spiclass_lpspi4_hardware;
  1004. #if defined(__IMXRT1062__)
  1005. static const SPI_Hardware_t spiclass_lpspi3_hardware;
  1006. static const SPI_Hardware_t spiclass_lpspi1_hardware;
  1007. #endif
  1008. public:
  1009. constexpr SPIClass(uintptr_t myport, uintptr_t myhardware)
  1010. : port_addr(myport), hardware_addr(myhardware) {
  1011. }
  1012. // constexpr SPIClass(IMXRT_LPSPI_t *myport, const SPI_Hardware_t *myhardware)
  1013. // : port(myport), hardware(myhardware) {
  1014. // }
  1015. // Initialize the SPI library
  1016. void begin();
  1017. // If SPI is to used from within an interrupt, this function registers
  1018. // that interrupt with the SPI library, so beginTransaction() can
  1019. // prevent conflicts. The input interruptNumber is the number used
  1020. // with attachInterrupt. If SPI is used from a different interrupt
  1021. // (eg, a timer), interruptNumber should be 255.
  1022. void usingInterrupt(uint8_t n) {
  1023. if (n >= CORE_NUM_DIGITAL) return;
  1024. #if defined(__IMXRT1062__)
  1025. usingInterrupt(IRQ_GPIO6789);
  1026. #elif defined(__IMXRT1052__)
  1027. volatile uint32_t *gpio = portOutputRegister(n);
  1028. switch((uint32_t)gpio) {
  1029. case (uint32_t)&GPIO1_DR:
  1030. usingInterrupt(IRQ_GPIO1_0_15);
  1031. usingInterrupt(IRQ_GPIO1_16_31);
  1032. break;
  1033. case (uint32_t)&GPIO2_DR:
  1034. usingInterrupt(IRQ_GPIO2_0_15);
  1035. usingInterrupt(IRQ_GPIO2_16_31);
  1036. break;
  1037. case (uint32_t)&GPIO3_DR:
  1038. usingInterrupt(IRQ_GPIO3_0_15);
  1039. usingInterrupt(IRQ_GPIO3_16_31);
  1040. break;
  1041. case (uint32_t)&GPIO4_DR:
  1042. usingInterrupt(IRQ_GPIO4_0_15);
  1043. usingInterrupt(IRQ_GPIO4_16_31);
  1044. break;
  1045. }
  1046. #endif
  1047. }
  1048. void usingInterrupt(IRQ_NUMBER_t interruptName);
  1049. void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  1050. // Before using SPI.transfer() or asserting chip select pins,
  1051. // this function is used to gain exclusive access to the SPI bus
  1052. // and configure the correct settings.
  1053. void beginTransaction(SPISettings settings) {
  1054. if (interruptMasksUsed) {
  1055. __disable_irq();
  1056. if (interruptMasksUsed & 0x01) {
  1057. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  1058. NVIC_ICER0 = interruptSave[0];
  1059. }
  1060. if (interruptMasksUsed & 0x02) {
  1061. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  1062. NVIC_ICER1 = interruptSave[1];
  1063. }
  1064. if (interruptMasksUsed & 0x04) {
  1065. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  1066. NVIC_ICER2 = interruptSave[2];
  1067. }
  1068. if (interruptMasksUsed & 0x08) {
  1069. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  1070. NVIC_ICER3 = interruptSave[3];
  1071. }
  1072. if (interruptMasksUsed & 0x10) {
  1073. interruptSave[4] = NVIC_ICER4 & interruptMask[4];
  1074. NVIC_ICER4 = interruptSave[4];
  1075. }
  1076. __enable_irq();
  1077. }
  1078. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1079. if (inTransactionFlag) {
  1080. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1081. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1082. }
  1083. inTransactionFlag = 1;
  1084. #endif
  1085. //printf("trans\n");
  1086. if (settings.clock() != _clock) {
  1087. static const uint32_t clk_sel[4] = {664615384, // PLL3 PFD1
  1088. 720000000, // PLL3 PFD0
  1089. 528000000, // PLL2
  1090. 396000000}; // PLL2 PFD2
  1091. // First save away the new settings..
