Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * Copyright (c) 2014 by Paul Stoffregen <paul@pjrc.com> (Transaction API)
  4. * Copyright (c) 2014 by Matthijs Kooijman <matthijs@stdin.nl> (SPISettings AVR)
  5. * SPI Master library for arduino.
  6. *
  7. * This file is free software; you can redistribute it and/or modify
  8. * it under the terms of either the GNU General Public License version 2
  9. * or the GNU Lesser General Public License version 2.1, both as
  10. * published by the Free Software Foundation.
  11. */
  12. #ifndef _SPI_H_INCLUDED
  13. #define _SPI_H_INCLUDED
  14. #include <Arduino.h>
  15. // SPI_HAS_TRANSACTION means SPI has beginTransaction(), endTransaction(),
  16. // usingInterrupt(), and SPISetting(clock, bitOrder, dataMode)
  17. #define SPI_HAS_TRANSACTION 1
  18. // Uncomment this line to add detection of mismatched begin/end transactions.
  19. // A mismatch occurs if other libraries fail to use SPI.endTransaction() for
  20. // each SPI.beginTransaction(). Connect a LED to this pin. The LED will turn
  21. // on if any mismatch is ever detected.
  22. //#define SPI_TRANSACTION_MISMATCH_LED 5
  23. #ifndef __SAM3X8E__
  24. #ifndef LSBFIRST
  25. #define LSBFIRST 0
  26. #endif
  27. #ifndef MSBFIRST
  28. #define MSBFIRST 1
  29. #endif
  30. #endif
  31. #define SPI_MODE0 0x00
  32. #define SPI_MODE1 0x04
  33. #define SPI_MODE2 0x08
  34. #define SPI_MODE3 0x0C
  35. #define SPI_CLOCK_DIV4 0x00
  36. #define SPI_CLOCK_DIV16 0x01
  37. #define SPI_CLOCK_DIV64 0x02
  38. #define SPI_CLOCK_DIV128 0x03
  39. #define SPI_CLOCK_DIV2 0x04
  40. #define SPI_CLOCK_DIV8 0x05
  41. #define SPI_CLOCK_DIV32 0x06
  42. #define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
  43. #define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
  44. #define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
  45. /**********************************************************/
  46. /* 8 bit AVR-based boards */
  47. /**********************************************************/
  48. #if defined(__AVR__)
  49. // define SPI_AVR_EIMSK for AVR boards with external interrupt pins
  50. #if defined(EIMSK)
  51. #define SPI_AVR_EIMSK EIMSK
  52. #elif defined(GICR)
  53. #define SPI_AVR_EIMSK GICR
  54. #elif defined(GIMSK)
  55. #define SPI_AVR_EIMSK GIMSK
  56. #endif
  57. class SPISettings {
  58. public:
  59. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  60. if (__builtin_constant_p(clock)) {
  61. init_AlwaysInline(clock, bitOrder, dataMode);
  62. } else {
  63. init_MightInline(clock, bitOrder, dataMode);
  64. }
  65. }
  66. SPISettings() {
  67. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  68. }
  69. private:
  70. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  71. init_AlwaysInline(clock, bitOrder, dataMode);
  72. }
  73. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  74. __attribute__((__always_inline__)) {
  75. // Clock settings are defined as follows. Note that this shows SPI2X
  76. // inverted, so the bits form increasing numbers. Also note that
  77. // fosc/64 appears twice
  78. // SPR1 SPR0 ~SPI2X Freq
  79. // 0 0 0 fosc/2
  80. // 0 0 1 fosc/4
  81. // 0 1 0 fosc/8
  82. // 0 1 1 fosc/16
  83. // 1 0 0 fosc/32
  84. // 1 0 1 fosc/64
  85. // 1 1 0 fosc/64
  86. // 1 1 1 fosc/128
  87. // We find the fastest clock that is less than or equal to the
  88. // given clock rate. The clock divider that results in clock_setting
  89. // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
  90. // slowest (128 == 2 ^^ 7, so clock_div = 6).
  91. uint8_t clockDiv;
  92. // When the clock is known at compiletime, use this if-then-else
  93. // cascade, which the compiler knows how to completely optimize
  94. // away. When clock is not known, use a loop instead, which generates
  95. // shorter code.
  96. if (__builtin_constant_p(clock)) {
  97. if (clock >= F_CPU / 2) {
  98. clockDiv = 0;
  99. } else if (clock >= F_CPU / 4) {
  100. clockDiv = 1;
  101. } else if (clock >= F_CPU / 8) {
  102. clockDiv = 2;
  103. } else if (clock >= F_CPU / 16) {
  104. clockDiv = 3;
  105. } else if (clock >= F_CPU / 32) {
  106. clockDiv = 4;
  107. } else if (clock >= F_CPU / 64) {
  108. clockDiv = 5;
  109. } else {
  110. clockDiv = 6;
  111. }
  112. } else {
  113. uint32_t clockSetting = F_CPU / 2;
  114. clockDiv = 0;
  115. while (clockDiv < 6 && clock < clockSetting) {
  116. clockSetting /= 2;
  117. clockDiv++;
  118. }
  119. }
  120. // Compensate for the duplicate fosc/64
  121. if (clockDiv == 6)
  122. clockDiv = 7;
  123. // Invert the SPI2X bit
  124. clockDiv ^= 0x1;
  125. // Pack into the SPISettings class
  126. spcr = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
  127. (dataMode & SPI_MODE_MASK) | ((clockDiv >> 1) & SPI_CLOCK_MASK);
  128. spsr = clockDiv & SPI_2XCLOCK_MASK;
  129. }
  130. uint8_t spcr;
  131. uint8_t spsr;
  132. friend class SPIClass;
  133. };
  134. class SPIClass {
  135. public:
  136. // Initialize the SPI library
  137. static void begin();
  138. // If SPI is to used from within an interrupt, this function registers
  139. // that interrupt with the SPI library, so beginTransaction() can
  140. // prevent conflicts. The input interruptNumber is the number used
  141. // with attachInterrupt. If SPI is used from a different interrupt
  142. // (eg, a timer), interruptNumber should be 255.
