Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
10 лет назад
8 лет назад
10 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад
10 лет назад
10 лет назад
9 лет назад
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * Copyright (c) 2014 by Paul Stoffregen <paul@pjrc.com> (Transaction API)
  4. * Copyright (c) 2014 by Matthijs Kooijman <matthijs@stdin.nl> (SPISettings AVR)
  5. * SPI Master library for arduino.
  6. *
  7. * This file is free software; you can redistribute it and/or modify
  8. * it under the terms of either the GNU General Public License version 2
  9. * or the GNU Lesser General Public License version 2.1, both as
  10. * published by the Free Software Foundation.
  11. */
  12. #ifndef _SPI_H_INCLUDED
  13. #define _SPI_H_INCLUDED
  14. #include <Arduino.h>
  15. // SPI_HAS_TRANSACTION means SPI has beginTransaction(), endTransaction(),
  16. // usingInterrupt(), and SPISetting(clock, bitOrder, dataMode)
  17. #define SPI_HAS_TRANSACTION 1
  18. // Uncomment this line to add detection of mismatched begin/end transactions.
  19. // A mismatch occurs if other libraries fail to use SPI.endTransaction() for
  20. // each SPI.beginTransaction(). Connect a LED to this pin. The LED will turn
  21. // on if any mismatch is ever detected.
  22. //#define SPI_TRANSACTION_MISMATCH_LED 5
  23. #ifndef __SAM3X8E__
  24. #ifndef LSBFIRST
  25. #define LSBFIRST 0
  26. #endif
  27. #ifndef MSBFIRST
  28. #define MSBFIRST 1
  29. #endif
  30. #endif
  31. #define SPI_MODE0 0x00
  32. #define SPI_MODE1 0x04
  33. #define SPI_MODE2 0x08
  34. #define SPI_MODE3 0x0C
  35. #define SPI_CLOCK_DIV4 0x00
  36. #define SPI_CLOCK_DIV16 0x01
  37. #define SPI_CLOCK_DIV64 0x02
  38. #define SPI_CLOCK_DIV128 0x03
  39. #define SPI_CLOCK_DIV2 0x04
  40. #define SPI_CLOCK_DIV8 0x05
  41. #define SPI_CLOCK_DIV32 0x06
  42. #define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
  43. #define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
  44. #define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
  45. /**********************************************************/
  46. /* 8 bit AVR-based boards */
  47. /**********************************************************/
  48. #if defined(__AVR__)
  49. // define SPI_AVR_EIMSK for AVR boards with external interrupt pins
  50. #if defined(EIMSK)
  51. #define SPI_AVR_EIMSK EIMSK
  52. #elif defined(GICR)
  53. #define SPI_AVR_EIMSK GICR
  54. #elif defined(GIMSK)
  55. #define SPI_AVR_EIMSK GIMSK
  56. #endif
  57. class SPISettings {
  58. public:
  59. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  60. if (__builtin_constant_p(clock)) {
  61. init_AlwaysInline(clock, bitOrder, dataMode);
  62. } else {
  63. init_MightInline(clock, bitOrder, dataMode);
  64. }
  65. }
  66. SPISettings() {
  67. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  68. }
  69. private:
  70. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  71. init_AlwaysInline(clock, bitOrder, dataMode);
  72. }
  73. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  74. __attribute__((__always_inline__)) {
  75. // Clock settings are defined as follows. Note that this shows SPI2X
  76. // inverted, so the bits form increasing numbers. Also note that
  77. // fosc/64 appears twice
  78. // SPR1 SPR0 ~SPI2X Freq
  79. // 0 0 0 fosc/2
  80. // 0 0 1 fosc/4
  81. // 0 1 0 fosc/8
  82. // 0 1 1 fosc/16
  83. // 1 0 0 fosc/32
  84. // 1 0 1 fosc/64
  85. // 1 1 0 fosc/64
  86. // 1 1 1 fosc/128
  87. // We find the fastest clock that is less than or equal to the
  88. // given clock rate. The clock divider that results in clock_setting
  89. // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
  90. // slowest (128 == 2 ^^ 7, so clock_div = 6).
  91. uint8_t clockDiv;
  92. // When the clock is known at compiletime, use this if-then-else
  93. // cascade, which the compiler knows how to completely optimize
  94. // away. When clock is not known, use a loop instead, which generates
  95. // shorter code.
  96. if (__builtin_constant_p(clock)) {
  97. if (clock >= F_CPU / 2) {
  98. clockDiv = 0;
  99. } else if (clock >= F_CPU / 4) {
  100. clockDiv = 1;
  101. } else if (clock >= F_CPU / 8) {
  102. clockDiv = 2;
  103. } else if (clock >= F_CPU / 16) {
  104. clockDiv = 3;
  105. } else if (clock >= F_CPU / 32) {
  106. clockDiv = 4;
  107. } else if (clock >= F_CPU / 64) {
  108. clockDiv = 5;
  109. } else {
  110. clockDiv = 6;
  111. }
  112. } else {
  113. uint32_t clockSetting = F_CPU / 2;
  114. clockDiv = 0;
  115. while (clockDiv < 6 && clock < clockSetting) {
  116. clockSetting /= 2;
  117. clockDiv++;
  118. }
  119. }
  120. // Compensate for the duplicate fosc/64
  121. if (clockDiv == 6)
  122. clockDiv = 7;
  123. // Invert the SPI2X bit
  124. clockDiv ^= 0x1;
  125. // Pack into the SPISettings class
  126. spcr = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
  127. (dataMode & SPI_MODE_MASK) | ((clockDiv >> 1) & SPI_CLOCK_MASK);
  128. spsr = clockDiv & SPI_2XCLOCK_MASK;
  129. }
  130. uint8_t spcr;
  131. uint8_t spsr;
  132. friend class SPIClass;
  133. };
  134. class SPIClass {
  135. public:
  136. // Initialize the SPI library
  137. static void begin();
  138. // If SPI is used from within an interrupt, this function registers
  139. // that interrupt with the SPI library, so beginTransaction() can
  140. // prevent conflicts. The input interruptNumber is the number used
  141. // with attachInterrupt. If SPI is used from a different interrupt
  142. // (eg, a timer), interruptNumber should be 255.
  143. static void usingInterrupt(uint8_t interruptNumber);
  144. // Before using SPI.transfer() or asserting chip select pins,
  145. // this function is used to gain exclusive access to the SPI bus
  146. // and configure the correct settings.
  147. inline static void beginTransaction(SPISettings settings) {
  148. if (interruptMode > 0) {
  149. #ifdef SPI_AVR_EIMSK
  150. if (interruptMode == 1) {
  151. interruptSave = SPI_AVR_EIMSK;
  152. SPI_AVR_EIMSK &= ~interruptMask;
  153. } else
  154. #endif
  155. {
  156. uint8_t tmp = SREG;
  157. cli();
  158. interruptSave = tmp;
  159. }
  160. }
  161. #ifdef SPI_TRANSACTION_MISMATCH_LED
  162. if (inTransactionFlag) {
  163. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  164. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  165. }
  166. inTransactionFlag = 1;
  167. #endif
  168. SPCR = settings.spcr;
  169. SPSR = settings.spsr;
  170. }
  171. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  172. inline static uint8_t transfer(uint8_t data) {
  173. SPDR = data;
  174. asm volatile("nop");
  175. while (!(SPSR & _BV(SPIF))) ; // wait
  176. return SPDR;
  177. }
  178. inline static uint16_t transfer16(uint16_t data) {
  179. union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } in, out;
  180. in.val = data;
  181. if ((SPCR & _BV(DORD))) {
  182. SPDR = in.lsb;
  183. asm volatile("nop");
  184. while (!(SPSR & _BV(SPIF))) ;
  185. out.lsb = SPDR;
  186. SPDR = in.msb;
  187. asm volatile("nop");
  188. while (!(SPSR & _BV(SPIF))) ;
  189. out.msb = SPDR;
  190. } else {
  191. SPDR = in.msb;
  192. asm volatile("nop");
  193. while (!(SPSR & _BV(SPIF))) ;
  194. out.msb = SPDR;
  195. SPDR = in.lsb;
  196. asm volatile("nop");
  197. while (!(SPSR & _BV(SPIF))) ;
  198. out.lsb = SPDR;
  199. }
  200. return out.val;
  201. }
  202. inline static void transfer(void *buf, size_t count) {
  203. if (count == 0) return;
  204. uint8_t *p = (uint8_t *)buf;
  205. SPDR = *p;
  206. while (--count > 0) {
  207. uint8_t out = *(p + 1);
  208. while (!(SPSR & _BV(SPIF))) ;
  209. uint8_t in = SPDR;
  210. SPDR = out;
  211. *p++ = in;
  212. }
  213. while (!(SPSR & _BV(SPIF))) ;
  214. *p = SPDR;
  215. }
  216. // After performing a group of transfers and releasing the chip select
  217. // signal, this function allows others to access the SPI bus
  218. inline static void endTransaction(void) {
  219. #ifdef SPI_TRANSACTION_MISMATCH_LED
  220. if (!inTransactionFlag) {
  221. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  222. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  223. }
  224. inTransactionFlag = 0;
  225. #endif
  226. if (interruptMode > 0) {
  227. #ifdef SPI_AVR_EIMSK
  228. if (interruptMode == 1) {
  229. SPI_AVR_EIMSK = interruptSave;
  230. } else
  231. #endif
  232. {
  233. SREG = interruptSave;
  234. }
  235. }
  236. }
  237. // Disable the SPI bus
  238. static void end();
  239. // This function is deprecated. New applications should use
  240. // beginTransaction() to configure SPI settings.