  1092. _clock = settings.clock();
  1093. uint32_t cbcmr = CCM_CBCMR;
  1094. uint32_t clkhz = clk_sel[(cbcmr >> 4) & 0x03] / (((cbcmr >> 26 ) & 0x07 ) + 1); // LPSPI peripheral clock
  1095. uint32_t d, div;
  1096. d = _clock ? clkhz/_clock : clkhz;
  1097. if (d && clkhz/d > _clock) d++;
  1098. if (d > 257) d= 257; // max div
  1099. if (d > 2) {
  1100. div = d-2;
  1101. } else {
  1102. div =0;
  1103. }
  1104. _ccr = LPSPI_CCR_SCKDIV(div) | LPSPI_CCR_DBT(div/2);
  1105. }
  1106. //Serial.printf("SPI.beginTransaction CCR:%x TCR:%x\n", _ccr, settings.tcr);
  1107. port().CR = 0;
  1108. port().CFGR1 = LPSPI_CFGR1_MASTER | LPSPI_CFGR1_SAMPLE;
  1109. port().CCR = _ccr;
  1110. port().TCR = settings.tcr;
  1111. port().CR = LPSPI_CR_MEN;
  1112. }
  1113. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  1114. uint8_t transfer(uint8_t data) {
  1115. // TODO: check for space in fifo?
  1116. port().TDR = data;
  1117. while (1) {
  1118. uint32_t fifo = (port().FSR >> 16) & 0x1F;
  1119. if (fifo > 0) return port().RDR;
  1120. }
  1121. //port().SR = SPI_SR_TCF;
  1122. //port().PUSHR = data;
  1123. //while (!(port().SR & SPI_SR_TCF)) ; // wait
  1124. //return port().POPR;
  1125. }
  1126. uint16_t transfer16(uint16_t data) {
  1127. uint32_t tcr = port().TCR;
  1128. port().TCR = (tcr & 0xfffff000) | LPSPI_TCR_FRAMESZ(15); // turn on 16 bit mode
  1129. port().TDR = data; // output 16 bit data.
  1130. while ((port().RSR & LPSPI_RSR_RXEMPTY)) ; // wait while the RSR fifo is empty...
  1131. port().TCR = tcr; // restore back
  1132. return port().RDR;
  1133. }
  1134. void inline transfer(void *buf, size_t count) {transfer(buf, buf, count);}
  1135. void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  1136. void transfer(const void * buf, void * retbuf, size_t count);
  1137. // Asynch support (DMA )
  1138. #ifdef SPI_HAS_TRANSFER_ASYNC
  1139. bool transfer(const void *txBuffer, void *rxBuffer, size_t count, EventResponderRef event_responder);
  1140. friend void _spi_dma_rxISR0(void);
  1141. inline void dma_rxisr(void);
  1142. #endif
  1143. // After performing a group of transfers and releasing the chip select
  1144. // signal, this function allows others to access the SPI bus
  1145. void endTransaction(void) {
  1146. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1147. if (!inTransactionFlag) {
  1148. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1149. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1150. }
  1151. inTransactionFlag = 0;
  1152. #endif
  1153. if (interruptMasksUsed) {
  1154. if (interruptMasksUsed & 0x01) NVIC_ISER0 = interruptSave[0];
  1155. if (interruptMasksUsed & 0x02) NVIC_ISER1 = interruptSave[1];
  1156. if (interruptMasksUsed & 0x04) NVIC_ISER2 = interruptSave[2];
  1157. if (interruptMasksUsed & 0x08) NVIC_ISER3 = interruptSave[3];
  1158. if (interruptMasksUsed & 0x10) NVIC_ISER4 = interruptSave[4];
  1159. }
  1160. //Serial.printf("SPI.endTransaction CCR:%x TCR:%x\n", port().CCR, port().TCR);
  1161. }
  1162. // Disable the SPI bus
  1163. void end();
  1164. // This function is deprecated. New applications should use
  1165. // beginTransaction() to configure SPI settings.
  1166. void setBitOrder(uint8_t bitOrder);
  1167. // This function is deprecated. New applications should use
  1168. // beginTransaction() to configure SPI settings.