  143. static void usingInterrupt(uint8_t interruptNumber);
  144. // Before using SPI.transfer() or asserting chip select pins,
  145. // this function is used to gain exclusive access to the SPI bus
  146. // and configure the correct settings.
  147. inline static void beginTransaction(SPISettings settings) {
  148. if (interruptMode > 0) {
  149. #ifdef SPI_AVR_EIMSK
  150. if (interruptMode == 1) {
  151. interruptSave = SPI_AVR_EIMSK;
  152. SPI_AVR_EIMSK &= ~interruptMask;
  153. } else
  154. #endif
  155. {
  156. interruptSave = SREG;
  157. cli();
  158. }
  159. }
  160. #ifdef SPI_TRANSACTION_MISMATCH_LED
  161. if (inTransactionFlag) {
  162. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  163. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  164. }
  165. inTransactionFlag = 1;
  166. #endif
  167. SPCR = settings.spcr;
  168. SPSR = settings.spsr;
  169. }
  170. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  171. inline static uint8_t transfer(uint8_t data) {
  172. SPDR = data;
  173. asm volatile("nop");
  174. while (!(SPSR & _BV(SPIF))) ; // wait
  175. return SPDR;
  176. }
  177. inline static uint16_t transfer16(uint16_t data) {
  178. union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } in, out;
  179. in.val = data;
  180. if (!(SPCR & _BV(DORD))) {
  181. SPDR = in.msb;
  182. while (!(SPSR & _BV(SPIF))) ;
  183. out.msb = SPDR;
  184. SPDR = in.lsb;
  185. while (!(SPSR & _BV(SPIF))) ;
  186. out.lsb = SPDR;
  187. } else {
  188. SPDR = in.lsb;
  189. while (!(SPSR & _BV(SPIF))) ;
  190. out.lsb = SPDR;
  191. SPDR = in.msb;
  192. while (!(SPSR & _BV(SPIF))) ;
  193. out.msb = SPDR;
  194. }
  195. return out.val;
  196. }
  197. inline static void transfer(void *buf, size_t count) {
  198. if (count == 0) return;
  199. uint8_t *p = (uint8_t *)buf;
  200. SPDR = *p;
  201. while (--count > 0) {
  202. uint8_t out = *(p + 1);
  203. while (!(SPSR & _BV(SPIF))) ;
  204. uint8_t in = SPDR;
  205. SPDR = out;
  206. *p++ = in;
  207. }
  208. while (!(SPSR & _BV(SPIF))) ;
  209. *p = SPDR;
  210. }
  211. // After performing a group of transfers and releasing the chip select
  212. // signal, this function allows others to access the SPI bus
  213. inline static void endTransaction(void) {
  214. #ifdef SPI_TRANSACTION_MISMATCH_LED
  215. if (!inTransactionFlag) {
  216. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  217. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  218. }
  219. inTransactionFlag = 0;
  220. #endif
  221. if (interruptMode > 0) {
  222. #ifdef SPI_AVR_EIMSK
  223. if (interruptMode == 1) {
  224. SPI_AVR_EIMSK = interruptSave;
  225. } else
  226. #endif
  227. {
  228. SREG = interruptSave;
  229. }
  230. }
  231. }
  232. // Disable the SPI bus
  233. static void end();
  234. // This function is deprecated. New applications should use
  235. // beginTransaction() to configure SPI settings.
  236. inline static void setBitOrder(uint8_t bitOrder) {
  237. if (bitOrder == LSBFIRST) SPCR |= _BV(DORD);
  238. else SPCR &= ~(_BV(DORD));
  239. }
  240. // This function is deprecated. New applications should use
  241. // beginTransaction() to configure SPI settings.
  242. inline static void setDataMode(uint8_t dataMode) {
  243. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  244. }
  245. // This function is deprecated. New applications should use
  246. // beginTransaction() to configure SPI settings.