  241. inline static void setBitOrder(uint8_t bitOrder) {
  242. if (bitOrder == LSBFIRST) SPCR |= _BV(DORD);
  243. else SPCR &= ~(_BV(DORD));
  244. }
  245. // This function is deprecated. New applications should use
  246. // beginTransaction() to configure SPI settings.
  247. inline static void setDataMode(uint8_t dataMode) {
  248. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  249. }
  250. // This function is deprecated. New applications should use
  251. // beginTransaction() to configure SPI settings.
  252. inline static void setClockDivider(uint8_t clockDiv) {
  253. SPCR = (SPCR & ~SPI_CLOCK_MASK) | (clockDiv & SPI_CLOCK_MASK);
  254. SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((clockDiv >> 2) & SPI_2XCLOCK_MASK);
  255. }
  256. // These undocumented functions should not be used. SPI.transfer()
  257. // polls the hardware flag which is automatically cleared as the
  258. // AVR responds to SPI's interrupt
  259. inline static void attachInterrupt() { SPCR |= _BV(SPIE); }
  260. inline static void detachInterrupt() { SPCR &= ~_BV(SPIE); }
  261. private:
  262. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  263. static uint8_t interruptMask; // which interrupts to mask
  264. static uint8_t interruptSave; // temp storage, to restore state
  265. #ifdef SPI_TRANSACTION_MISMATCH_LED
  266. static uint8_t inTransactionFlag;
  267. #endif
  268. };
  269. /**********************************************************/
  270. /* 32 bit Teensy 3.0 and 3.1 */
  271. /**********************************************************/
  272. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
  273. #define SPI_HAS_NOTUSINGINTERRUPT 1
  274. class SPISettings {
  275. public:
  276. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  277. if (__builtin_constant_p(clock)) {
  278. init_AlwaysInline(clock, bitOrder, dataMode);
  279. } else {
  280. init_MightInline(clock, bitOrder, dataMode);
  281. }
  282. }
  283. SPISettings() {
  284. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  285. }
  286. private:
  287. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  288. init_AlwaysInline(clock, bitOrder, dataMode);
  289. }
  290. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  291. __attribute__((__always_inline__)) {
  292. uint32_t t, c = SPI_CTAR_FMSZ(7);
  293. if (bitOrder == LSBFIRST) c |= SPI_CTAR_LSBFE;
  294. if (__builtin_constant_p(clock)) {
  295. if (clock >= F_BUS / 2) {
  296. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  297. | SPI_CTAR_CSSCK(0);
  298. } else if (clock >= F_BUS / 3) {
  299. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  300. | SPI_CTAR_CSSCK(0);
  301. } else if (clock >= F_BUS / 4) {
  302. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  303. } else if (clock >= F_BUS / 5) {
  304. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  305. | SPI_CTAR_CSSCK(0);
  306. } else if (clock >= F_BUS / 6) {
  307. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  308. } else if (clock >= F_BUS / 8) {
  309. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  310. } else if (clock >= F_BUS / 10) {
  311. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  312. } else if (clock >= F_BUS / 12) {
  313. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  314. } else if (clock >= F_BUS / 16) {
  315. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  316. } else if (clock >= F_BUS / 20) {
  317. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
  318. } else if (clock >= F_BUS / 24) {
  319. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  320. } else if (clock >= F_BUS / 32) {
  321. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
  322. } else if (clock >= F_BUS / 40) {
  323. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  324. } else if (clock >= F_BUS / 56) {
  325. t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  326. } else if (clock >= F_BUS / 64) {
  327. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  328. } else if (clock >= F_BUS / 96) {
  329. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  330. } else if (clock >= F_BUS / 128) {
  331. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  332. } else if (clock >= F_BUS / 192) {
  333. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  334. } else if (clock >= F_BUS / 256) {
  335. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  336. } else if (clock >= F_BUS / 384) {
  337. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  338. } else if (clock >= F_BUS / 512) {
  339. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  340. } else if (clock >= F_BUS / 640) {
  341. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  342. } else { /* F_BUS / 768 */
  343. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  344. }
  345. } else {
  346. for (uint32_t i=0; i<23; i++) {
  347. t = ctar_clock_table[i];
  348. if (clock >= F_BUS / ctar_div_table[i]) break;
  349. }
  350. }
  351. if (dataMode & 0x08) {
  352. c |= SPI_CTAR_CPOL;
  353. }
  354. if (dataMode & 0x04) {
  355. c |= SPI_CTAR_CPHA;
  356. t = (t & 0xFFFF0FFF) | ((t & 0xF000) >> 4);
  357. }
  358. ctar = c | t;
  359. }
  360. static const uint16_t ctar_div_table[23];
  361. static const uint32_t ctar_clock_table[23];
  362. uint32_t ctar;
  363. friend class SPIClass;
  364. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  365. friend class SPI1Class;
  366. #endif
  367. };
  368. class SPIClass {
  369. public:
  370. // Initialize the SPI library
  371. static void begin();
  372. // If SPI is to used from within an interrupt, this function registers
  373. // that interrupt with the SPI library, so beginTransaction() can
  374. // prevent conflicts. The input interruptNumber is the number used
  375. // with attachInterrupt. If SPI is used from a different interrupt
  376. // (eg, a timer), interruptNumber should be 255.
  377. static void usingInterrupt(uint8_t n) {
  378. if (n == 3 || n == 4 || n == 24 || n == 33) {
  379. usingInterrupt(IRQ_PORTA);
  380. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  381. usingInterrupt(IRQ_PORTB);
  382. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  383. || (n >= 27 && n <= 30)) {
  384. usingInterrupt(IRQ_PORTC);
  385. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  386. usingInterrupt(IRQ_PORTD);
  387. } else if (n == 26 || n == 31) {
  388. usingInterrupt(IRQ_PORTE);
  389. }
  390. }
  391. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  392. static void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  393. // Before using SPI.transfer() or asserting chip select pins,
  394. // this function is used to gain exclusive access to the SPI bus
  395. // and configure the correct settings.