  1169. void setDataMode(uint8_t dataMode);
  1170. // This function is deprecated. New applications should use
  1171. // beginTransaction() to configure SPI settings.
  1172. void setClockDivider(uint8_t clockDiv) {
  1173. if (clockDiv == SPI_CLOCK_DIV2) {
  1174. setClockDivider_noInline(12000000);
  1175. } else if (clockDiv == SPI_CLOCK_DIV4) {
  1176. setClockDivider_noInline(4000000);
  1177. } else if (clockDiv == SPI_CLOCK_DIV8) {
  1178. setClockDivider_noInline(2000000);
  1179. } else if (clockDiv == SPI_CLOCK_DIV16) {
  1180. setClockDivider_noInline(1000000);
  1181. } else if (clockDiv == SPI_CLOCK_DIV32) {
  1182. setClockDivider_noInline(500000);
  1183. } else if (clockDiv == SPI_CLOCK_DIV64) {
  1184. setClockDivider_noInline(250000);
  1185. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  1186. setClockDivider_noInline(125000);
  1187. }
  1188. }
  1189. void setClockDivider_noInline(uint32_t clk);
  1190. // These undocumented functions should not be used. SPI.transfer()
  1191. // polls the hardware flag which is automatically cleared as the
  1192. // AVR responds to SPI's interrupt
  1193. void attachInterrupt() { }
  1194. void detachInterrupt() { }
  1195. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  1196. void setMOSI(uint8_t pin);
  1197. void setMISO(uint8_t pin);
  1198. void setSCK(uint8_t pin);
  1199. // return true if "pin" has special chip select capability
  1200. uint8_t pinIsChipSelect(uint8_t pin);
  1201. bool pinIsMOSI(uint8_t pin);
  1202. bool pinIsMISO(uint8_t pin);
  1203. bool pinIsSCK(uint8_t pin);
  1204. // return true if both pin1 and pin2 have independent chip select capability
  1205. bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  1206. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  1207. // setCS() is a special function, not intended for use from normal Arduino
  1208. // programs/sketches. See the ILI3941_t3 library for an example.
  1209. uint8_t setCS(uint8_t pin);
  1210. private:
  1211. private:
  1212. IMXRT_LPSPI_t & port() { return *(IMXRT_LPSPI_t *)port_addr; }
  1213. const SPI_Hardware_t & hardware() { return *(const SPI_Hardware_t *)hardware_addr; }
  1214. uintptr_t port_addr;
  1215. uintptr_t hardware_addr;
  1216. uint32_t _clock = 0;
  1217. uint32_t _ccr = 0;
  1218. //KINETISK_SPI_t & port() { return *(KINETISK_SPI_t *)port_addr; }
  1219. // IMXRT_LPSPI_t * const port;
  1220. // const SPI_Hardware_t * const hardware;
  1221. void updateCTAR(uint32_t ctar);
  1222. uint8_t miso_pin_index = 0;
  1223. uint8_t mosi_pin_index = 0;
  1224. uint8_t sck_pin_index = 0;
  1225. uint8_t interruptMasksUsed = 0;
  1226. uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  1227. uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  1228. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1229. uint8_t inTransactionFlag = 0;
  1230. #endif
  1231. uint8_t _transferWriteFill = 0;
  1232. // DMA Support
  1233. #ifdef SPI_HAS_TRANSFER_ASYNC
  1234. bool initDMAChannels();
  1235. enum DMAState { notAllocated, idle, active, completed};
  1236. enum {MAX_DMA_COUNT=32767};
  1237. DMAState _dma_state = DMAState::notAllocated;
  1238. uint32_t _dma_count_remaining = 0; // How many bytes left to output after current DMA completes
  1239. DMAChannel *_dmaTX = nullptr;
  1240. DMAChannel *_dmaRX = nullptr;
  1241. EventResponder *_dma_event_responder = nullptr;
  1242. #endif
  1243. };
  1244. #endif
  1245. extern SPIClass SPI;
  1246. #if defined(__MKL26Z64__)
  1247. extern SPIClass SPI1;
  1248. #endif
  1249. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__IMXRT1062__)
  1250. extern SPIClass SPI1;
  1251. extern SPIClass SPI2;
  1252. #endif
  1253. #endif