  247. inline static void setClockDivider(uint8_t clockDiv) {
  248. SPCR = (SPCR & ~SPI_CLOCK_MASK) | (clockDiv & SPI_CLOCK_MASK);
  249. SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((clockDiv >> 2) & SPI_2XCLOCK_MASK);
  250. }
  251. // These undocumented functions should not be used. SPI.transfer()
  252. // polls the hardware flag which is automatically cleared as the
  253. // AVR responds to SPI's interrupt
  254. inline static void attachInterrupt() { SPCR |= _BV(SPIE); }
  255. inline static void detachInterrupt() { SPCR &= ~_BV(SPIE); }
  256. private:
  257. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  258. static uint8_t interruptMask; // which interrupts to mask
  259. static uint8_t interruptSave; // temp storage, to restore state
  260. #ifdef SPI_TRANSACTION_MISMATCH_LED
  261. static uint8_t inTransactionFlag;
  262. #endif
  263. };
  264. /**********************************************************/
  265. /* 32 bit Teensy 3.0 and 3.1 */
  266. /**********************************************************/
  267. #elif defined(__arm__) && defined(TEENSYDUINO)
  268. class SPISettings {
  269. public:
  270. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  271. if (__builtin_constant_p(clock)) {
  272. init_AlwaysInline(clock, bitOrder, dataMode);
  273. } else {
  274. init_MightInline(clock, bitOrder, dataMode);
  275. }
  276. }
  277. SPISettings() {
  278. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  279. }
  280. private:
  281. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  282. init_AlwaysInline(clock, bitOrder, dataMode);
  283. }
  284. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  285. __attribute__((__always_inline__)) {
  286. uint32_t t, c = SPI_CTAR_FMSZ(7);
  287. if (bitOrder == LSBFIRST) c |= SPI_CTAR_LSBFE;
  288. if (__builtin_constant_p(clock)) {
  289. if (clock >= F_BUS / 2) {
  290. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  291. | SPI_CTAR_CSSCK(0);
  292. } else if (clock >= F_BUS / 3) {
  293. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  294. | SPI_CTAR_CSSCK(0);
  295. } else if (clock >= F_BUS / 4) {
  296. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  297. } else if (clock >= F_BUS / 5) {
  298. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  299. | SPI_CTAR_CSSCK(0);
  300. } else if (clock >= F_BUS / 6) {
  301. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  302. } else if (clock >= F_BUS / 8) {
  303. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  304. } else if (clock >= F_BUS / 10) {
  305. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  306. } else if (clock >= F_BUS / 12) {
  307. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  308. } else if (clock >= F_BUS / 16) {
  309. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  310. } else if (clock >= F_BUS / 20) {
  311. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
  312. } else if (clock >= F_BUS / 24) {
  313. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  314. } else if (clock >= F_BUS / 32) {
  315. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
  316. } else if (clock >= F_BUS / 40) {
  317. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  318. } else if (clock >= F_BUS / 56) {
  319. t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  320. } else if (clock >= F_BUS / 64) {
  321. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  322. } else if (clock >= F_BUS / 96) {
  323. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  324. } else if (clock >= F_BUS / 128) {
  325. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  326. } else if (clock >= F_BUS / 192) {
  327. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  328. } else if (clock >= F_BUS / 256) {
  329. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  330. } else if (clock >= F_BUS / 384) {
  331. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  332. } else if (clock >= F_BUS / 512) {
  333. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  334. } else if (clock >= F_BUS / 640) {
  335. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  336. } else { /* F_BUS / 768 */
  337. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  338. }
  339. } else {
  340. for (uint32_t i=0; i<23; i++) {
  341. t = ctar_clock_table[i];
  342. if (clock >= F_BUS / ctar_div_table[i]) break;
  343. }
  344. }
  345. if (dataMode & 0x08) {
  346. c |= SPI_CTAR_CPOL;
  347. }
  348. if (dataMode & 0x04) {
  349. c |= SPI_CTAR_CPHA;
  350. t = (t & 0xFFFF0FFF) | ((t & 0xF000) >> 4);
  351. }
  352. ctar = c | t;
  353. }
  354. static const uint16_t ctar_div_table[23];
  355. static const uint32_t ctar_clock_table[23];
  356. uint32_t ctar;
  357. friend class SPIClass;
  358. };
  359. class SPIClass {
  360. public:
  361. // Initialize the SPI library
  362. static void begin();
  363. // If SPI is to used from within an interrupt, this function registers
  364. // that interrupt with the SPI library, so beginTransaction() can
  365. // prevent conflicts. The input interruptNumber is the number used
  366. // with attachInterrupt. If SPI is used from a different interrupt
  367. // (eg, a timer), interruptNumber should be 255.
  368. static void usingInterrupt(uint8_t n) {
  369. if (n == 3 || n == 4 || n == 24 || n == 33) {
  370. usingInterrupt(IRQ_PORTA);
  371. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  372. usingInterrupt(IRQ_PORTB);
  373. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  374. || (n >= 27 && n <= 30)) {
  375. usingInterrupt(IRQ_PORTC);
  376. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  377. usingInterrupt(IRQ_PORTD);
  378. } else if (n == 26 || n == 31) {
  379. usingInterrupt(IRQ_PORTE);
  380. }
  381. }
  382. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  383. // Before using SPI.transfer() or asserting chip select pins,
  384. // this function is used to gain exclusive access to the SPI bus
  385. // and configure the correct settings.