  396. inline static void beginTransaction(SPISettings settings) {
  397. if (interruptMasksUsed) {
  398. __disable_irq();
  399. if (interruptMasksUsed & 0x01) {
  400. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  401. NVIC_ICER0 = interruptSave[0];
  402. }
  403. #if NVIC_NUM_INTERRUPTS > 32
  404. if (interruptMasksUsed & 0x02) {
  405. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  406. NVIC_ICER1 = interruptSave[1];
  407. }
  408. #endif
  409. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  410. if (interruptMasksUsed & 0x04) {
  411. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  412. NVIC_ICER2 = interruptSave[2];
  413. }
  414. #endif
  415. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  416. if (interruptMasksUsed & 0x08) {
  417. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  418. NVIC_ICER3 = interruptSave[3];
  419. }
  420. #endif
  421. __enable_irq();
  422. }
  423. #ifdef SPI_TRANSACTION_MISMATCH_LED
  424. if (inTransactionFlag) {
  425. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  426. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  427. }
  428. inTransactionFlag = 1;
  429. #endif
  430. if (SPI0_CTAR0 != settings.ctar) {
  431. SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  432. SPI0_CTAR0 = settings.ctar;
  433. SPI0_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  434. SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  435. }
  436. }
  437. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  438. inline static uint8_t transfer(uint8_t data) {
  439. SPI0_SR = SPI_SR_TCF;
  440. SPI0_PUSHR = data;
  441. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  442. return SPI0_POPR;
  443. }
  444. inline static uint16_t transfer16(uint16_t data) {
  445. SPI0_SR = SPI_SR_TCF;
  446. SPI0_PUSHR = data | SPI_PUSHR_CTAS(1);
  447. while (!(SPI0_SR & SPI_SR_TCF)) ; // wait
  448. return SPI0_POPR;
  449. }
  450. inline static void transfer(void *buf, size_t count) {
  451. if (count == 0) return;
  452. uint8_t *p = (uint8_t *)buf;
  453. SPDR = *p;
  454. while (--count > 0) {
  455. uint8_t out = *(p + 1);
  456. while (!(SPSR & _BV(SPIF))) ;
  457. uint8_t in = SPDR;
  458. SPDR = out;
  459. *p++ = in;
  460. }
  461. while (!(SPSR & _BV(SPIF))) ;
  462. *p = SPDR;
  463. }
  464. // After performing a group of transfers and releasing the chip select
  465. // signal, this function allows others to access the SPI bus
  466. inline static void endTransaction(void) {
  467. #ifdef SPI_TRANSACTION_MISMATCH_LED
  468. if (!inTransactionFlag) {
  469. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  470. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  471. }
  472. inTransactionFlag = 0;
  473. #endif
  474. if (interruptMasksUsed) {
  475. if (interruptMasksUsed & 0x01) {
  476. NVIC_ISER0 = interruptSave[0];
  477. }
  478. #if NVIC_NUM_INTERRUPTS > 32
  479. if (interruptMasksUsed & 0x02) {
  480. NVIC_ISER1 = interruptSave[1];
  481. }
  482. #endif
  483. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  484. if (interruptMasksUsed & 0x04) {
  485. NVIC_ISER2 = interruptSave[2];
  486. }
  487. #endif
  488. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  489. if (interruptMasksUsed & 0x08) {
  490. NVIC_ISER3 = interruptSave[3];
  491. }
  492. #endif
  493. }
  494. }
  495. // Disable the SPI bus
  496. static void end();
  497. // This function is deprecated. New applications should use
  498. // beginTransaction() to configure SPI settings.
  499. static void setBitOrder(uint8_t bitOrder);
  500. // This function is deprecated. New applications should use
  501. // beginTransaction() to configure SPI settings.
  502. static void setDataMode(uint8_t dataMode);
  503. // This function is deprecated. New applications should use
  504. // beginTransaction() to configure SPI settings.
  505. inline static void setClockDivider(uint8_t clockDiv) {
  506. if (clockDiv == SPI_CLOCK_DIV2) {
  507. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  508. } else if (clockDiv == SPI_CLOCK_DIV4) {
  509. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  510. } else if (clockDiv == SPI_CLOCK_DIV8) {
  511. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  512. } else if (clockDiv == SPI_CLOCK_DIV16) {
  513. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  514. } else if (clockDiv == SPI_CLOCK_DIV32) {
  515. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  516. } else if (clockDiv == SPI_CLOCK_DIV64) {
  517. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  518. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  519. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  520. }
  521. }
  522. static void setClockDivider_noInline(uint32_t clk);
  523. // These undocumented functions should not be used. SPI.transfer()
  524. // polls the hardware flag which is automatically cleared as the
  525. // AVR responds to SPI's interrupt
  526. inline static void attachInterrupt() { }
  527. inline static void detachInterrupt() { }
  528. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  529. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  530. SPCR.setMOSI(pin);
  531. }
  532. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  533. SPCR.setMISO(pin);
  534. }
  535. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  536. SPCR.setSCK(pin);
  537. }
  538. // return true if "pin" has special chip select capability
  539. static uint8_t pinIsChipSelect(uint8_t pin);
  540. // return true if both pin1 and pin2 have independent chip select capability
  541. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  542. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  543. static uint8_t setCS(uint8_t pin);
  544. private:
  545. static uint8_t interruptMasksUsed;
  546. static uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  547. static uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  548. #ifdef SPI_TRANSACTION_MISMATCH_LED
  549. static uint8_t inTransactionFlag;
  550. #endif
  551. };
  552. /**********************************************************/
  553. /* Teensy 3.4 and 3.5 have SPI1 as well */
  554. /**********************************************************/
  555. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  556. class SPI1Class {
  557. public:
  558. // Initialize the SPI library
  559. static void begin();
  560. // If SPI is to used from within an interrupt, this function registers
  561. // that interrupt with the SPI library, so beginTransaction() can
  562. // prevent conflicts. The input interruptNumber is the number used
  563. // with attachInterrupt. If SPI is used from a different interrupt
  564. // (eg, a timer), interruptNumber should be 255.
  565. static void usingInterrupt(uint8_t n) {
  566. if (n == 3 || n == 4 || n == 24 || n == 33) {
  567. usingInterrupt(IRQ_PORTA);
  568. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  569. usingInterrupt(IRQ_PORTB);
  570. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  571. || (n >= 27 && n <= 30)) {
  572. usingInterrupt(IRQ_PORTC);
  573. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  574. usingInterrupt(IRQ_PORTD);
  575. } else if (n == 26 || n == 31) {
  576. usingInterrupt(IRQ_PORTE);
  577. }
  578. }
  579. static void usingInterrupt(IRQ_NUMBER_t interruptName);
  580. static void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  581. // Before using SPI.transfer() or asserting chip select pins,
  582. // this function is used to gain exclusive access to the SPI bus
  583. // and configure the correct settings.
  584. inline static void beginTransaction(SPISettings settings) {
  585. if (interruptMasksUsed) {
  586. __disable_irq();
  587. if (interruptMasksUsed & 0x01) {
  588. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  589. NVIC_ICER0 = interruptSave[0];
  590. }
  591. #if NVIC_NUM_INTERRUPTS > 32
  592. if (interruptMasksUsed & 0x02) {
  593. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  594. NVIC_ICER1 = interruptSave[1];
  595. }
  596. #endif
  597. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  598. if (interruptMasksUsed & 0x04) {
  599. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  600. NVIC_ICER2 = interruptSave[2];
  601. }
  602. #endif
  603. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  604. if (interruptMasksUsed & 0x08) {
  605. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  606. NVIC_ICER3 = interruptSave[3];
  607. }
  608. #endif
  609. __enable_irq();
  610. }
  611. #ifdef SPI_TRANSACTION_MISMATCH_LED
  612. if (inTransactionFlag) {
  613. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  614. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  615. }
  616. inTransactionFlag = 1;
  617. #endif
  618. if (SPI1_CTAR0 != settings.ctar) {
  619. SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  620. SPI1_CTAR0 = settings.ctar;
  621. SPI1_CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  622. SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F);
  623. }
  624. }
  625. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  626. inline static uint8_t transfer(uint8_t data) {
  627. SPI1_SR = SPI_SR_TCF;
  628. SPI1_PUSHR = data;
  629. while (!(SPI1_SR & SPI_SR_TCF)) ; // wait
  630. return SPI1_POPR;
  631. }
  632. inline static uint16_t transfer16(uint16_t data) {
  633. SPI1_SR = SPI_SR_TCF;
  634. SPI1_PUSHR = data | SPI_PUSHR_CTAS(1);
  635. while (!(SPI1_SR & SPI_SR_TCF)) ; // wait
  636. return SPI1_POPR;
  637. }
  638. inline static void transfer(void *buf, size_t count) {
  639. uint8_t *p = (uint8_t *)buf;
  640. while (count--) {
  641. *p = transfer(*p);
  642. p++;
  643. }
  644. }
  645. // After performing a group of transfers and releasing the chip select
  646. // signal, this function allows others to access the SPI bus
  647. inline static void endTransaction(void) {
  648. #ifdef SPI_TRANSACTION_MISMATCH_LED
  649. if (!inTransactionFlag) {
  650. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  651. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  652. }
  653. inTransactionFlag = 0;
  654. #endif
  655. if (interruptMasksUsed) {
  656. if (interruptMasksUsed & 0x01) {
  657. NVIC_ISER0 = interruptSave[0];
  658. }
  659. #if NVIC_NUM_INTERRUPTS > 32
  660. if (interruptMasksUsed & 0x02) {
  661. NVIC_ISER1 = interruptSave[1];
  662. }
  663. #endif
  664. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  665. if (interruptMasksUsed & 0x04) {
  666. NVIC_ISER2 = interruptSave[2];
  667. }
  668. #endif
  669. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  670. if (interruptMasksUsed & 0x08) {
  671. NVIC_ISER3 = interruptSave[3];
  672. }
  673. #endif
  674. }
  675. }
  676. // Disable the SPI bus
  677. static void end();
  678. // This function is deprecated. New applications should use
  679. // beginTransaction() to configure SPI settings.