  386. inline static void beginTransaction(SPISettings settings) {
  387. if (interruptMasksUsed) {
  388. if (interruptMasksUsed & 0x01) {
  389. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  390. NVIC_ICER0 = interruptSave[0];
  391. }
  392. #if NVIC_NUM_INTERRUPTS > 32
  393. if (interruptMasksUsed & 0x02) {
  394. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  395. NVIC_ICER1 = interruptSave[1];
  396. }
  397. #endif
  398. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  399. if (interruptMasksUsed & 0x04) {
  400. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  401. NVIC_ICER2 = interruptSave[2];
  402. }
  403. #endif
  404. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  405. if (interruptMasksUsed & 0x08) {
  406. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  407. NVIC_ICER3 = interruptSave[3];
  408. }
  409. #endif
  410. }
  411. #ifdef SPI_TRANSACTION_MISMATCH_LED
  412. if (inTransactionFlag) {
  413. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  414. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  415. }
  416. inTransactionFlag = 1;
  417. #endif
  418. if (SPI0_CTAR0 != settings.ctar) {
  419. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  420. SPI0_CTAR0 = settings.ctar;
  421. SPI0_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  422. SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  423. }
  424. }
  425. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  426. inline static uint8_t transfer(uint8_t data) {
  427. SPI0_SR = SPI_SR_TCF;
  428. SPI0_PUSHR = data;
  429. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  430. return SPI0_POPR;
  431. }
  432. inline static uint8_t transfer16(uint16_t data) {
  433. SPI0_SR = SPI_SR_TCF;
  434. SPI0_PUSHR = data | SPI_PUSHR_CTAS(1);
  435. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  436. return SPI0_POPR;
  437. }
  438. inline static void transfer(void *buf, size_t count) {
  439. if (count == 0) return;
  440. uint8_t *p = (uint8_t *)buf;
  441. SPDR = *p;
  442. while (--count > 0) {
  443. uint8_t out = *(p + 1);
  444. while (!(SPSR & _BV(SPIF))) ;
  445. uint8_t in = SPDR;
  446. SPDR = out;
  447. *p++ = in;
  448. }
  449. while (!(SPSR & _BV(SPIF))) ;
  450. *p = SPDR;
  451. }
  452. // After performing a group of transfers and releasing the chip select
  453. // signal, this function allows others to access the SPI bus
  454. inline static void endTransaction(void) {
  455. #ifdef SPI_TRANSACTION_MISMATCH_LED
  456. if (!inTransactionFlag) {
  457. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  458. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  459. }
  460. inTransactionFlag = 0;
  461. #endif
  462. if (interruptMasksUsed) {
  463. if (interruptMasksUsed & 0x01) {
  464. NVIC_ISER0 = interruptSave[0];
  465. }
  466. #if NVIC_NUM_INTERRUPTS > 32
  467. if (interruptMasksUsed & 0x02) {
  468. NVIC_ISER1 = interruptSave[1];
  469. }
  470. #endif
  471. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  472. if (interruptMasksUsed & 0x04) {
  473. NVIC_ISER2 = interruptSave[2];
  474. }
  475. #endif
  476. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  477. if (interruptMasksUsed & 0x08) {
  478. NVIC_ISER3 = interruptSave[3];
  479. }
  480. #endif
  481. }
  482. }
  483. // Disable the SPI bus
  484. static void end();
  485. // This function is deprecated. New applications should use
  486. // beginTransaction() to configure SPI settings.
  487. static void setBitOrder(uint8_t bitOrder);
  488. // This function is deprecated. New applications should use
  489. // beginTransaction() to configure SPI settings.
  490. static void setDataMode(uint8_t dataMode);
  491. // This function is deprecated. New applications should use
  492. // beginTransaction() to configure SPI settings.
  493. inline static void setClockDivider(uint8_t clockDiv) {
  494. if (clockDiv == SPI_CLOCK_DIV2) {
  495. setClockDivider_noInline(SPISettings(8000000, MSBFIRST, SPI_MODE0).ctar);
  496. } else if (clockDiv == SPI_CLOCK_DIV4) {
  497. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  498. } else if (clockDiv == SPI_CLOCK_DIV8) {
  499. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  500. } else if (clockDiv == SPI_CLOCK_DIV16) {
  501. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  502. } else if (clockDiv == SPI_CLOCK_DIV32) {
  503. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  504. } else if (clockDiv == SPI_CLOCK_DIV64) {
  505. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  506. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  507. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  508. }
  509. }
  510. static void setClockDivider_noInline(uint32_t clk);
  511. // These undocumented functions should not be used. SPI.transfer()
  512. // polls the hardware flag which is automatically cleared as the
  513. // AVR responds to SPI's interrupt
  514. inline static void attachInterrupt() { }
  515. inline static void detachInterrupt() { }
  516. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  517. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  518. SPCR.setMOSI(pin);
  519. }
  520. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  521. SPCR.setMISO(pin);
  522. }
  523. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  524. SPCR.setSCK(pin);
  525. }
  526. // return true if "pin" has special chip select capability
  527. static bool pinIsChipSelect(uint8_t pin);
  528. // return true if both pin1 and pin2 have independent chip select capability
  529. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  530. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  531. static uint8_t setCS(uint8_t pin);
  532. private:
  533. static uint8_t interruptMasksUsed;
  534. static uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  535. static uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  536. #ifdef SPI_TRANSACTION_MISMATCH_LED
  537. static uint8_t inTransactionFlag;
  538. #endif
  539. };
  540. /**********************************************************/
  541. /* 32 bit Arduino Due */
  542. /**********************************************************/
  543. #elif defined(__arm__) && defined(__SAM3X8E__)
  544. #undef SPI_MODE0
  545. #undef SPI_MODE1
  546. #undef SPI_MODE2
  547. #undef SPI_MODE3
  548. #define SPI_MODE0 0x02
  549. #define SPI_MODE1 0x00
  550. #define SPI_MODE2 0x03
  551. #define SPI_MODE3 0x01
  552. #undef SPI_CLOCK_DIV2
  553. #undef SPI_CLOCK_DIV4
  554. #undef SPI_CLOCK_DIV8
  555. #undef SPI_CLOCK_DIV16
  556. #undef SPI_CLOCK_DIV32
  557. #undef SPI_CLOCK_DIV64
  558. #undef SPI_CLOCK_DIV128
  559. #define SPI_CLOCK_DIV2 11
  560. #define SPI_CLOCK_DIV4 21
  561. #define SPI_CLOCK_DIV8 42
  562. #define SPI_CLOCK_DIV16 84
  563. #define SPI_CLOCK_DIV32 168
  564. #define SPI_CLOCK_DIV64 255
  565. #define SPI_CLOCK_DIV128 255
  566. enum SPITransferMode {
  567. SPI_CONTINUE,
  568. SPI_LAST
  569. };
  570. class SPISettings {
  571. public:
  572. SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  573. if (__builtin_constant_p(clock)) {
  574. init_AlwaysInline(clock, bitOrder, dataMode);
  575. } else {
  576. init_MightInline(clock, bitOrder, dataMode);
  577. }
  578. }
  579. SPISettings() {
  580. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  581. }
  582. private:
  583. void init_MightInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  584. init_AlwaysInline(clock, bitOrder, dataMode);
  585. }
  586. void init_AlwaysInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode)
  587. __attribute__((__always_inline__)) {
  588. uint8_t div;
  589. border = bitOrder;
  590. if (__builtin_constant_p(clock)) {
  591. if (clock >= F_CPU / 2) div = 2;
  592. else if (clock >= F_CPU / 3) div = 3;
  593. else if (clock >= F_CPU / 4) div = 4;
  594. else if (clock >= F_CPU / 5) div = 5;
  595. else if (clock >= F_CPU / 6) div = 6;
  596. else if (clock >= F_CPU / 7) div = 7;
  597. else if (clock >= F_CPU / 8) div = 8;
  598. else if (clock >= F_CPU / 9) div = 9;
  599. else if (clock >= F_CPU / 10) div = 10;
  600. else if (clock >= F_CPU / 11) div = 11;
  601. else if (clock >= F_CPU / 12) div = 12;
  602. else if (clock >= F_CPU / 13) div = 13;
  603. else if (clock >= F_CPU / 14) div = 14;
  604. else if (clock >= F_CPU / 15) div = 15;
  605. else if (clock >= F_CPU / 16) div = 16;
  606. else if (clock >= F_CPU / 17) div = 17;
  607. else if (clock >= F_CPU / 18) div = 18;
  608. else if (clock >= F_CPU / 19) div = 19;
  609. else if (clock >= F_CPU / 20) div = 20;
  610. else if (clock >= F_CPU / 21) div = 21;
  611. else if (clock >= F_CPU / 22) div = 22;
  612. else if (clock >= F_CPU / 23) div = 23;
  613. else if (clock >= F_CPU / 24) div = 24;
  614. else if (clock >= F_CPU / 25) div = 25;
  615. else if (clock >= F_CPU / 26) div = 26;
  616. else if (clock >= F_CPU / 27) div = 27;