  680. static void setBitOrder(uint8_t bitOrder);
  681. // This function is deprecated. New applications should use
  682. // beginTransaction() to configure SPI settings.
  683. static void setDataMode(uint8_t dataMode);
  684. // This function is deprecated. New applications should use
  685. // beginTransaction() to configure SPI settings.
  686. inline static void setClockDivider(uint8_t clockDiv) {
  687. if (clockDiv == SPI_CLOCK_DIV2) {
  688. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  689. } else if (clockDiv == SPI_CLOCK_DIV4) {
  690. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  691. } else if (clockDiv == SPI_CLOCK_DIV8) {
  692. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  693. } else if (clockDiv == SPI_CLOCK_DIV16) {
  694. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  695. } else if (clockDiv == SPI_CLOCK_DIV32) {
  696. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  697. } else if (clockDiv == SPI_CLOCK_DIV64) {
  698. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  699. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  700. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  701. }
  702. }
  703. static void setClockDivider_noInline(uint32_t clk);
  704. // These undocumented functions should not be used. SPI.transfer()
  705. // polls the hardware flag which is automatically cleared as the
  706. // AVR responds to SPI's interrupt
  707. inline static void attachInterrupt() { }
  708. inline static void detachInterrupt() { }
  709. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  710. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  711. SPCR1.setMOSI(pin);
  712. }
  713. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  714. SPCR1.setMISO(pin);
  715. }
  716. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  717. SPCR1.setSCK(pin);
  718. }
  719. // return true if "pin" has special chip select capability
  720. static bool pinIsChipSelect(uint8_t pin);
  721. // return true if both pin1 and pin2 have independent chip select capability
  722. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  723. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  724. static uint8_t setCS(uint8_t pin);
  725. private:
  726. static uint8_t interruptMasksUsed;
  727. static uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32];
  728. static uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32];
  729. #ifdef SPI_TRANSACTION_MISMATCH_LED
  730. static uint8_t inTransactionFlag;
  731. #endif
  732. };
  733. #endif
  734. /**********************************************************/
  735. /* 32 bit Teensy-LC */
  736. /**********************************************************/
  737. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  738. class SPISettings {
  739. public:
  740. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  741. if (__builtin_constant_p(clock)) {
  742. init_AlwaysInline(clock, bitOrder, dataMode);
  743. } else {
  744. init_MightInline(clock, bitOrder, dataMode);
  745. }
  746. }
  747. SPISettings() {
  748. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  749. }
  750. private:
  751. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  752. init_AlwaysInline(clock, bitOrder, dataMode);
  753. }
  754. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  755. __attribute__((__always_inline__)) {
  756. uint8_t c = SPI_C1_MSTR | SPI_C1_SPE;
  757. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  758. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  759. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  760. c1 = c;
  761. if (__builtin_constant_p(clock)) {
  762. if (clock >= F_BUS / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  763. } else if (clock >= F_BUS / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  764. } else if (clock >= F_BUS / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  765. } else if (clock >= F_BUS / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  766. } else if (clock >= F_BUS / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  767. } else if (clock >= F_BUS / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  768. } else if (clock >= F_BUS / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  769. } else if (clock >= F_BUS / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  770. } else if (clock >= F_BUS / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  771. } else if (clock >= F_BUS / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  772. } else if (clock >= F_BUS / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  773. } else if (clock >= F_BUS / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  774. } else if (clock >= F_BUS / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  775. } else if (clock >= F_BUS / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  776. } else if (clock >= F_BUS / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  777. } else if (clock >= F_BUS / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  778. } else if (clock >= F_BUS / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  779. } else if (clock >= F_BUS / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  780. } else if (clock >= F_BUS / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  781. } else if (clock >= F_BUS / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  782. } else if (clock >= F_BUS / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  783. } else if (clock >= F_BUS / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  784. } else if (clock >= F_BUS / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  785. } else if (clock >= F_BUS / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  786. } else if (clock >= F_BUS / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  787. } else if (clock >= F_BUS / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  788. } else if (clock >= F_BUS / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  789. } else if (clock >= F_BUS / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  790. } else if (clock >= F_BUS / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  791. } else /* F_BUS / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  792. }
  793. } else {
  794. for (uint32_t i=0; i<30; i++) {
  795. c = br_clock_table[i];
  796. if (clock >= F_BUS / br_div_table[i]) break;
  797. }
  798. }
  799. br0 = c;
  800. if (__builtin_constant_p(clock)) {
  801. if (clock >= (F_PLL/2) / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  802. } else if (clock >= (F_PLL/2) / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  803. } else if (clock >= (F_PLL/2) / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  804. } else if (clock >= (F_PLL/2) / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  805. } else if (clock >= (F_PLL/2) / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  806. } else if (clock >= (F_PLL/2) / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  807. } else if (clock >= (F_PLL/2) / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  808. } else if (clock >= (F_PLL/2) / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  809. } else if (clock >= (F_PLL/2) / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  810. } else if (clock >= (F_PLL/2) / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  811. } else if (clock >= (F_PLL/2) / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  812. } else if (clock >= (F_PLL/2) / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  813. } else if (clock >= (F_PLL/2) / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  814. } else if (clock >= (F_PLL/2) / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  815. } else if (clock >= (F_PLL/2) / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  816. } else if (clock >= (F_PLL/2) / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  817. } else if (clock >= (F_PLL/2) / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  818. } else if (clock >= (F_PLL/2) / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  819. } else if (clock >= (F_PLL/2) / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  820. } else if (clock >= (F_PLL/2) / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  821. } else if (clock >= (F_PLL/2) / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  822. } else if (clock >= (F_PLL/2) / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  823. } else if (clock >= (F_PLL/2) / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  824. } else if (clock >= (F_PLL/2) / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  825. } else if (clock >= (F_PLL/2) / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  826. } else if (clock >= (F_PLL/2) / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  827. } else if (clock >= (F_PLL/2) / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  828. } else if (clock >= (F_PLL/2) / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  829. } else if (clock >= (F_PLL/2) / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  830. } else /* (F_PLL/2) / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  831. }
  832. } else {
  833. for (uint32_t i=0; i<30; i++) {
  834. c = br_clock_table[i];
  835. if (clock >= (F_PLL/2) / br_div_table[i]) break;
  836. }
  837. }
  838. br1 = c;
  839. }
  840. static const uint8_t br_clock_table[30];
  841. static const uint16_t br_div_table[30];
  842. uint8_t c1, br0, br1;
  843. friend class SPIClass;
  844. friend class SPI1Class;
  845. };
  846. class SPIClass {
  847. public:
  848. // Initialize the SPI library
  849. static void begin();
  850. // If SPI is to used from within an interrupt, this function registers
  851. // that interrupt with the SPI library, so beginTransaction() can
  852. // prevent conflicts. The input interruptNumber is the number used
  853. // with attachInterrupt. If SPI is used from a different interrupt
  854. // (eg, a timer), interruptNumber should be 255.
  855. static void usingInterrupt(uint8_t n) {
  856. if (n == 3 || n == 4) {
  857. usingInterrupt(IRQ_PORTA);
  858. } else if ((n >= 2 && n <= 15) || (n >= 20 && n <= 23)) {
  859. usingInterrupt(IRQ_PORTCD);
  860. }
  861. }
  862. static void usingInterrupt(IRQ_NUMBER_t interruptName) {
  863. uint32_t n = (uint32_t)interruptName;
  864. if (n < NVIC_NUM_INTERRUPTS) interruptMask |= (1 << n);
  865. }
  866. static void notUsingInterrupt(IRQ_NUMBER_t interruptName) {
  867. uint32_t n = (uint32_t)interruptName;
  868. if (n < NVIC_NUM_INTERRUPTS) interruptMask &= ~(1 << n);
  869. }
  870. // Before using SPI.transfer() or asserting chip select pins,
  871. // this function is used to gain exclusive access to the SPI bus
  872. // and configure the correct settings.