  617. else if (clock >= F_CPU / 28) div = 28;
  618. else if (clock >= F_CPU / 29) div = 29;
  619. else if (clock >= F_CPU / 30) div = 30;
  620. else if (clock >= F_CPU / 31) div = 31;
  621. else if (clock >= F_CPU / 32) div = 32;
  622. else if (clock >= F_CPU / 33) div = 33;
  623. else if (clock >= F_CPU / 34) div = 34;
  624. else if (clock >= F_CPU / 35) div = 35;
  625. else if (clock >= F_CPU / 36) div = 36;
  626. else if (clock >= F_CPU / 37) div = 37;
  627. else if (clock >= F_CPU / 38) div = 38;
  628. else if (clock >= F_CPU / 39) div = 39;
  629. else if (clock >= F_CPU / 40) div = 40;
  630. else if (clock >= F_CPU / 41) div = 41;
  631. else if (clock >= F_CPU / 42) div = 42;
  632. else if (clock >= F_CPU / 43) div = 43;
  633. else if (clock >= F_CPU / 44) div = 44;
  634. else if (clock >= F_CPU / 45) div = 45;
  635. else if (clock >= F_CPU / 46) div = 46;
  636. else if (clock >= F_CPU / 47) div = 47;
  637. else if (clock >= F_CPU / 48) div = 48;
  638. else if (clock >= F_CPU / 49) div = 49;
  639. else if (clock >= F_CPU / 50) div = 50;
  640. else if (clock >= F_CPU / 51) div = 51;
  641. else if (clock >= F_CPU / 52) div = 52;
  642. else if (clock >= F_CPU / 53) div = 53;
  643. else if (clock >= F_CPU / 54) div = 54;
  644. else if (clock >= F_CPU / 55) div = 55;
  645. else if (clock >= F_CPU / 56) div = 56;
  646. else if (clock >= F_CPU / 57) div = 57;
  647. else if (clock >= F_CPU / 58) div = 58;
  648. else if (clock >= F_CPU / 59) div = 59;
  649. else if (clock >= F_CPU / 60) div = 60;
  650. else if (clock >= F_CPU / 61) div = 61;
  651. else if (clock >= F_CPU / 62) div = 62;
  652. else if (clock >= F_CPU / 63) div = 63;
  653. else if (clock >= F_CPU / 64) div = 64;
  654. else if (clock >= F_CPU / 65) div = 65;
  655. else if (clock >= F_CPU / 66) div = 66;
  656. else if (clock >= F_CPU / 67) div = 67;
  657. else if (clock >= F_CPU / 68) div = 68;
  658. else if (clock >= F_CPU / 69) div = 69;
  659. else if (clock >= F_CPU / 70) div = 70;
  660. else if (clock >= F_CPU / 71) div = 71;
  661. else if (clock >= F_CPU / 72) div = 72;
  662. else if (clock >= F_CPU / 73) div = 73;
  663. else if (clock >= F_CPU / 74) div = 74;
  664. else if (clock >= F_CPU / 75) div = 75;
  665. else if (clock >= F_CPU / 76) div = 76;
  666. else if (clock >= F_CPU / 77) div = 77;
  667. else if (clock >= F_CPU / 78) div = 78;
  668. else if (clock >= F_CPU / 79) div = 79;
  669. else if (clock >= F_CPU / 80) div = 80;
  670. else if (clock >= F_CPU / 81) div = 81;
  671. else if (clock >= F_CPU / 82) div = 82;
  672. else if (clock >= F_CPU / 83) div = 83;
  673. else if (clock >= F_CPU / 84) div = 84;
  674. else if (clock >= F_CPU / 85) div = 85;
  675. else if (clock >= F_CPU / 86) div = 86;
  676. else if (clock >= F_CPU / 87) div = 87;
  677. else if (clock >= F_CPU / 88) div = 88;
  678. else if (clock >= F_CPU / 89) div = 89;
  679. else if (clock >= F_CPU / 90) div = 90;
  680. else if (clock >= F_CPU / 91) div = 91;
  681. else if (clock >= F_CPU / 92) div = 92;
  682. else if (clock >= F_CPU / 93) div = 93;
  683. else if (clock >= F_CPU / 94) div = 94;
  684. else if (clock >= F_CPU / 95) div = 95;
  685. else if (clock >= F_CPU / 96) div = 96;
  686. else if (clock >= F_CPU / 97) div = 97;
  687. else if (clock >= F_CPU / 98) div = 98;
  688. else if (clock >= F_CPU / 99) div = 99;
  689. else if (clock >= F_CPU / 100) div = 100;
  690. else if (clock >= F_CPU / 101) div = 101;
  691. else if (clock >= F_CPU / 102) div = 102;
  692. else if (clock >= F_CPU / 103) div = 103;
  693. else if (clock >= F_CPU / 104) div = 104;
  694. else if (clock >= F_CPU / 105) div = 105;
  695. else if (clock >= F_CPU / 106) div = 106;
  696. else if (clock >= F_CPU / 107) div = 107;
  697. else if (clock >= F_CPU / 108) div = 108;
  698. else if (clock >= F_CPU / 109) div = 109;
  699. else if (clock >= F_CPU / 110) div = 110;
  700. else if (clock >= F_CPU / 111) div = 111;
  701. else if (clock >= F_CPU / 112) div = 112;
  702. else if (clock >= F_CPU / 113) div = 113;
  703. else if (clock >= F_CPU / 114) div = 114;
  704. else if (clock >= F_CPU / 115) div = 115;
  705. else if (clock >= F_CPU / 116) div = 116;
  706. else if (clock >= F_CPU / 117) div = 117;
  707. else if (clock >= F_CPU / 118) div = 118;
  708. else if (clock >= F_CPU / 119) div = 119;
  709. else if (clock >= F_CPU / 120) div = 120;
  710. else if (clock >= F_CPU / 121) div = 121;