  873. inline static void beginTransaction(SPISettings settings) {
  874. if (interruptMask) {
  875. __disable_irq();
  876. interruptSave = NVIC_ICER0 & interruptMask;
  877. NVIC_ICER0 = interruptSave;
  878. __enable_irq();
  879. }
  880. #ifdef SPI_TRANSACTION_MISMATCH_LED
  881. if (inTransactionFlag) {
  882. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  883. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  884. }
  885. inTransactionFlag = 1;
  886. #endif
  887. SPI0_C1 = settings.c1;
  888. SPI0_BR = settings.br0;
  889. }
  890. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  891. inline static uint8_t transfer(uint8_t data) {
  892. SPI0_DL = data;
  893. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  894. return SPI0_DL;
  895. }
  896. inline static uint16_t transfer16(uint16_t data) {
  897. SPI0_C2 = SPI_C2_SPIMODE;
  898. SPI0_S;
  899. SPI0_DL = data;
  900. SPI0_DH = data >> 8;
  901. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  902. uint16_t r = SPI0_DL | (SPI0_DH << 8);
  903. SPI0_C2 = 0;
  904. SPI0_S;
  905. return r;
  906. }
  907. inline static void transfer(void *buf, size_t count) {
  908. if (count == 0) return;
  909. uint8_t *p = (uint8_t *)buf;
  910. while (!(SPI0_S & SPI_S_SPTEF)) ; // wait
  911. SPI0_DL = *p;
  912. while (--count > 0) {
  913. uint8_t out = *(p + 1);
  914. while (!(SPI0_S & SPI_S_SPTEF)) ; // wait
  915. __disable_irq();
  916. SPI0_DL = out;
  917. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  918. uint8_t in = SPI0_DL;
  919. __enable_irq();
  920. *p++ = in;
  921. }
  922. while (!(SPI0_S & SPI_S_SPRF)) ; // wait
  923. *p = SPDR;
  924. }
  925. // After performing a group of transfers and releasing the chip select
  926. // signal, this function allows others to access the SPI bus
  927. inline static void endTransaction(void) {
  928. #ifdef SPI_TRANSACTION_MISMATCH_LED
  929. if (!inTransactionFlag) {
  930. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  931. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  932. }
  933. inTransactionFlag = 0;
  934. #endif
  935. if (interruptMask) {
  936. NVIC_ISER0 = interruptSave;
  937. }
  938. }
  939. // Disable the SPI bus
  940. static void end();
  941. // This function is deprecated. New applications should use
  942. // beginTransaction() to configure SPI settings.
  943. static void setBitOrder(uint8_t bitOrder) {
  944. uint8_t c = SPI0_C1 | SPI_C1_SPE;
  945. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  946. else c &= ~SPI_C1_LSBFE;
  947. SPI0_C1 = c;
  948. }
  949. // This function is deprecated. New applications should use
  950. // beginTransaction() to configure SPI settings.
  951. static void setDataMode(uint8_t dataMode) {
  952. uint8_t c = SPI0_C1 | SPI_C1_SPE;
  953. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  954. else c &= ~SPI_C1_CPHA;
  955. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  956. else c &= ~SPI_C1_CPOL;
  957. SPI0_C1 = c;
  958. }
  959. // This function is deprecated. New applications should use
  960. // beginTransaction() to configure SPI settings.
  961. inline static void setClockDivider(uint8_t clockDiv) {
  962. if (clockDiv == SPI_CLOCK_DIV2) {
  963. SPI0_BR = (SPISettings(12000000, MSBFIRST, SPI_MODE0).br0);
  964. } else if (clockDiv == SPI_CLOCK_DIV4) {
  965. SPI0_BR = (SPISettings(4000000, MSBFIRST, SPI_MODE0).br0);
  966. } else if (clockDiv == SPI_CLOCK_DIV8) {
  967. SPI0_BR = (SPISettings(2000000, MSBFIRST, SPI_MODE0).br0);
  968. } else if (clockDiv == SPI_CLOCK_DIV16) {
  969. SPI0_BR = (SPISettings(1000000, MSBFIRST, SPI_MODE0).br0);
  970. } else if (clockDiv == SPI_CLOCK_DIV32) {
  971. SPI0_BR = (SPISettings(500000, MSBFIRST, SPI_MODE0).br0);
  972. } else if (clockDiv == SPI_CLOCK_DIV64) {
  973. SPI0_BR = (SPISettings(250000, MSBFIRST, SPI_MODE0).br0);
  974. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  975. SPI0_BR = (SPISettings(125000, MSBFIRST, SPI_MODE0).br0);
  976. }
  977. }
  978. // These undocumented functions should not be used. SPI.transfer()
  979. // polls the hardware flag which is automatically cleared as the
  980. // AVR responds to SPI's interrupt
  981. inline static void attachInterrupt() { }
  982. inline static void detachInterrupt() { }
  983. // Teensy LC can use alternate pins for these 3 SPI signals.
  984. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  985. SPCR.setMOSI(pin);
  986. }
  987. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  988. SPCR.setMISO(pin);
  989. }
  990. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  991. SPCR.setSCK(pin);
  992. }
  993. // return true if "pin" has special chip select capability
  994. static bool pinIsChipSelect(uint8_t pin) { return (pin == 10 || pin == 2); }
  995. // return true if both pin1 and pin2 have independent chip select capability
  996. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2) { return false; }
  997. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  998. static uint8_t setCS(uint8_t pin);
  999. private:
  1000. static uint32_t interruptMask;
  1001. static uint32_t interruptSave;
  1002. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1003. static uint8_t inTransactionFlag;
  1004. #endif
  1005. };
  1006. class SPI1Class {
  1007. public:
  1008. // Initialize the SPI library
  1009. static void begin();
  1010. // If SPI is to used from within an interrupt, this function registers
  1011. // that interrupt with the SPI library, so beginTransaction() can
  1012. // prevent conflicts. The input interruptNumber is the number used
  1013. // with attachInterrupt. If SPI is used from a different interrupt
  1014. // (eg, a timer), interruptNumber should be 255.
  1015. static void usingInterrupt(uint8_t n) {
  1016. if (n == 3 || n == 4) {
  1017. usingInterrupt(IRQ_PORTA);
  1018. } else if ((n >= 2 && n <= 15) || (n >= 20 && n <= 23)) {
  1019. usingInterrupt(IRQ_PORTCD);
  1020. }
  1021. }
  1022. static void usingInterrupt(IRQ_NUMBER_t interruptName) {
  1023. uint32_t n = (uint32_t)interruptName;
  1024. if (n < NVIC_NUM_INTERRUPTS) interruptMask |= (1 << n);
  1025. }
  1026. static void notUsingInterrupt(IRQ_NUMBER_t interruptName) {
  1027. uint32_t n = (uint32_t)interruptName;
  1028. if (n < NVIC_NUM_INTERRUPTS) interruptMask &= ~(1 << n);
  1029. }
  1030. // Before using SPI.transfer() or asserting chip select pins,
  1031. // this function is used to gain exclusive access to the SPI bus
  1032. // and configure the correct settings.
  1033. inline static void beginTransaction(SPISettings settings) {
  1034. if (interruptMask) {
  1035. __disable_irq();
  1036. interruptSave = NVIC_ICER0 & interruptMask;
  1037. NVIC_ICER0 = interruptSave;
  1038. __enable_irq();
  1039. }
  1040. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1041. if (inTransactionFlag) {
  1042. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1043. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1044. }
  1045. inTransactionFlag = 1;
  1046. #endif
  1047. SPI1_C1 = settings.c1;
  1048. SPI1_BR = settings.br1;
  1049. }
  1050. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  1051. inline static uint8_t transfer(uint8_t data) {
  1052. SPI1_DL = data;
  1053. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1054. return SPI1_DL;
  1055. }
  1056. inline static uint16_t transfer16(uint16_t data) {
  1057. SPI1_C2 = SPI_C2_SPIMODE;
  1058. SPI1_S;
  1059. SPI1_DL = data;
  1060. SPI1_DH = data >> 8;
  1061. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1062. uint16_t r = SPI1_DL | (SPI1_DH << 8);
  1063. SPI1_C2 = 0;
  1064. SPI1_S;
  1065. return r;
  1066. }
  1067. inline static void transfer(void *buf, size_t count) {
  1068. if (count == 0) return;
  1069. uint8_t *p = (uint8_t *)buf;
  1070. while (!(SPI1_S & SPI_S_SPTEF)) ; // wait
  1071. SPI1_DL = *p;
  1072. while (--count > 0) {
  1073. uint8_t out = *(p + 1);
  1074. while (!(SPI1_S & SPI_S_SPTEF)) ; // wait
  1075. __disable_irq();
  1076. SPI1_DL = out;
  1077. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1078. uint8_t in = SPI1_DL;
  1079. __enable_irq();
  1080. *p++ = in;
  1081. }
  1082. while (!(SPI1_S & SPI_S_SPRF)) ; // wait
  1083. *p = SPDR;
  1084. }
  1085. // After performing a group of transfers and releasing the chip select
  1086. // signal, this function allows others to access the SPI bus
  1087. inline static void endTransaction(void) {
  1088. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1089. if (!inTransactionFlag) {
  1090. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1091. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1092. }
  1093. inTransactionFlag = 0;
  1094. #endif
  1095. if (interruptMask) {
  1096. NVIC_ISER0 = interruptSave;
  1097. }
  1098. }
  1099. // Disable the SPI bus
  1100. static void end();
  1101. // This function is deprecated. New applications should use
  1102. // beginTransaction() to configure SPI settings.