  711. else if (clock >= F_CPU / 122) div = 122;
  712. else if (clock >= F_CPU / 123) div = 123;
  713. else if (clock >= F_CPU / 124) div = 124;
  714. else if (clock >= F_CPU / 125) div = 125;
  715. else if (clock >= F_CPU / 126) div = 126;
  716. else if (clock >= F_CPU / 127) div = 127;
  717. else if (clock >= F_CPU / 128) div = 128;
  718. else if (clock >= F_CPU / 129) div = 129;
  719. else if (clock >= F_CPU / 130) div = 130;
  720. else if (clock >= F_CPU / 131) div = 131;
  721. else if (clock >= F_CPU / 132) div = 132;
  722. else if (clock >= F_CPU / 133) div = 133;
  723. else if (clock >= F_CPU / 134) div = 134;
  724. else if (clock >= F_CPU / 135) div = 135;
  725. else if (clock >= F_CPU / 136) div = 136;
  726. else if (clock >= F_CPU / 137) div = 137;
  727. else if (clock >= F_CPU / 138) div = 138;
  728. else if (clock >= F_CPU / 139) div = 139;
  729. else if (clock >= F_CPU / 140) div = 140;
  730. else if (clock >= F_CPU / 141) div = 141;
  731. else if (clock >= F_CPU / 142) div = 142;
  732. else if (clock >= F_CPU / 143) div = 143;
  733. else if (clock >= F_CPU / 144) div = 144;
  734. else if (clock >= F_CPU / 145) div = 145;
  735. else if (clock >= F_CPU / 146) div = 146;
  736. else if (clock >= F_CPU / 147) div = 147;
  737. else if (clock >= F_CPU / 148) div = 148;
  738. else if (clock >= F_CPU / 149) div = 149;
  739. else if (clock >= F_CPU / 150) div = 150;
  740. else if (clock >= F_CPU / 151) div = 151;
  741. else if (clock >= F_CPU / 152) div = 152;
  742. else if (clock >= F_CPU / 153) div = 153;
  743. else if (clock >= F_CPU / 154) div = 154;
  744. else if (clock >= F_CPU / 155) div = 155;
  745. else if (clock >= F_CPU / 156) div = 156;
  746. else if (clock >= F_CPU / 157) div = 157;
  747. else if (clock >= F_CPU / 158) div = 158;
  748. else if (clock >= F_CPU / 159) div = 159;
  749. else if (clock >= F_CPU / 160) div = 160;
  750. else if (clock >= F_CPU / 161) div = 161;
  751. else if (clock >= F_CPU / 162) div = 162;
  752. else if (clock >= F_CPU / 163) div = 163;
  753. else if (clock >= F_CPU / 164) div = 164;
  754. else if (clock >= F_CPU / 165) div = 165;
  755. else if (clock >= F_CPU / 166) div = 166;
  756. else if (clock >= F_CPU / 167) div = 167;
  757. else if (clock >= F_CPU / 168) div = 168;
  758. else if (clock >= F_CPU / 169) div = 169;
  759. else if (clock >= F_CPU / 170) div = 170;
  760. else if (clock >= F_CPU / 171) div = 171;
  761. else if (clock >= F_CPU / 172) div = 172;
  762. else if (clock >= F_CPU / 173) div = 173;
  763. else if (clock >= F_CPU / 174) div = 174;
  764. else if (clock >= F_CPU / 175) div = 175;
  765. else if (clock >= F_CPU / 176) div = 176;
  766. else if (clock >= F_CPU / 177) div = 177;
  767. else if (clock >= F_CPU / 178) div = 178;
  768. else if (clock >= F_CPU / 179) div = 179;
  769. else if (clock >= F_CPU / 180) div = 180;
  770. else if (clock >= F_CPU / 181) div = 181;
  771. else if (clock >= F_CPU / 182) div = 182;
  772. else if (clock >= F_CPU / 183) div = 183;
  773. else if (clock >= F_CPU / 184) div = 184;
  774. else if (clock >= F_CPU / 185) div = 185;
  775. else if (clock >= F_CPU / 186) div = 186;
  776. else if (clock >= F_CPU / 187) div = 187;
  777. else if (clock >= F_CPU / 188) div = 188;
  778. else if (clock >= F_CPU / 189) div = 189;
  779. else if (clock >= F_CPU / 190) div = 190;
  780. else if (clock >= F_CPU / 191) div = 191;
  781. else if (clock >= F_CPU / 192) div = 192;
  782. else if (clock >= F_CPU / 193) div = 193;
  783. else if (clock >= F_CPU / 194) div = 194;
  784. else if (clock >= F_CPU / 195) div = 195;
  785. else if (clock >= F_CPU / 196) div = 196;
  786. else if (clock >= F_CPU / 197) div = 197;
  787. else if (clock >= F_CPU / 198) div = 198;
  788. else if (clock >= F_CPU / 199) div = 199;
  789. else if (clock >= F_CPU / 200) div = 200;
  790. else if (clock >= F_CPU / 201) div = 201;
  791. else if (clock >= F_CPU / 202) div = 202;
  792. else if (clock >= F_CPU / 203) div = 203;
  793. else if (clock >= F_CPU / 204) div = 204;
  794. else if (clock >= F_CPU / 205) div = 205;
  795. else if (clock >= F_CPU / 206) div = 206;
  796. else if (clock >= F_CPU / 207) div = 207;
  797. else if (clock >= F_CPU / 208) div = 208;
  798. else if (clock >= F_CPU / 209) div = 209;
  799. else if (clock >= F_CPU / 210) div = 210;
  800. else if (clock >= F_CPU / 211) div = 211;
  801. else if (clock >= F_CPU / 212) div = 212;
  802. else if (clock >= F_CPU / 213) div = 213;