  1103. static void setBitOrder(uint8_t bitOrder) {
  1104. uint8_t c = SPI1_C1 | SPI_C1_SPE;
  1105. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  1106. else c &= ~SPI_C1_LSBFE;
  1107. SPI1_C1 = c;
  1108. }
  1109. // This function is deprecated. New applications should use
  1110. // beginTransaction() to configure SPI settings.
  1111. static void setDataMode(uint8_t dataMode) {
  1112. uint8_t c = SPI1_C1 | SPI_C1_SPE;
  1113. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  1114. else c &= ~SPI_C1_CPHA;
  1115. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  1116. else c &= ~SPI_C1_CPOL;
  1117. SPI1_C1 = c;
  1118. }
  1119. // This function is deprecated. New applications should use
  1120. // beginTransaction() to configure SPI settings.
  1121. inline static void setClockDivider(uint8_t clockDiv) {
  1122. if (clockDiv == SPI_CLOCK_DIV2) {
  1123. SPI1_BR = (SPISettings(12000000, MSBFIRST, SPI_MODE0).br1);
  1124. } else if (clockDiv == SPI_CLOCK_DIV4) {
  1125. SPI1_BR = (SPISettings(4000000, MSBFIRST, SPI_MODE0).br1);
  1126. } else if (clockDiv == SPI_CLOCK_DIV8) {
  1127. SPI1_BR = (SPISettings(2000000, MSBFIRST, SPI_MODE0).br1);
  1128. } else if (clockDiv == SPI_CLOCK_DIV16) {
  1129. SPI1_BR = (SPISettings(1000000, MSBFIRST, SPI_MODE0).br1);
  1130. } else if (clockDiv == SPI_CLOCK_DIV32) {
  1131. SPI1_BR = (SPISettings(500000, MSBFIRST, SPI_MODE0).br1);
  1132. } else if (clockDiv == SPI_CLOCK_DIV64) {
  1133. SPI1_BR = (SPISettings(250000, MSBFIRST, SPI_MODE0).br1);
  1134. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  1135. SPI1_BR = (SPISettings(125000, MSBFIRST, SPI_MODE0).br1);
  1136. }
  1137. }
  1138. // These undocumented functions should not be used. SPI.transfer()
  1139. // polls the hardware flag which is automatically cleared as the
  1140. // AVR responds to SPI's interrupt
  1141. inline static void attachInterrupt() { }
  1142. inline static void detachInterrupt() { }
  1143. // Teensy LC can use alternate pins for these 3 SPI signals.
  1144. inline static void setMOSI(uint8_t pin) __attribute__((always_inline)) {
  1145. SPCR1.setMOSI(pin);
  1146. }
  1147. inline static void setMISO(uint8_t pin) __attribute__((always_inline)) {
  1148. SPCR1.setMISO(pin);
  1149. }
  1150. inline static void setSCK(uint8_t pin) __attribute__((always_inline)) {
  1151. SPCR1.setSCK(pin);
  1152. }
  1153. // return true if "pin" has special chip select capability
  1154. static bool pinIsChipSelect(uint8_t pin) { return (pin == 6); }
  1155. // return true if both pin1 and pin2 have independent chip select capability
  1156. static bool pinIsChipSelect(uint8_t pin1, uint8_t pin2) { return false; }
  1157. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  1158. static uint8_t setCS(uint8_t pin);
  1159. private:
  1160. static uint32_t interruptMask;
  1161. static uint32_t interruptSave;
  1162. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1163. static uint8_t inTransactionFlag;
  1164. #endif
  1165. };
  1166. /**********************************************************/
  1167. /* 32 bit Arduino Due */
  1168. /**********************************************************/
  1169. #elif defined(__arm__) && defined(__SAM3X8E__)
  1170. #undef SPI_MODE0
  1171. #undef SPI_MODE1
  1172. #undef SPI_MODE2
  1173. #undef SPI_MODE3
  1174. #define SPI_MODE0 0x02
  1175. #define SPI_MODE1 0x00
  1176. #define SPI_MODE2 0x03
  1177. #define SPI_MODE3 0x01
  1178. #undef SPI_CLOCK_DIV2
  1179. #undef SPI_CLOCK_DIV4
  1180. #undef SPI_CLOCK_DIV8
  1181. #undef SPI_CLOCK_DIV16
  1182. #undef SPI_CLOCK_DIV32
  1183. #undef SPI_CLOCK_DIV64
  1184. #undef SPI_CLOCK_DIV128
  1185. #define SPI_CLOCK_DIV2 11
  1186. #define SPI_CLOCK_DIV4 21
  1187. #define SPI_CLOCK_DIV8 42
  1188. #define SPI_CLOCK_DIV16 84
  1189. #define SPI_CLOCK_DIV32 168
  1190. #define SPI_CLOCK_DIV64 255
  1191. #define SPI_CLOCK_DIV128 255
  1192. enum SPITransferMode {
  1193. SPI_CONTINUE,
  1194. SPI_LAST
  1195. };
  1196. class SPISettings {
  1197. public:
  1198. SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  1199. if (__builtin_constant_p(clock)) {
  1200. init_AlwaysInline(clock, bitOrder, dataMode);
  1201. } else {
  1202. init_MightInline(clock, bitOrder, dataMode);
  1203. }
  1204. }
  1205. SPISettings() {
  1206. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  1207. }
  1208. private:
  1209. void init_MightInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
  1210. init_AlwaysInline(clock, bitOrder, dataMode);
  1211. }
  1212. void init_AlwaysInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode)
  1213. __attribute__((__always_inline__)) {
  1214. uint8_t div;
  1215. border = bitOrder;
  1216. if (__builtin_constant_p(clock)) {
  1217. if (clock >= F_CPU / 2) div = 2;
  1218. else if (clock >= F_CPU / 3) div = 3;
  1219. else if (clock >= F_CPU / 4) div = 4;
  1220. else if (clock >= F_CPU / 5) div = 5;
  1221. else if (clock >= F_CPU / 6) div = 6;
  1222. else if (clock >= F_CPU / 7) div = 7;
  1223. else if (clock >= F_CPU / 8) div = 8;
  1224. else if (clock >= F_CPU / 9) div = 9;
  1225. else if (clock >= F_CPU / 10) div = 10;
  1226. else if (clock >= F_CPU / 11) div = 11;
  1227. else if (clock >= F_CPU / 12) div = 12;
  1228. else if (clock >= F_CPU / 13) div = 13;
  1229. else if (clock >= F_CPU / 14) div = 14;
  1230. else if (clock >= F_CPU / 15) div = 15;
  1231. else if (clock >= F_CPU / 16) div = 16;
  1232. else if (clock >= F_CPU / 17) div = 17;
  1233. else if (clock >= F_CPU / 18) div = 18;
  1234. else if (clock >= F_CPU / 19) div = 19;
  1235. else if (clock >= F_CPU / 20) div = 20;
  1236. else if (clock >= F_CPU / 21) div = 21;
  1237. else if (clock >= F_CPU / 22) div = 22;
  1238. else if (clock >= F_CPU / 23) div = 23;
  1239. else if (clock >= F_CPU / 24) div = 24;
  1240. else if (clock >= F_CPU / 25) div = 25;
  1241. else if (clock >= F_CPU / 26) div = 26;
  1242. else if (clock >= F_CPU / 27) div = 27;
  1243. else if (clock >= F_CPU / 28) div = 28;
  1244. else if (clock >= F_CPU / 29) div = 29;
  1245. else if (clock >= F_CPU / 30) div = 30;
  1246. else if (clock >= F_CPU / 31) div = 31;
  1247. else if (clock >= F_CPU / 32) div = 32;
  1248. else if (clock >= F_CPU / 33) div = 33;
  1249. else if (clock >= F_CPU / 34) div = 34;
  1250. else if (clock >= F_CPU / 35) div = 35;
  1251. else if (clock >= F_CPU / 36) div = 36;
  1252. else if (clock >= F_CPU / 37) div = 37;
  1253. else if (clock >= F_CPU / 38) div = 38;
  1254. else if (clock >= F_CPU / 39) div = 39;
  1255. else if (clock >= F_CPU / 40) div = 40;
  1256. else if (clock >= F_CPU / 41) div = 41;
  1257. else if (clock >= F_CPU / 42) div = 42;
  1258. else if (clock >= F_CPU / 43) div = 43;
  1259. else if (clock >= F_CPU / 44) div = 44;
  1260. else if (clock >= F_CPU / 45) div = 45;
  1261. else if (clock >= F_CPU / 46) div = 46;
  1262. else if (clock >= F_CPU / 47) div = 47;
  1263. else if (clock >= F_CPU / 48) div = 48;
  1264. else if (clock >= F_CPU / 49) div = 49;
  1265. else if (clock >= F_CPU / 50) div = 50;
  1266. else if (clock >= F_CPU / 51) div = 51;
  1267. else if (clock >= F_CPU / 52) div = 52;
  1268. else if (clock >= F_CPU / 53) div = 53;
  1269. else if (clock >= F_CPU / 54) div = 54;
  1270. else if (clock >= F_CPU / 55) div = 55;
  1271. else if (clock >= F_CPU / 56) div = 56;
  1272. else if (clock >= F_CPU / 57) div = 57;
  1273. else if (clock >= F_CPU / 58) div = 58;
  1274. else if (clock >= F_CPU / 59) div = 59;
  1275. else if (clock >= F_CPU / 60) div = 60;
  1276. else if (clock >= F_CPU / 61) div = 61;
  1277. else if (clock >= F_CPU / 62) div = 62;
  1278. else if (clock >= F_CPU / 63) div = 63;
  1279. else if (clock >= F_CPU / 64) div = 64;
  1280. else if (clock >= F_CPU / 65) div = 65;
  1281. else if (clock >= F_CPU / 66) div = 66;
  1282. else if (clock >= F_CPU / 67) div = 67;
  1283. else if (clock >= F_CPU / 68) div = 68;
  1284. else if (clock >= F_CPU / 69) div = 69;
  1285. else if (clock >= F_CPU / 70) div = 70;
  1286. else if (clock >= F_CPU / 71) div = 71;
  1287. else if (clock >= F_CPU / 72) div = 72;
  1288. else if (clock >= F_CPU / 73) div = 73;
  1289. else if (clock >= F_CPU / 74) div = 74;
  1290. else if (clock >= F_CPU / 75) div = 75;
  1291. else if (clock >= F_CPU / 76) div = 76;
  1292. else if (clock >= F_CPU / 77) div = 77;
  1293. else if (clock >= F_CPU / 78) div = 78;
  1294. else if (clock >= F_CPU / 79) div = 79;
  1295. else if (clock >= F_CPU / 80) div = 80;
  1296. else if (clock >= F_CPU / 81) div = 81;
  1297. else if (clock >= F_CPU / 82) div = 82;
  1298. else if (clock >= F_CPU / 83) div = 83;
  1299. else if (clock >= F_CPU / 84) div = 84;
  1300. else if (clock >= F_CPU / 85) div = 85;
  1301. else if (clock >= F_CPU / 86) div = 86;
  1302. else if (clock >= F_CPU / 87) div = 87;
  1303. else if (clock >= F_CPU / 88) div = 88;
  1304. else if (clock >= F_CPU / 89) div = 89;
  1305. else if (clock >= F_CPU / 90) div = 90;
  1306. else if (clock >= F_CPU / 91) div = 91;
  1307. else if (clock >= F_CPU / 92) div = 92;
  1308. else if (clock >= F_CPU / 93) div = 93;
  1309. else if (clock >= F_CPU / 94) div = 94;
  1310. else if (clock >= F_CPU / 95) div = 95;
  1311. else if (clock >= F_CPU / 96) div = 96;
  1312. else if (clock >= F_CPU / 97) div = 97;
  1313. else if (clock >= F_CPU / 98) div = 98;
  1314. else if (clock >= F_CPU / 99) div = 99;
  1315. else if (clock >= F_CPU / 100) div = 100;
  1316. else if (clock >= F_CPU / 101) div = 101;
  1317. else if (clock >= F_CPU / 102) div = 102;
  1318. else if (clock >= F_CPU / 103) div = 103;
  1319. else if (clock >= F_CPU / 104) div = 104;
  1320. else if (clock >= F_CPU / 105) div = 105;
  1321. else if (clock >= F_CPU / 106) div = 106;
  1322. else if (clock >= F_CPU / 107) div = 107;
  1323. else if (clock >= F_CPU / 108) div = 108;
  1324. else if (clock >= F_CPU / 109) div = 109;
  1325. else if (clock >= F_CPU / 110) div = 110;
  1326. else if (clock >= F_CPU / 111) div = 111;
  1327. else if (clock >= F_CPU / 112) div = 112;
  1328. else if (clock >= F_CPU / 113) div = 113;
  1329. else if (clock >= F_CPU / 114) div = 114;
  1330. else if (clock >= F_CPU / 115) div = 115;
  1331. else if (clock >= F_CPU / 116) div = 116;
  1332. else if (clock >= F_CPU / 117) div = 117;
  1333. else if (clock >= F_CPU / 118) div = 118;
  1334. else if (clock >= F_CPU / 119) div = 119;
  1335. else if (clock >= F_CPU / 120) div = 120;
  1336. else if (clock >= F_CPU / 121) div = 121;
  1337. else if (clock >= F_CPU / 122) div = 122;
  1338. else if (clock >= F_CPU / 123) div = 123;
  1339. else if (clock >= F_CPU / 124) div = 124;
  1340. else if (clock >= F_CPU / 125) div = 125;
  1341. else if (clock >= F_CPU / 126) div = 126;
  1342. else if (clock >= F_CPU / 127) div = 127;
  1343. else if (clock >= F_CPU / 128) div = 128;
  1344. else if (clock >= F_CPU / 129) div = 129;
  1345. else if (clock >= F_CPU / 130) div = 130;
  1346. else if (clock >= F_CPU / 131) div = 131;
  1347. else if (clock >= F_CPU / 132) div = 132;
  1348. else if (clock >= F_CPU / 133) div = 133;
  1349. else if (clock >= F_CPU / 134) div = 134;
  1350. else if (clock >= F_CPU / 135) div = 135;
  1351. else if (clock >= F_CPU / 136) div = 136;
  1352. else if (clock >= F_CPU / 137) div = 137;
  1353. else if (clock >= F_CPU / 138) div = 138;
  1354. else if (clock >= F_CPU / 139) div = 139;
  1355. else if (clock >= F_CPU / 140) div = 140;
  1356. else if (clock >= F_CPU / 141) div = 141;
  1357. else if (clock >= F_CPU / 142) div = 142;
  1358. else if (clock >= F_CPU / 143) div = 143;
  1359. else if (clock >= F_CPU / 144) div = 144;
  1360. else if (clock >= F_CPU / 145) div = 145;
  1361. else if (clock >= F_CPU / 146) div = 146;
  1362. else if (clock >= F_CPU / 147) div = 147;
  1363. else if (clock >= F_CPU / 148) div = 148;
  1364. else if (clock >= F_CPU / 149) div = 149;
  1365. else if (clock >= F_CPU / 150) div = 150;
  1366. else if (clock >= F_CPU / 151) div = 151;
  1367. else if (clock >= F_CPU / 152) div = 152;
  1368. else if (clock >= F_CPU / 153) div = 153;
  1369. else if (clock >= F_CPU / 154) div = 154;
  1370. else if (clock >= F_CPU / 155) div = 155;
  1371. else if (clock >= F_CPU / 156) div = 156;
  1372. else if (clock >= F_CPU / 157) div = 157;
  1373. else if (clock >= F_CPU / 158) div = 158;
  1374. else if (clock >= F_CPU / 159) div = 159;
  1375. else if (clock >= F_CPU / 160) div = 160;
  1376. else if (clock >= F_CPU / 161) div = 161;
  1377. else if (clock >= F_CPU / 162) div = 162;
  1378. else if (clock >= F_CPU / 163) div = 163;
  1379. else if (clock >= F_CPU / 164) div = 164;
  1380. else if (clock >= F_CPU / 165) div = 165;
  1381. else if (clock >= F_CPU / 166) div = 166;
  1382. else if (clock >= F_CPU / 167) div = 167;
  1383. else if (clock >= F_CPU / 168) div = 168;
  1384. else if (clock >= F_CPU / 169) div = 169;
  1385. else if (clock >= F_CPU / 170) div = 170;
  1386. else if (clock >= F_CPU / 171) div = 171;
  1387. else if (clock >= F_CPU / 172) div = 172;
  1388. else if (clock >= F_CPU / 173) div = 173;
  1389. else if (clock >= F_CPU / 174) div = 174;
  1390. else if (clock >= F_CPU / 175) div = 175;
  1391. else if (clock >= F_CPU / 176) div = 176;