  803. else if (clock >= F_CPU / 214) div = 214;
  804. else if (clock >= F_CPU / 215) div = 215;
  805. else if (clock >= F_CPU / 216) div = 216;
  806. else if (clock >= F_CPU / 217) div = 217;
  807. else if (clock >= F_CPU / 218) div = 218;
  808. else if (clock >= F_CPU / 219) div = 219;
  809. else if (clock >= F_CPU / 220) div = 220;
  810. else if (clock >= F_CPU / 221) div = 221;
  811. else if (clock >= F_CPU / 222) div = 222;
  812. else if (clock >= F_CPU / 223) div = 223;
  813. else if (clock >= F_CPU / 224) div = 224;
  814. else if (clock >= F_CPU / 225) div = 225;
  815. else if (clock >= F_CPU / 226) div = 226;
  816. else if (clock >= F_CPU / 227) div = 227;
  817. else if (clock >= F_CPU / 228) div = 228;
  818. else if (clock >= F_CPU / 229) div = 229;
  819. else if (clock >= F_CPU / 230) div = 230;
  820. else if (clock >= F_CPU / 231) div = 231;
  821. else if (clock >= F_CPU / 232) div = 232;
  822. else if (clock >= F_CPU / 233) div = 233;
  823. else if (clock >= F_CPU / 234) div = 234;
  824. else if (clock >= F_CPU / 235) div = 235;
  825. else if (clock >= F_CPU / 236) div = 236;
  826. else if (clock >= F_CPU / 237) div = 237;
  827. else if (clock >= F_CPU / 238) div = 238;
  828. else if (clock >= F_CPU / 239) div = 239;
  829. else if (clock >= F_CPU / 240) div = 240;
  830. else if (clock >= F_CPU / 241) div = 241;
  831. else if (clock >= F_CPU / 242) div = 242;
  832. else if (clock >= F_CPU / 243) div = 243;
  833. else if (clock >= F_CPU / 244) div = 244;
  834. else if (clock >= F_CPU / 245) div = 245;
  835. else if (clock >= F_CPU / 246) div = 246;
  836. else if (clock >= F_CPU / 247) div = 247;
  837. else if (clock >= F_CPU / 248) div = 248;
  838. else if (clock >= F_CPU / 249) div = 249;
  839. else if (clock >= F_CPU / 250) div = 250;
  840. else if (clock >= F_CPU / 251) div = 251;
  841. else if (clock >= F_CPU / 252) div = 252;
  842. else if (clock >= F_CPU / 253) div = 253;
  843. else if (clock >= F_CPU / 254) div = 254;
  844. else /* clock >= F_CPU / 255 */ div = 255;
  845. /*
  846. #! /usr/bin/perl
  847. for ($i=2; $i<256; $i++) {
  848. printf "\t\t\telse if (clock >= F_CPU / %3d) div = %3d;\n", $i, $i;
  849. }
  850. */
  851. } else {
  852. for (div=2; div<255; div++) {
  853. if (clock >= F_CPU / div) break;
  854. }
  855. }
  856. config = (dataMode & 3) | SPI_CSR_CSAAT | SPI_CSR_SCBR(div) | SPI_CSR_DLYBCT(1);
  857. }
  858. uint32_t config;
  859. BitOrder border;
  860. friend class SPIClass;
  861. };
  862. class SPIClass {
  863. public:
  864. SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void));
  865. byte transfer(uint8_t _data, SPITransferMode _mode = SPI_LAST) { return transfer(BOARD_SPI_DEFAULT_SS, _data, _mode); }
  866. byte transfer(byte _channel, uint8_t _data, SPITransferMode _mode = SPI_LAST);
  867. // Transaction Functions
  868. void usingInterrupt(uint8_t interruptNumber);
  869. void beginTransaction(uint8_t pin, SPISettings settings);
  870. void beginTransaction(SPISettings settings) {
  871. beginTransaction(BOARD_SPI_DEFAULT_SS, settings);
  872. }
  873. void endTransaction(void);
  874. // SPI Configuration methods
  875. void attachInterrupt(void);
  876. void detachInterrupt(void);
  877. void begin(void);
  878. void end(void);
  879. // Attach/Detach pin to/from SPI controller
  880. void begin(uint8_t _pin);
  881. void end(uint8_t _pin);
  882. // These methods sets a parameter on a single pin
  883. void setBitOrder(uint8_t _pin, BitOrder);
  884. void setDataMode(uint8_t _pin, uint8_t);
  885. void setClockDivider(uint8_t _pin, uint8_t);
  886. // These methods sets the same parameters but on default pin BOARD_SPI_DEFAULT_SS
  887. void setBitOrder(BitOrder _order) { setBitOrder(BOARD_SPI_DEFAULT_SS, _order); };
  888. void setDataMode(uint8_t _mode) { setDataMode(BOARD_SPI_DEFAULT_SS, _mode); };
  889. void setClockDivider(uint8_t _div) { setClockDivider(BOARD_SPI_DEFAULT_SS, _div); };
  890. private:
  891. void init();
  892. Spi *spi;
  893. uint32_t id;
  894. BitOrder bitOrder[SPI_CHANNELS_NUM];
  895. uint32_t divider[SPI_CHANNELS_NUM];
  896. uint32_t mode[SPI_CHANNELS_NUM];
  897. void (*initCb)(void);
  898. bool initialized;
  899. uint8_t interruptMode; // 0=none, 1=mask, 2=global
  900. uint8_t interruptMask; // bits 0:3=pin change
  901. uint8_t interruptSave; // temp storage, to restore state
  902. };
  903. #endif
  904. extern SPIClass SPI;
  905. #endif