  1392. else if (clock >= F_CPU / 177) div = 177;
  1393. else if (clock >= F_CPU / 178) div = 178;
  1394. else if (clock >= F_CPU / 179) div = 179;
  1395. else if (clock >= F_CPU / 180) div = 180;
  1396. else if (clock >= F_CPU / 181) div = 181;
  1397. else if (clock >= F_CPU / 182) div = 182;
  1398. else if (clock >= F_CPU / 183) div = 183;
  1399. else if (clock >= F_CPU / 184) div = 184;
  1400. else if (clock >= F_CPU / 185) div = 185;
  1401. else if (clock >= F_CPU / 186) div = 186;
  1402. else if (clock >= F_CPU / 187) div = 187;
  1403. else if (clock >= F_CPU / 188) div = 188;
  1404. else if (clock >= F_CPU / 189) div = 189;
  1405. else if (clock >= F_CPU / 190) div = 190;
  1406. else if (clock >= F_CPU / 191) div = 191;
  1407. else if (clock >= F_CPU / 192) div = 192;
  1408. else if (clock >= F_CPU / 193) div = 193;
  1409. else if (clock >= F_CPU / 194) div = 194;
  1410. else if (clock >= F_CPU / 195) div = 195;
  1411. else if (clock >= F_CPU / 196) div = 196;
  1412. else if (clock >= F_CPU / 197) div = 197;
  1413. else if (clock >= F_CPU / 198) div = 198;
  1414. else if (clock >= F_CPU / 199) div = 199;
  1415. else if (clock >= F_CPU / 200) div = 200;
  1416. else if (clock >= F_CPU / 201) div = 201;
  1417. else if (clock >= F_CPU / 202) div = 202;
  1418. else if (clock >= F_CPU / 203) div = 203;
  1419. else if (clock >= F_CPU / 204) div = 204;
  1420. else if (clock >= F_CPU / 205) div = 205;
  1421. else if (clock >= F_CPU / 206) div = 206;
  1422. else if (clock >= F_CPU / 207) div = 207;
  1423. else if (clock >= F_CPU / 208) div = 208;
  1424. else if (clock >= F_CPU / 209) div = 209;
  1425. else if (clock >= F_CPU / 210) div = 210;
  1426. else if (clock >= F_CPU / 211) div = 211;
  1427. else if (clock >= F_CPU / 212) div = 212;
  1428. else if (clock >= F_CPU / 213) div = 213;
  1429. else if (clock >= F_CPU / 214) div = 214;
  1430. else if (clock >= F_CPU / 215) div = 215;
  1431. else if (clock >= F_CPU / 216) div = 216;
  1432. else if (clock >= F_CPU / 217) div = 217;
  1433. else if (clock >= F_CPU / 218) div = 218;
  1434. else if (clock >= F_CPU / 219) div = 219;
  1435. else if (clock >= F_CPU / 220) div = 220;
  1436. else if (clock >= F_CPU / 221) div = 221;
  1437. else if (clock >= F_CPU / 222) div = 222;
  1438. else if (clock >= F_CPU / 223) div = 223;
  1439. else if (clock >= F_CPU / 224) div = 224;
  1440. else if (clock >= F_CPU / 225) div = 225;
  1441. else if (clock >= F_CPU / 226) div = 226;
  1442. else if (clock >= F_CPU / 227) div = 227;
  1443. else if (clock >= F_CPU / 228) div = 228;
  1444. else if (clock >= F_CPU / 229) div = 229;
  1445. else if (clock >= F_CPU / 230) div = 230;
  1446. else if (clock >= F_CPU / 231) div = 231;
  1447. else if (clock >= F_CPU / 232) div = 232;
  1448. else if (clock >= F_CPU / 233) div = 233;
  1449. else if (clock >= F_CPU / 234) div = 234;
  1450. else if (clock >= F_CPU / 235) div = 235;
  1451. else if (clock >= F_CPU / 236) div = 236;
  1452. else if (clock >= F_CPU / 237) div = 237;
  1453. else if (clock >= F_CPU / 238) div = 238;
  1454. else if (clock >= F_CPU / 239) div = 239;
  1455. else if (clock >= F_CPU / 240) div = 240;
  1456. else if (clock >= F_CPU / 241) div = 241;
  1457. else if (clock >= F_CPU / 242) div = 242;
  1458. else if (clock >= F_CPU / 243) div = 243;
  1459. else if (clock >= F_CPU / 244) div = 244;
  1460. else if (clock >= F_CPU / 245) div = 245;
  1461. else if (clock >= F_CPU / 246) div = 246;
  1462. else if (clock >= F_CPU / 247) div = 247;
  1463. else if (clock >= F_CPU / 248) div = 248;
  1464. else if (clock >= F_CPU / 249) div = 249;
  1465. else if (clock >= F_CPU / 250) div = 250;
  1466. else if (clock >= F_CPU / 251) div = 251;
  1467. else if (clock >= F_CPU / 252) div = 252;
  1468. else if (clock >= F_CPU / 253) div = 253;
  1469. else if (clock >= F_CPU / 254) div = 254;
  1470. else /* clock >= F_CPU / 255 */ div = 255;
  1471. /*
  1472. #! /usr/bin/perl
  1473. for ($i=2; $i<256; $i++) {
  1474. printf "\t\t\telse if (clock >= F_CPU / %3d) div = %3d;\n", $i, $i;
  1475. }
  1476. */
  1477. } else {
  1478. for (div=2; div<255; div++) {
  1479. if (clock >= F_CPU / div) break;
  1480. }
  1481. }
  1482. config = (dataMode & 3) | SPI_CSR_CSAAT | SPI_CSR_SCBR(div) | SPI_CSR_DLYBCT(1);
  1483. }
  1484. uint32_t config;
  1485. BitOrder border;
  1486. friend class SPIClass;
  1487. };
  1488. class SPIClass {
  1489. public:
  1490. SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void));
  1491. byte transfer(uint8_t _data, SPITransferMode _mode = SPI_LAST) { return transfer(BOARD_SPI_DEFAULT_SS, _data, _mode); }
  1492. byte transfer(byte _channel, uint8_t _data, SPITransferMode _mode = SPI_LAST);
  1493. // Transaction Functions
  1494. void usingInterrupt(uint8_t interruptNumber);
  1495. void beginTransaction(uint8_t pin, SPISettings settings);
  1496. void beginTransaction(SPISettings settings) {
  1497. beginTransaction(BOARD_SPI_DEFAULT_SS, settings);
  1498. }
  1499. void endTransaction(void);
  1500. // SPI Configuration methods
  1501. void attachInterrupt(void);
  1502. void detachInterrupt(void);
  1503. void begin(void);
  1504. void end(void);
  1505. // Attach/Detach pin to/from SPI controller
  1506. void begin(uint8_t _pin);
  1507. void end(uint8_t _pin);
  1508. // These methods sets a parameter on a single pin
  1509. void setBitOrder(uint8_t _pin, BitOrder);
  1510. void setDataMode(uint8_t _pin, uint8_t);
  1511. void setClockDivider(uint8_t _pin, uint8_t);
  1512. // These methods sets the same parameters but on default pin BOARD_SPI_DEFAULT_SS
  1513. void setBitOrder(BitOrder _order) { setBitOrder(BOARD_SPI_DEFAULT_SS, _order); };
  1514. void setDataMode(uint8_t _mode) { setDataMode(BOARD_SPI_DEFAULT_SS, _mode); };
  1515. void setClockDivider(uint8_t _div) { setClockDivider(BOARD_SPI_DEFAULT_SS, _div); };
  1516. private:
  1517. void init();
  1518. Spi *spi;
  1519. uint32_t id;
  1520. BitOrder bitOrder[SPI_CHANNELS_NUM];
  1521. uint32_t divider[SPI_CHANNELS_NUM];
  1522. uint32_t mode[SPI_CHANNELS_NUM];
  1523. void (*initCb)(void);
  1524. bool initialized;
  1525. uint8_t interruptMode; // 0=none, 1=mask, 2=global
  1526. uint8_t interruptMask; // bits 0:3=pin change
  1527. uint8_t interruptSave; // temp storage, to restore state
  1528. };
  1529. #endif
  1530. extern SPIClass SPI;
  1531. #if defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  1532. extern SPI1Class SPI1;
  1533. #endif
  1534. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  1535. extern SPI1Class SPI1;
  1536. #endif
  1537. #endif